Воздействие холода на металл

Обновлено: 06.01.2025

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Квагинидзе В. С., Козлов В. А.

Обеспечение безопасности промышленных зданий и сооружений угольных предприятий в условиях низких температур

Текст научной работы на тему «Влияние низких отрицательных температур на работоспособность металлоконструкций горных машин»

© B.C. Квагинилзе, В.А. Козлов, 2003 УЛК 66.232.8.004.12+ 658.382 (043.3)

B.C. Квагинилзе, В.А. Козлов

ВЛИЯНИЕ НИЗКИХ ОТРИЦАТЕЛЬНЫХ ТЕМПЕРАТУР НА РАБОТОСПОСОБНОСТЬ МЕТАЛЛОКОНСТРУКЦИЙ ГОРНЫХ МАШИН

Рассматривая работоспособность горных машин и оборудования в регионах с низкими климатическими температурами можно отметить, что поток отказов ряда деталей, узлов машин и металлоконструкций увеличивается здесь в 2-3 раза и наработка на отказ уменьшается в 3 и более раз.

Например, коэффициент использования экскаватора ЭКГ-20 в зимний период уменьшается по сравнению с летним периодом на 35-40%, а экономический ущерб от простоев увеличивается в 56 раз. Время простоя экскаваторов из-за аварии металлоконструкций составляло на разрезе «Не-рюнгринский» 30-45% в зимнее время и 11% в летние месяцы от общего времени аварийных простоев. Как правило, с увеличением срока эксплуатации экскаваторов продолжительность аварийных ремонтов ежегодно увеличивается на 10-12%.

Анализ данных наработки на отказ при температуре ниже -30 °С по сравнению с работой при температуре окружающей среды +20 °С механизма

подъема показывает, что время наработки на отказ в самые холодные месяцы зимы (декабрь-февраль) сокращается в 8 раз.

Число поломок металлоконструкции стрелы составило 2,9%, а балки рукояти 3,2% от общего числа отказов по механической части. В тоже время простои, связанные с отказами стрелы и рукояти в зимнее время составили 12,5%. Характер поломок в основном связан с появлением трещин в нижних и боковых листах рукояти и стрелы рис. 1, 2.

Исследования причин отказов металлоконструкций экскаваторов, проведенных в течении ряда лет в ОАО «Якутуголь», выявили, что высокий уровень динамических нагрузок, низкие отрицательные температуры и конструктивные недостатки, допущенные при проектировании и изготовлении являются главными причинами значительного уменьшения технического ресурса металлоконструкций экскаваторов.

Анализ поломок металлоконструкций экскаваторов [2] показывает, что при рассмотрении ресурса работоспособности металлоконструкций при низких климатических температурах необходимо рассматри-вать условия работы металлоконструкций как для малоциклового нагружения при повышенных нагрузках (Нц =

104 - 105 наработки на отказ) в отличие от принятого при проектировании многоциклового нагружения (Нц = 106 - 107). Например, при эксплуатации экскаватора ЭКГ-20 на разрезе «Нерюнгринский» ОАО «Якутуголь» наработка на отказ основных металлоконструкций составляет 1,7 • 104 - 1,4-105 циклов.

При низких температурах изменяются физикомеханические характеристики сталей: прочностные характеристики возрастают с одновременным уменьшением показателей их пластических свойств. Начинают проявляться свойства низкотемпературной хрупкости и хладноломкости. Причем хрупкие разрушения преобладают в деталях, испытывающих динамические нагрузки и уже имеющих повреждения - трещины.

К тому же при низких температурах наблюдается существенное снижение исходного предела выносливости элемента конструкции с концентратором напряжений, которым, как правило, является сварочный шов или зародыш трещины [3].

В конкретной металлоконструкции система сварочных швов играет роль своеобразного каркаса. Вследствие различной структуры основного металла и металла сварочных швов, на их грани-

Рис. 1. Наиболее характерные места (указаны стрелками) образования и развития трещин на рукояти экскаватора

Рис. 2. Наиболее характерные места (указаны стрелками) образования и развития трещин на корпусе стрелы экскаватора

цах при понижении температуры будут возникать термические напряжения. Величина этих напряжений будет определяться коэффициентом теплового сжатия (сокращения) линейных размеров конструкции при понижении температуры.

Обусловлены эти напряжения будут, по нашему мнению, разницей температур при изготовлении металлоконструкций и температурой их эксплуатации. Чем больше эта разница температур, тем больше будут внутренние напряжения в металле, концентрирующиеся в металле шва и зоне термического влияния.

Таким образом, при оценке хладостойкости конструкции необходимо учитывать результаты исследования надежности и долговечности сварных соединений, так как сварные швы и участки, прилегающие к местам сварки, являются характерными очагами, в близи или непосредственно у которых начинались разрушения [2].

В работе [3] установлено, что при низких отрицательных температурах уменьшается трещино-стойкость металла шва и металла зоны термического влияния. Например, для стали 03Х13АГ19 необходимо, чтобы число циклов нагружения пульсирующей нагрузкой ( ан / а02 = 0,6) при +20 °С за срок службы не превышало 1,5- 104 , а при температуре -160 °С не превышало 1,9- 103 циклов, т.е. срок наработки на отказ сокращается в 8 раз.

Обычно допускаемые размеры дефектов устанавливают на основании анализа статистики отказов. Такой подход не учитывает конструктивных особенностей и условий эксплуатации конкретной металлоконструкции, когда механические свойства металла и уровень нагруженности элементов существенно отличается от принятых при проектировании уровнях нагрузок.

Напряжения в металлоконструкциях экскаватора, таких как, рукоять ковша и стрела, изменяются по сложному закону, но имеют периодический (циклический)характер.

Считается, что влияние формы кривой изменения напряжений на сопротивление усталости незначительно, а решающую роль играют значения максимального и минимального напряжений цикла и их отношение [1].

При анализе причин усталостного разрушения в рукояти и стрелы экскаватора ЭКГ-20 в местах наиболее частого образования трещин, указанных на рис. 1, 2 можно сделать вывод, что в этих местах металл находится в постоянно сжатом состоянии, а цикл напряжений этих металлоконструкций за цикл работы экскаватора можно считать отну-левым (пульсационным).

Результаты исследования прочности и механических свойств металлов при низких температурах позволяют сделать вывод: снижение температуры, как правило, сопровождается повышением прочности и уменьшением пластичности конструкционных ме-

таллов. При понижении температуры происходит увеличение предела прочности аи, предела текучести ат и условного предела текучести а0,2 .

При снижении температуры изменяется сопротивление металла начальной пластической деформации, в зонах концентрации повышаются максимальные напряжения, увеличивается размах упругой и уменьшается размах пластической и полной деформации. Этот фактор необходимо учитывать при оценке хладостойкости элементов, так как экспериментально установлено, что при понижении температуры повышается чувствительность металлов к действию концентрации напряжений.

Данные испытаний металлических образцов в режиме циклического нагружения показывают, что в условиях значительных нагрузок (И = 104-

105 циклов) снижение температуры, как правило, сопровождается уменьшением прочности образцов с надрезом. Одной из причин снижения усталостной прочности образцов при низкой температуре является рост концентрации напряжений вследствие повышения сопротивления металла начальной пластической деформации. Циклические перегрузки вызывают в местах резкого изменения формы элемента напряжения, величина которых превышает предел текучести. С понижением температуры пластичность металла падает, увеличивается величина предела текучести, и перегрузки вызывают резкий рост уровня максимальных напряжений.

Таким образом, при низких температурах величина максимального перенапряжения апер увеличивается в большей степени, чем ат, что и приводит к опасности разрушения элемента металлоконструкции в местах концентрации напряжений. Отрицательное воздействие данного фактора может существенно усилиться при неправильном выборе термического режима сварки, приводящего к снижению пластичности [4].

В условиях низких температур трещиностой-кость металла снижается из-за значительного уменьшения критичеких размеров трещины и трещинообразующих дефектов, при достижении которых конструкция теряет несущую способность.

Рис. 3. Диаграмма растяжения (сжатия) стали при температуре: 1 - +20 оС; 2 - - 40 оС.

При низкой отрицательной температуре сокращается протяженность зоны пластической деформации стали.

Рассмотрим диаграмму растяжения (сжатия) стали, приведенную на рис. 3. Диаграмма-1 является характерной для упруго-пластических материалов, т.е. материалов способных получать относительно значительные остаточные деформации не разрушаясь, к которым можно отнести сталь 12ХН2МФАЮ, из которой изготовлена стрела экскаватора ЭКГ-20, эксплуатируемой при температуре +20 °С. Диаграмма-2 характерена для той же стали при температуре -40 °С, когда металл находится в хрупком или квази-хрупком состоянии, т.е. способен разрушаться при незначительных деформациях.

На рисунке штриховкой показана зона пластических деформаций стали, при рассмотрении которой видно, что с понижением температуры ширина зоны уменьшается. Из чего можно сделать вывод, что при низких температурах металл склонен к хрупкому разрушению при меньших внутренних деформациях, т.е. при относительно небольших деформациях в металле возникают значительные внутренние напряжения, которые превышают допустимые напряжения, принятые в расчетах при проектировании металлоконструкции.

Если предположить, что вдоль сварных швов действуют касательные напряжения, вызванные разницей температуры при изготовлении металлоконструкции и низкой климатической температуры в зимнее время ее эксплуатации, то согласно [1] экстремальные касательные напряжения (ттах) при действии сжимающих нагрузок (асж), отмеченных стрелками на рис. 1, 2 можно определить по формуле:

Ттах = 0,5 • (асж2 + 4т2)1/2.

Так как величина предельных разрушающих напряжений существенно меньше величины предельных сжимающих напряжений, то касательные на-

пряжения, действующие вдоль сварочных швов, увеличивают вероятность зарождения трещины. Особенно данное явление опасно при низких климатических температурах, когда уменьшается зона пластической деформации металла.

Зона пластической деформации играет роль демпфирующей структуры, сглаживающей предельные напряжения и приводящей к снижению внутренних напряжений за счет пластической деформации. При низких климатических температурах действие этого механизма уменьшается, что и приводит к образованию трещин в зонах сварных швов.

При ремонте элементов металлоконструкций экскаваторов в ОАО «Якутуголь» автор статьи применил идею расширения зоны пластической деформации сварочного шва применением электродов с содержанием никеля 2-3% (Н12, ОЗС-24), что позволило увеличить время наработки металлоконструкции на отказ после ремонта в 2-3 раза по сравнению с обычно применяемыми сварочными материалами (УОНИ 13/55) при ремонте.

Таким образом, можно сделать вывод, что снижение усталостной прочности элементов металлоконструкций при низких климатических температурах вызвано: повышением уровня нагрузок из-за температурных напряжений в местах сварочных швов и зоне термического влияния; ростом концентрации напряжений в металле вследствие повышения сопротивления металла начальной пластической деформации; уменьшением зоны пластичности металла.

Действие этих факторов приводит при понижении температуры к увеличению уровня внутренних напряжений в металлоконструкции и, как правило, сопровождается уменьшением величины разрушающих нагрузок. В результате снижается запас прочности и возрастает риск отказа металлоконструкции.

1. Степин П.А. Сопротивление

материалов. - М.: Интеграл-

2. Квагинидзе В. С., Радкевич

ЯМ, Русихин В.И. Ремонтная технологичность металлоконструкций

карьерных механических лопат на угольных разрезах Севера. - М.: Изд-во МГГУ, 1997,-224 с.

3. Кузьмин В.Р, Ишков А.М.

Прогнозирование хладостойкости конструкций и работоспособности

техники на Севере. - М.: Машиностроение, 1996,- 304 с.

4. Ларионов В.П. Электродуго-

вая сварка конструкций в северном исполнении. - Новосибирск; Наука, 1986, - 253 с.

КОРОТКО ОБ АВТОРАХ

Квагпнпдзе В.С. - доцент, кандидат технических наук, ОАО «Якутуголь». Козлов В.А. - доцент, кандидат технических наук, ОАО «Якутуголь».

Полное время правки: 1 мин.

Дата печати: 09.11.2008 1:18:00

При последней печати страниц: 3

слов: 1 787 (прибл.)

знаков: 10 190 (прибл.)

G:\По работе в универе\2003г\Папки 2003\GIAB9_03 C:\Users\Таня\AppData\Roaming\Microsoft\Шаблоны\Normal.do УДК 66

Влияние низких отрицательных температур на работоспособность металлоконструкций горных машин Текст научной статьи по специальности «Строительство и архитектура»

МОРОЗ НИПОЧЕМ

Когда хотят подчеркнуть незаурядную силу, крепость или мощь, то прибегают к сравнению с железом, сталью. "Крепкий, как сталь”, "железная воля" — часто говорим мы, справедливо делая такие образные сопоставления — ведь прочность железа достаточно хорошо известна еще с древнейших времен.

Но беда в том, что железо не выдерживает сильных морозов, и уже при температуре 40 °С ниже нуля становится хрупким. А ведь на земном шаре встречаются и такие места, где температура достигает 70 °С холода, и это не только антарктический континент, но и вполне обитаемые земли — Якутия, Заполярье. Славится своими морозами и вся Сибирь. В Якутии, например, довольно часты морозы, превышающие 60 °С. При таких температурах резко возрастает число поломок транспорта, машин и механизмов, особенно землеройных.

Промерзший грунт с трудом поддается механическому воздействию и может легко вывести из строя машину, работающую даже при обычной температуре воздуха. Насколько же увеличивается число неисправностей, когда материал, из которого сделана машина, становится сам по себе хрупким, непрочным!

В условиях Крайнего Севера число повреждений техники в зимнее время по сравнению с летним увеличивается в три, а нередко и в десять раз. А ведь сейчас стоит задача все интенсивнее осваивать богатства Севера и Сибири. Значит, нужна особая техника, техника в "северном" исполнении — надежная и долговечная.

Металлурги разрабатывают специальные марки стали, экспериментируют, стараются "вылечить" железо от столь досадной хрупкости при низких температурах. Было замечено, что добавка циркония в значительной степени снижает хрупкость железа. Получена особая сталь для Севера, которая намноголучше обычной. Но все же и она не лишена тех недостатков, от которых свободна "легкая сталь" — титан.

То, что так разрушает железо, — холод — титану нипочем. Большинство серийных титановых сплавов совершенно спокойно переносит температуру до минус 196 °С, некоторые свободно выдерживают температуру жидкого водорода (минус 253 °С), а учеными Института металлургии Академии наук СССР создан титановый сплав, который не разрушается даже в самой холодной жидкости мира ~ жидком гелии (температура минус 269 °С). Что такому хладостойкому материалу, как титан, 60—70 °С ниже нуля? Сущие пустяки.

Разработанные титановые сплавы предназначены для изготовления оборудования, работающего в районах Заполярья и Крайнего Севера. Детали экскаваторов, тракторов, бульдозеров, сделанные из таких сплавов, будут необычайно долговечными и по-настоящему надежными.

В северных нефтегазодобывающих районах нередко выходят из строя центробежные колеса магистральных газопроводов. Сделанные из титана, они станут безотказными.

Но холод далеко не всегда враг. Часто он крайне необходим. И холод научились получать искусственно: начиная с прошлого века стали создавать специальные устройства, вырабатывающие холод средь жаркого лета. Родилась холодильная техника. Мы хорошо знаем ее в быту: домашние холодильники — полноправные ее представители. Правда, это не те холодильники, в которых развиваются температуры в 100 °С и более ниже нуля, необходимые во многих областях техники, и в которых применяются титановые сплавы.

По данным Всесоюзного научно-исследовательского института холодильного машиностроения, применение титановых сплавов для производства аммиачных компрессоров холодильных установок позволит создать машину лишь с одним агрегатом вместо двух и даст около 70 тысяч рублей годовой экономии по каждой установке. Из титана целесообразно изготовлять емкости для хранения и транспортировки жидкого гелия, водорода, азота. Кстати, температура жидкого азота (минус 196 °С) в технике низких температур является граничной. Она отделяет холодильную технику от криогенной.

Влияние низких и высоких температур на свойства сварных соединений

1 Влияние низких температур на основной металл. При пониже­нии температуры ниже известного предела обычные углеродистые стали и наплавленный из них металл становятся хрупкими и их ударная вязкость резко понижается, хотя предел прочности стали при этом даже несколько возрастает. Если при температуре +20° ударная вязкость малоуглеродистой стали Ст. 3 равна около 13 кгс-м/см2, то при температуре—40° она составит всего только 0,5—1 кгс*м/см2. Поэтому сварные соединения из стали при темпе­ратуре ниже—40е могут давать трещины при ударных нагрузках или в местах концентрации напряжений. Отжиг после сварки устраняет внутренние напряжения и поэтому повышает надежность эксплуатации конструкции в условиях пониженной температуры.

Малоуглеродистые легированные стали, содержащие свыше 3% никеля, например нержавеющие хромоникелевые стали, а также цветные металлы (медь, латунь, алюминий), не уменьшают своей ударной вязкости даже при очень низких температурах (до —270°) и не становятся при этом хрупкими. Поэтому их широко исполь-

зуют в изделиях, работающих при очень низких температурах, например аппаратах и сосудах для получения и хранения жидкого і воздуха, жидкого кислорода, жидкого водорода, жидкого гелия и пр.

Сварка при низких окружающих температурах. Низкая окру­жающая температура при выполнении сварки (сварка на холоде) также оказывает влияние на механические свойства наплавленного металла малоуглеродистой стали. При окружающей температу­ре ниже —20° у стали Ст. 3 несколько понижается ударная вязкость и заметно уменьшается угол загиба Это свидетельствует о повыше­нии хрупкости металла сварного шва, и поэтому в нем могут обра­зоваться трещины уже в процессе сварки на холоде Наибольшие трудности возникают при сварке на холоде сталей с содержанием углерода свыше 0,25%, а также легированных марганцем, хромом, молибденом, склонных к закалке. В этом случае могут возникнуть трещины вследствие быстрого охлаждения участков, прилегающих к сварному шву, которые при этом частично закаливаются и ста­новятся более твердыми и хрупкими Для предупреждения обра­зования трещин такие стали на холоде следует сваривать с предвари­тельным подогревом места сварки и медленным охлаждением шва после сварки.

Сварка на холоде хромоникелевых нержавеющих сталей и цвет­ных металлов не влияет на свойства наплавленного металлами по­этому вполне допустима

Для подогрева изделий при сварке на холоде применяют ин­дукционные нагревательные устройства, схемы которых изображены на рчс 65 Индукционное нагревательное устройство состоит из стального магнитопровода и обмотки, по которой пропускается электрический ток. На рис. 65, а изображен нагреватель (индук­тор) с незамкнутым сердечником и обмоткой Сердечником 1 нагре­ватель устанавливается на нагреваемый лист 3, а обмотка 2 под­ключается к вторичной обмотке 4 сварочного трансформатора 5

Свободные концы обмотки нагревателя и вторичной обмотки трансформатора замыкаются на нагреваемое изделие При прохож­дении по обмотке индуктора переменного тока в магнитопроводе и воздушном пространстве около полюсов сердечника возникает сильное переменное магнитное поле, которое индуктирует электро­движущую силу в нагреваемом изделии Под действием этих элект­родвижущих сил в изделии возникают вихревые токи, нагревающие метзчч.

Для нагрева труб, колонн, стержней и резервуаров небольшого диаметра можно использовать нагреватели без специального сер­дечника (рис. 65, б), так как сердечником в данном случае служит сама нагревательная труба 1; вокруг трубы навивается обмотка 2, включаемая последовательно во вторичную обмотку сварочного трансформатора.

Переносные индукторы для подогрева имеют мощность порядка

9— 10 ква и вес около 30 кг. Скорость нагрева составляет 70—80° в минуту. Переменное магнитное поле индуктора оказывает влия­ние на сварочную дугу, вызывая «магнитное дутье», которое рас­пространяется на расстояние около 100 мм от индуктора.

Температура нагрева металла определяется путем нанесения на него полосок термокраски красного цвета, которая при нагревании

Читайте также: