Воздушный резак по металлу
Воздушно-дуговая резка основывается на расплавлении металла электрической дугой и его непрерывном удалении направленной струей сжатого воздуха. Данная технология требует применения инструментов специальной конструкции. Использующиеся в работе резаки могут иметь кольцевое или последовательное расположение воздушной струи. В последнем случае обтекание электрода сжатым потоком осуществляется только с одной стороны.
Особенности
В воздушно-дуговой резке используются угольные или графитовые электроды. Последние являются более прочными, отличаются меньшим электрическим сопротивлением (0,0008 Ом против 0,0032 Ом для кубика с ребром 1 см). Возможно использование угольных омедненных электродов.
В качестве источника питания при дуговой резке металла используются преобразователи постоянного тока или трансформаторы. Подача сжатого воздуха на резак идет от цеховой сети или передвижного компрессора. Давление должно находиться в пределах 0,4–0,6 МПа. Его больший уровень нецелесообразен, так как слишком сильный поток снижает стабильность электрической дуги.
В воздушно-дуговой резке, как правило, используется постоянный ток обратной полярности как более производительный. Применение же переменного целесообразно при мелких работах, например, удалении местных неровностей сварного шва. Использование в таких случаях постоянного тока прямой полярности приводит к увеличению зоны нагрева, что затрудняет устранение расплавленного металла.
Величина тока при воздушно-дуговой резке вычисляется по формуле:
I = K x d,
где d – диаметр электрода в мм, К – линейный коэффициент, составляющий 46–48 А/мм для угольных и 60–62 А/мм для графитовых электродов. Полученное число дает значение тока в амперах.
Сфера использования
Воздушно-дуговая резка широко применяется для обработки большинства черных и цветных металлов.
Чаще всего она используется в следующих случаях:
- для устранения дефектных участков сварных швов;
- резки металлических листов толщиной до 20–25 мм;
- пробивки отверстий;
- выплавки пороков литья;
- срезки заклепок и т. п.
Виды воздушно-дуговой резки
Разделительная. Используется для резки листов из низкоуглеродистой и легированной стали толщиной до 25 мм. Величина тока (300–600 А) и диаметр электрода (6–12 мм) подбираются в зависимости от размеров материала. Разделение листа осуществляется выплавкой металла вдоль траектории движения электрода. Использование разделительной воздушно-дуговой резки целесообразно, когда необходимо обработать большое количество листового металла, а требования к ширине и точности реза невысоки.
Поверхностная. Применяется для обработки дефектов сварных швов, подрубки их корней, снятия фасок. Последняя операция может осуществляться одновременно на обеих кромках листа. Ширина канавки, которая образуется при такой обработке, на 2–3 мм больше диаметра использующегося электрода. Для поверхностной обработки требуется меньшая величина тока, чем для разделительной дуговой резки.
Аппаратура и технология
Стандартный пост для воздушно-дуговой резки включает:
- пусковую аппаратуру;
- шланг с компрессором;
- источник питания;
- сварочный кабель;
- резак.
При установке в производственном помещении шланг подсоединяется к цеховому воздухопроводу, а не к компрессору. На строительных площадках пост оборудуется в передвижном или уже существующем машинном зале, с подключением к сварочному оборудованию постоянного тока.
Основным рабочим инструментом является резак типа РВД, оснащенный воздушным клапаном и устройством для зажима электрода. В качестве источников питания для резки используется стандартное сварочное оборудование: преобразователи типа ПСО, выпрямители ВД или ВДУ, другие ИП. При отсутствии компрессора и центральной сети допустимо использование баллонов со сжатым воздухом при оснащении их редуктором, понижающим давление.
Техника безопасности при воздушно-дуговой резке
Все сварочные работы связаны с определенными факторами, которые могут нанести вред здоровью человека.
К основным относятся:
- источники постоянного тока большой величины;
- расплавленный металл, образующийся при резке;
- ультрафиолетовое излучение электрической дуги;
- токсичные газы и пыль, образующиеся в процессе воздушно-дуговой резки.
Чтобы обезопасить себя от перечисленных факторов, следует точно выполнять инструкции по эксплуатации оборудования и работать только в специальной одежде. Помещение, в котором производится воздушно-дуговая резка, должно хорошо вентилироваться. Исключение составляют открытые строительные площадки, где происходит естественный воздухообмен.
В связи с высокой мощностью сварочного электрооборудования перед его включением обязательно следует проверить заземление.
Воздушно-дуговая резка
Разрезать металл — воздухом? Почему бы и нет…
Во все времена, с самого момента своего появления, металл был окружён различными проблемами: начиная от его добычи и заканчивая последующей обработкой. Особенно эта проблема усугубилась в период промышленной революции, когда всё более возрастающий темп жизни побуждал производства подстраиваться под него и искать такие способы обработки, которые бы позволяли производству быть конкурентоспособным в условиях рыночной среды.
Многие, особенно те, кто имеет возраст достаточно немолодой, могли застать в изобилии встречающиеся в наших городах различные газовые резаки, которые, как правило, использовались водопроводчиками и коммунальными службами, для ремонта и подведения труб отопления.
Проблема резаков, однако, заключается в том, что для резки металлов с использованием такого способа, требуется использование дорогостоящих и опасных газов. Кроме того, эти газы необходимо каким-то образом транспортировать, определённым образом складировать.
Всё это делает процесс резки достаточно проблемным. Однако, есть способ гораздо более высокотехнологичный и экономичный, который широко распространился (особенно в бытовом плане), в последнее время. Именно о нём мы и поговорим в этой статье.
Газовые резаки, в своей сущности, работают по одному и тому же принципу: металл нагревается в струе пламени газового резака, после чего он частично сгорает/частично выдувается, из зоны резания.
Частным случаем этого способа резания является «резка кислородным копьём». Способ заключается в том, что кончик кислородного копья (которое представляет собой стальную трубку), разогревается горелкой, после чего открывается подача кислорода.
Кислород, поступающий прямо внутрь «копья», позволяет кончику копья активно гореть, благодаря чему идёт постоянное поддержание температуры в зоне контакта копья и разрезаемой заготовки. При использовании метода кислородного копья, возможно проделывать отверстия в металлических заготовках, толщиной до 2 метров. При этом, само копьё активно сгорает и его расход составляет до 25 диаметров того отверстия, которое проделывается с его помощью.
Кроме того, кислородное копьё часто используют не только для проделывания отверстий, но и для разрезания заготовок большого диаметра. Сам процесс выглядит более чем впечатляюще:
Однако, прочитав всё вышесказанное, у читателя возникнет закономерный вопрос: если любая работа по проделыванию отверстий, либо разрезанию металла является настолько энергоёмкой и затратной в плане расхода газов, каким же образом можно осуществлять эту работу без затрат драгоценного газа? Для этого и пригодится аппарат плазменной резки.
Несмотря на то, что бытовые аппараты плазменной резки распространились совсем недавно (отправной точкой можно считать 2006 год, когда и появились портативные аппараты), как средство обработки металла они известны достаточно давно. Отправной точкой своей истории они могут считать 1929 год, с момента открытие факта ионизации газов, в газоразрядных трубках, физиками из США — И.Ленгмуром и Л.Тонко.
А уже с середины прошлого века плазменная резка, базирующиеся на открытии этих двух физиков, широко распространилась для целей металлообработки.
Суть плазменной резки заключается в том, что в электрическую дугу подаётся сжатый газ, имеющий давление в несколько атмосфер. После продувки дуги – газом, он приобретает температуру до 30 000 градусов Цельсия (и более, если используется дополнительно водяной пар) и превращается в плазму.
Такая огромная температура газа позволяет с лёгкостью резать металлы с достаточно большой скоростью.
Здесь мы подошли к самому главному: при работе аппаратов плазменной резки может быть использован обычный атмосферный воздух!
Именно это качество и делает плазморезы такими экономичными и малопроблемными, по сравнению с классическими газовыми резаками: ведь не используются никакие опасные газы, требующие аккуратного обращения и соответствующего хранения, и в качестве рабочего тела выступает обычный воздух!
Конечно, использование воздуха это только один из видов плазменной резки, в зависимости от целей могут применять как азот, так и аргон, и другие газы.
Одним из самых важных элементов аппарата для плазменной резки является плазмотрон — именно он отвечает за то, насколько эффективно и какие именно типы обрабатываемых изделий будут доступны конкретному устройству.
С электрической точки зрения (зажигания дуги плазмореза) плазмотроны бывают 2 типов: прямого действия и косвенного действия.
Плазморез прямого действия действует по принципу зажигания высокочастотной пилотной дуги, которая позволяет «выдуть» струю плазмы, которая касается обрабатываемой заготовки. После того, как плазма коснулась заготовки, пилотная (поджигающая) дуга погасает и зажигается основная, которая уже позволяет обрабатывать заготовку (плазма является проводником электричества, практически ничем не отличающимся от самого металла, поэтому дуга горит прямо «сквозь» плазму).
В плазмотронах же косвенного типа, поджигание дуги происходит за счёт разряда между катодом и соплом. Теоретически, плазмотроны такого типа позволяют обрабатывать заготовки неметаллического типа.
Расходными деталями для плазмореза являются сопло и электрод. Ввиду того, что данные детали достаточно недороги, их замена не является какой-либо проблемой. Срок их службы достаточно индивидуален, — в сети фигурируют цифры в 500-600 резов, либо 1 комплекта на 150 метров реза и т.д.
По типу, плазморезы можно подразделить на инверторные и трансформаторные. Плазморезы 1 типа позволяют разрезать металл толщиной до 30 мм, в то время как 2 типа может резать металл и до 40 мм толщиной.
В любом случае, при работе с плазморезом следует смотреть на конкретные рекомендации в его паспорте, так как от плазмореза бытового типа требуется соблюдать определённые циклы работа/отдых, во избежание перегрева. Профессиональные же модели позволяют работать достаточно продолжительное время.
Ещё одним плюсом плазмореза, кроме экономичности работы, является чистый рез и высокая скорость работы. Согласно wiki, плазменная резка выигрывает у лазерной по скорости в 2-3 раза.
Кстати, ещё о скорости: экспериментаторами проводился такой опыт: брался стальной лист, толщиной 15 мм и его пытались «проткнуть» посередине — классическим газовым резаком и плазморезом. Классическому резаку для этого потребовалось 30 секунд, а плазморезу — всего 2 секунды. Впечатляющая разница!
Если же говорить об экономической составляющей, в частности о стоимости входа в такое интересное занятие, то можно сказать, что цена большей части бытовых плазморезов находится в пределах суммы до 20000 руб.
Использование такого устройства позволяет существенно упростить любую работу, связанную с фигурным вырезанием из металла разнообразных декоративных изделий:
Как работает плазморез — устройство, принцип работы
Плазменная резка широко используется в изготовлении металлоконструкций и других отраслях. С её помощью можно быстро и качественно разрезать любой токопроводящий материал, а также некоторые нетокопроводящие материалы – пластик, камень и дерево. Разрезать трубы, листовой металл, выполнить фигурный рез или изготовить деталь можно просто, быстро и удобно с помощью технологии плазменной резки. Чтобы работа с плазморезом давалась легко, а рез получался красивым и ровным, не мешает узнать принцип работы плазмореза, который даст базовое понятие, как можно управлять процессом резки. В статье мастер сантехник расскажет, как работает плазморез.
Как устроен плазморез
Главными узлами плазмореза являются:
- Источник постоянного тока (трансформатор или инвертор);
- Плазмотрон (плазменный резак);
- Воздушный компрессор.
Применение постоянного тока обусловлено необходимостью регулирования температура пламени горелки, что невозможно при применении источников переменного тока.
Повышающие трансформаторы более громоздки, энергоемки, но при этом стойки к перепадам напряжения. Их преимуществом перед инверторами является возможность получать очень высокие напряжения, с их помощью специалисты могут резать металл больших толщин (до 8 см).
Инверторы занимают меньшую площадь и экономичнее трансформаторов (за счет более высокого КПД), однако, они не позволяют получать высоких напряжений. Как следствие – невозможность реза металла большой толщины (до 3 см).
Поэтому такие устройства распространены, по большей мере, на малых предприятиях и в небольших мастерских. Их принцип действия прост, поэтому агрегатом могут пользоваться младшие специалисты после проведения инструктажа, как работает аппарат.
Рабочий орган аппарата имеет сложное внутреннее устройство. В отличие от кислородно-ацетиленового резака, в случае плазменной сварки, он получил особое название – плазмотрон.
В его корпусе находятся следующие узлы:
- Сопло;
- Электрод;
- Изолятор;
- Узел приема сжатого воздуха.
Возбудителем электрической дуги является электрод. Материалами его изготовления, чаще всего, являются гафний, цирконий и бериллий. Эти редкие металлы имеют свойство образовывать тугоплавкие оксидные пленки, которые защищают электрод от разрушения под воздействием высоких температур. Однако, по своим экологическим характеристикам, гафний превосходит другие металлы, ввиду меньшей радиоактивности и применяется чаще остальных.
Сопло плазменного резака выполняет функцию создания высокоскоростного потока плазмы. Геометрическая конфигурация сопла определяет скорость работы и мощность плазмореза, а также качество получаемой кромки реза. Последний параметр зависит от длины сопла.
Воздушный компрессор нужен для получения сжатого воздуха требуемого давления. Помимо этого, он применяется еще и для охлаждения рабочих элементов плазмореза.
Источник питания, плазмотрон, и воздушный компрессор соединяет между собой комплекс кабелей и шлангов.
Все аппараты плазменной резки можно разделить на две категории: ручные плазморезы и аппараты машинной резки.
Ручные плазморезы используются в быту, на маленьких производствах и в частных мастерских для изготовления и обработки деталей. Основная их особенность в том, что плазмотрон держит в руках оператор, он ведет резак по линии будущего реза, держа его на весу. В итоге рез получается хоть и ровным, но не идеальным. Да и производительность такой технологии маленькая. Чтобы рез получился более ровным, без наплывов и окалины, для ведения плазмотрона используется специальный упор, который одевается на сопло. Упор прижимается к поверхности обрабатываемой заготовки и остается только вести резак, не переживая за то, соблюдается ли необходимое расстояние между заготовкой и соплом.
На ручной плазморез цена зависит от его характеристик: максимальной силы тока, толщины обрабатываемой заготовки и универсальности. Например, существуют модели, которые можно использовать не только для резки металлов, но и для сварки. Их можно отличить по маркировке:
- CUT – разрезание;
- TIG – аргонодуговая сварка;
- MMA – дуговая сварка штучным электродом.
Сила тока и толщина заготовки – основные параметры, по которым подбирается плазморез. И они взаимосвязаны.
Чем больше сила тока, тем сильнее плазменная дуга, которая быстрее расплавляет металл. Выбирая плазморез для конкретных нужд, необходимо точно знать, какой металл придется обрабатывать и какой толщины. В приведенной ниже таблице указано, какая сила тока нужна для разрезания 1 мм металла. Обратите внимание, что для обработки цветных металлов требуется большая сила тока. Учтите это, когда будете смотреть на характеристики плазмореза в магазине, на аппарате указана толщина заготовки из черного металла. Если вы планируете резать медь или другой цветной металл, лучше рассчитайте необходимую силу тока самостоятельно.
Например, если требуется разрезать медь толщиной 2 мм, то необходимо 6 А умножить на 2 мм, получим плазморез с силой тока 12 А. Если требуется разрезать сталь толщиной 2 мм, то умножаем 4 А на 2 мм, получаем силу тока 8 А. Только берите аппарат плазменной резки с запасом, так как указанные характеристики являются максимальными, а не номинальными. На них можно работать только непродолжительное время.
Станок с ЧПУ плазменной резки используется на производственных предприятиях для изготовления деталей или обработки заготовок. ЧПУ означает числовое программное управление. Станок работает по заданной программе с минимальным участием оператора, что максимально исключает человеческий фактор на производстве и увеличивает производительность в разы. Качество реза машинным аппаратом идеально, не требуется дополнительная обработка кромок. А самое главное – фигурные резы и исключительная точность. Достаточно ввести в программу схему реза и аппарат может выполнить любую замысловатую фигуру с идеальной точностью. На станок плазменной резки цена значительно выше, чем на ручной плазморез. Во-первых, используется большой трансформатор. Во-вторых, специальный стол, портал и направляющие.
Аппараты машинной плазменной резки используют для охлаждения воду, поэтому могут работать всю смену без перерыва.
Так называемый ПВ (продолжительность включения) равен 100 %. Хотя у ручных аппаратов он может быть и 40 %, что означает следующее: 4 минуты плазморез работает, а 6 минут ему необходимо для того, чтобы остыть.
Чтобы понять принцип работы плазмореза, необходимо ознакомиться с технологией плазменной резки.
Прежде всего, необходимо определиться с понятием плазмы, а также для чего она нужна. Плазма – это высокотемпературный ионизированный газ, обладающий высокой электропроводностью.
Технологический процесс резки плазмой основан на идее газоэлектрической горелки, работающей на основе сварочной дуги. Это достигается построением специальной электрической цепи в следующей последовательности:
- Вольфрамовый стержень соединяется с отрицательным полюсом источника постоянного тока;
- Положительный полюс источника постоянного тока соединяется с соплом горелки или изделием;
- Подача аргона или гелия в горелку.
Результатом этих операций становится загорание дуги между стержнем вольфрама и соплом. Образовавшаяся дуга подвергается сжатию под воздействием канала из жаропрочного сплава.
Вследствие этого, возникает очень высокое давление и происходит резкое повышение температуры дуги.
Возникновение потока плазмы генерирует вокруг себя сильное магнитное поле, еще сильнее сжимающее плазму и повышающее ее температуру.
Образовавшееся пламя плазмы достигает сверхвысоких температур: выше тридцати тысяч градусов Цельсия. Такое пламя в состоянии качественно как разрезать, так и сваривать любой материал.
В сюжете - Как работает плазморез
Особенности работы аппарата
При включении аппарата плазменной резки с трансформатора на плазмотрон поступает электрический ток высокого напряжения. Вследствие этого, образуется высокотемпературная электрическая дуга. Поток сжатого воздуха, проходя сквозь дугу, возрастает в объеме на один порядок и становится токопроводящим.
Ионизированный поток газа (плазма), за счет прохождения через сопло, увеличивает свои термодинамические характеристики: скорость возрастает до 800 м/с, а температура до 30 тыс. градусов Цельсия. Электропроводность плазмы сопоставима по значению с электропроводностью обрабатываемого металла.
Резание металла происходит вследствие его физического расплавления от действия высокой температуры. Незначительная окалина, которая возникает в процессе резки, сдувается потоком сжатого воздуха.
Скорость резания обратно пропорциональна диаметру сопла плазменной горелки. Для формирования качественной плазменной дуги следует применять тангенциальную или воздушно-вихревую подачу сжатого воздуха.
Особенность режущей дуги состоит в том, что ее действие носит локальный характер: в процессе резания не происходит деформации или нарушения поверхностного слоя обрабатываемого изделия.
Где применяются плазморезы
Плазменная резка и сварка являются незаменимыми способом обработки металла, когда дело касается работы с высоколегированными сталями. Поскольку такие материалы применяются в огромном числе отраслей промышленности, то применение плазморезов получает все большее развитие.
Наибольшее распространение плазменная сварка получила в изготовлении различных металлоконструкций. Плазменная резка металла также широко применяется в тяжелом машиностроении и при прокладке трубопроводов.
На крупных машиностроительных заводах получили распространение автоматизированные линии плазморезов.
Плазморезом следует производить резку абсолютно любых материалов по своему происхождению: как токопроводящих, так и диэлектрических.
Технология плазменной резки дает возможность резки стальных листовых деталей, особенно сложных конфигураций. Сверхвысокая температура пламени горелки позволяет резать жаропрочные сплавы, в состав которых входит никель, молибден и титан. Температура плавления этих металлов превышает 3 тыс. градусов Цельсия.
Плазморез является дорогостоящим профессиональным инструментом, поэтому практически не встречается в личном подсобном хозяйстве. Для единичных работ, в независимости от их сложности, мастера могут обойтись доступными инструментами для резки металла, например, электрической болгаркой.
Там же, где стоят задачи резки высоколегированных сплавов в промышленных масштабах, аппараты плазменной резки являются незаменимыми помощниками. Высокая точность реза, работа с любым материалом – достоинства плазморезов.
Ручная плазменная резка применяется в отраслях, где требуется изготавливать листовые детали сложных геометрических контуров. Примерами таких отраслей является ювелирная промышленность и приборостроение.
Плазморезы являются безальтернативным инструментом получения деталей сложного контура, особенно из тонколистовой стали. Там, где листовая штамповка не справляется с задачей получения изделий из очень тонкого листового проката, на помощь технологам приходит плазменная резка.
Не обходится без плазморезов и проведение сложных монтажных работ по установке металлоконструкций. При этом отпадает необходимость использовать кислородный и ацетиленовый баллоны, это повышает безопасность процесса резания металла. Этот технологический фактор облегчает проведение работ по резке металла на высоте.
Устройство плазмореза имеет свои особенности, поэтому аппарат имеет ряд негативных особенностей. Недостатком плазморезов считается высокая стоимость аппарата, сложная настройка и относительно невысокая толщина разрезаемого материала (до 22 см), в сравнении с кислородными резаками (до 50 см).
Ручной плазморез находит свое применение в небольших мастерских по производству сложных и нестандартных деталей. Особенностью работы ручного плазмореза, является высокая зависимость качества реза от квалификации резчика.
По той причине, что оператор плазменной резки держит плазмотрон на весу, производительность процесса резания металла невысокая. Для большего соответствия требуемым геометрическим характеристикам, для ведения рабочего органа плазмореза применяется специальный упор. Этот упор фиксирует сопло к поверхности заготовки на определенном расстоянии, что облегчает процесс резки.
Стоимость ручного плазмореза находится в прямой зависимости от его функциональных характеристик: максимального напряжения и толщины обрабатываемого материала.
Читайте также: