Восстановление металлов из их оксидов

Обновлено: 23.01.2025

Восстановление твердых оксидных фаз относится к топохимическим реакциям, протекающим на межфазной границе восстанавливаемого оксида и его продукта. Скорость химических взаимодействий зависит от состояния и размера поверхности раздела фаз.

Механизм и кинетическая схема восстановления металлов

Из оксидов газами

Общепринятые представления о механизме реакций восстановления металлов из их оксидов обобщены в настоящее время в адсорбционно-каталитической теории, предложенной Чуфаровым Г.И. и развитой в работах Ростовцева С.Т., Есина О.А., Гельда П.В. и других ученых. В основе ее лежит положение о первостепенной роли адсорбции в процессах восстановления.

Согласно данной теории механизм восстановления включает три стадии:

1) адсорбцию восстановителя на реакционной поверхности;

2) кристаллохимический акт, включающий переход кислорода решетки оксида к адсорбированным молекулам восстановителя с одновременной перестройкой решетки исходного оксида в решетку продукта восстановления;

3) десорбцию газообразного продукта восстановления.

Этот механизм представляется схемой:

Суммарный процесс соответствует реакции:

По адсорбционной теории реагируют с оксидами только те молекулы газа-восстановителя, которые адсорбировались на поверхности оксида.

Адсорбция происходит на активных центрах. Идет отрыв атомов (ионов) кислорода от катионов металла, образование адсорбционных комплексов (например, ), из которых формируются молекулы продукта восстановления, десорбирующиеся в газовую фазу.

Потеря кислорода оксидом ведет к образованию пересыщенного твердого раствора низшего оксида в высшем или раствора металла в оксиде при протекании последней ступени восстановления. Такой раствор неустойчив и распадается. Результатом является появление кристаллов новой фазы, которые в дальнейшем растут.

С точки зрения адсорбционно-каталитической теории процесс восстановления является автокаталитическим, т.е. образование твердого продукта реакции приводит к ускорению процесса его образования.

Автокатализ связан с локализацией реакции на границе раздела фаз оксид – твердые продукты восстановления, которая является своеобразным катализатором, возникающим в ходе самого процесса. В условиях, соответствующих кинетическому режиму процесса, как правило, при восстановлении наблюдается характерный для автокатализа максимум скорости на определенном этапе восстановления. Типичные кинетические зависимости изменения скорости процесса и изменения степени восстановления во времени t приведены на рис. 16. Как видно, можно выделить три периода, характерных для топохимических реакций:

Рис. 16. Кинетика топохимических реакций

I – индукционный период, характеризующийся малыми скоростями процесса, связанными с трудностями зарождения новой фазы;

II – автокатализ, связанный с ускорением реакции из-за постоянно увеличивающейся поверхности раздела двух твердых фаз и деформацией сопрягающихся решеток фаз;

III – период замедления процесса; уменьшение скорости связано с уменьшением количества старой фазы и поверхности раздела.

Следует отметить, что при отсутствии торможений в зарождении новой фазы I и II периоды могут отсутствовать.

С кинетической точки зрения восстановление оксидов газами является сложным гетерогенным процессом, включающим следующие стадии:

1) подвод восстановителя из ядра газового потока к наружной поверхности восстанавливаемого оксида; это этап внешней диффузии, или внешней массопередачи;

2) диффузия восстановителя к реакционной зоне через макро- и микропоры, дефекты решетки слоя твердого продукта восстановления; это этап внутренней диффузии или внутренней массопередачи;

3) собственно химическая реакция восстановления с кристаллохимическим превращением исходного оксида в низший или металл (по адсорбционно-каталитическому механизму);

4) отвод газообразных продуктов восстановления в газовый поток путем внутренней и внешней массопередачи.

Из этой схемы следует, что восстановление является совокупностью двух видов процессов:

– взаимодействия газов с оксидами на реакционной поверхности;

– диффузии газов между ядром потока и реакционной поверхностью.

В зависимости от того, какой из этих процессов протекает наиболее медленно (является лимитирующим), наблюдается:

– либо неодинаковое влияние одних и тех же факторов на скорость восстановления;

– или отсутствие влияние некоторых из них в определенных условиях.

Различное соотношение скоростей диффузии и реакции восстановления приводит к двум типам восстановления: ступенчатому и зональному.

Ступенчатость и зональность являются проявлением справедливости принципа последовательности превращений А. А. Байкова, который для системы Fe–O представляется схемой (при T > 570 °C):

При ступенчатом типе восстановления наблюдается строгая повременная последовательность в смене отдельных ступеней восстановления во всем объеме куска (зерна) оксида. Это означает: если обеспечить свободную доставку восстановителя в любой участок зерна восстанавливаемого оксида, например, Fe2O3, то все зерно Fe2O3 вначале превратится в Fe3O4, затем в FeO и только после этого появится Fe.

При зональном типе восстановления наблюдается пространственное разделение ступеней восстановления. Это означает: если кусок (зерно) Fe2O3 подвергнуть восстановлению в условиях затрудненной диффузии газов, то в какой-то момент времени частично восстановленный гематит окажется состоящим из зон, соответствующих отдельным ступеням восстановления. При этом на поверхности куска может быть железо, под ним зоны FeO и Fe3O4; внутри сохраняется ядро Fe2O3. Границы зон по ходу восстановления, по мере обеспечения их необходимым количеством восстановителя продвигаются друг за другом к центру куска.

Ступенчатый тип процесса характерен для кинетического режима и реализуется при измельченном материале, находящемся во взвешенном состоянии в газовом потоке, или при наличии высокопористого оксида.

Зональный характер восстановления наблюдается при восстановлении плотных материалов в условиях диффузионного режима. В реальных условиях идеальное расположение зон может быть нарушено вследствие разного рода макродефектов (трещины, поры и др.), имеющихся в рудных материалах, по которым газ может диффундировать внутрь оксида. При этом получается “размытая” (вплоть до центра зерна) реакционная зона.

Следует иметь в виду, что при сопоставимых скоростях реакции восстановления и диффузии процесс может идти в смешанном (переходном) режиме, или диффузионно-кинетическом режиме. Именно в этом режиме процесс характеризуется наиболее сложными кинетическими закономерностями.

Химические свойства основных оксидов


Подробно про оксиды, их классификацию и способы получения можно прочитать здесь.

1. Взаимодействие с водой. С водой способны реагировать только основные оксиды, которым соответствуют растворимые гидроксиды (щелочи). Щелочи образуют щелочные металлы (литий, натрий, калий, рубидий и цезий) и щелочно-земельные (кальций, стронций, барий). Оксиды остальных металлов с водой химически не реагируют. Оксид магния реагирует с водой при кипячении.

CuO + H2O ≠ (реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)

2. Взаимодействие с кислотными оксидами и кислотами. При взаимодействии основным оксидов с кислотами образуется соль этой кислоты и вода. При взаимодействии основного оксида и кислотного образуется соль:

основный оксид + кислота = соль + вода

основный оксид + кислотный оксид = соль

При взаимодействии основных оксидов с кислотами и их оксидами работает правило:

Хотя бы одному из реагентов должен соответствовать сильный гидроксид (щелочь или сильная кислота).

Иными словами, основные оксиды, которым соответствуют щелочи, реагируют со всеми кислотными оксидами и их кислотами. Основные оксиды, которым соответствуют нерастворимые гидроксиды, реагируют только с сильными кислотами и их оксидами (N2O5, NO2, SO3 и т.д.).

Основные оксиды, которым соответствуют щелочи Основные оксиды, которым соответствуют нерастворимые основания
Реагируют со всеми кислотами и их оксидами Реагируют только с сильными кислотами и их оксидами
Na2O + SO2 → Na2SO3 CuO + N2O5 → Cu(NO3)2

3. Взаимодействие с амфотерными оксидами и гидроксидами.

При взаимодействии основных оксидов с амфотерными образуются соли:

основный оксид + амфотерный оксид = соль

С амфотерными оксидами при сплавлении взаимодействуют только основные оксиды, которым соответствуют щелочи . При этом образуется соль. Металл в соли берется из более основного оксида, кислотный остаток — из более кислотного. В данном случае амфотерный оксид образует кислотный остаток.

CuO + Al2O3(реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)

(чтобы определить кислотный остаток, к формуле амфотерного или кислотного оксида добавляем молекулу воды: Al2O3 + H2O = H2Al2O4 и делим получившиеся индексы пополам, если степень окисления элемента нечетная: HAlO2. Получается алюминат-ион AlO2 — . Заряд иона легко определить по числу присоединенных атомов водорода — если атом водорода 1, то заряд аниона будет -1, если 2 водорода, то -2 и т.д.).

Амфотерные гидроксиды при нагревании разлагаются, поэтому реагировать с основными оксидами фактически не могут.

4. Взаимодействие оксидов металлов с восстановителями.

При оценке окислительно-восстановительной активности металлов и их ионов можно использовать электрохимический ряд напряжений металлов:


Восстановительные свойства (способность отдавать электроны) у простых веществ-металлов здесь увеличиваются справа налево, окислительные свойства ионов металлов — увеличиваются наоборот, слева направо. При этом некоторые ионы металлов в промежуточных степенях окисления могут проявлять также восстановительные свойства (например ион Fe 2+ можно окислить до иона Fe 3+ ).

Более подробно про окислительно-восстановительные реакции можно прочитать здесь.

Таким образом, ионы некоторых металлов — окислители (чем правее в ряду напряжений, тем сильнее). При взаимодействии с восстановителями металлы переходят в степень окисления 0.

4.1. Восстановление углем или угарным газом.

Углерод (уголь) восстанавливает из оксидов до простых веществ только металлы, расположенные в ряду активности после алюминия. Реакция протекает только при нагревании.

FeO + C = Fe + CO


Активные металлы, расположенные в ряду активности левее алюминия, активно взаимодействуют с углеродом, поэтому при взаимодействии их оксидов с углеродом образуются карбиды и угарный газ:

CaO + 3C = CaC2 + CO

Угарный газ также восстанавливает из оксидов только металлы, расположенные после алюминия в электрохимическом ряду:

CuO + CO = Cu + CO2


4.2. Восстановление водородом .

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Реакция с водородом протекает только в жестких условиях – под давлением и при нагревании.

CuO + H2 = Cu + H2O


4.3. Восстановление более активными металлами (в расплаве или растворе, в зависимости от металла)

При этом более активные металлы вытесняют менее активные. То есть добавляемый к оксиду металл должен быть расположен левее в ряду активности, чем металл из оксида. Реакции, как правило, протекают при нагревании.

Например , оксид цинка взаимодействует с алюминием:

3ZnO + 2Al = Al2O3 + 3Zn

но не взаимодействует с медью:

ZnO + Cu ≠

Восстановление металлов из оксидов с помощью других металлов — это очень распространенный процесс. Часто для восстановления металлов применяют алюминий и магний. А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Алюмотермия – это восстановление металлов из оксидов алюминием.

Например : алюминий восстанавливает оксид меди (II) из оксида:

3CuO + 2Al = Al2O3 + 3Cu

Магниетермия – это восстановление металлов из оксидов магнием.

CuO + Mg = Cu + MgO


Железо можно вытеснить из оксида с помощью алюминия:

При алюмотермии образуется очень чистый, свободный от примесей углерода металл.

4.4. Восстановление аммиаком.

Аммиаком можно восстанавливать только оксиды неактивных металлов. Реакция протекает только при высокой температуре.

Например , аммиак восстанавливает оксид меди (II):

3CuO + 2NH3 = 3Cu + 3H2O + N2

5. Взаимодействие оксидов металлов с окислителями.

Под действием окислителей некоторые основные оксиды (в которых металлы могут повышать степень окисления, например Fe 2+ , Cr 2+ , Mn 2+ и др.) могут выступать в качестве восстановителей.

Например , оксид железа (II) можно окислить кислородом до оксида железа (III):

Понятие о металлургии: общие способы получения металлов

Металлургия — это наука о промышленных способах получения металлов. Различают черную и цветную металлургию.

Черная металлургия — это производство железа и его сплавов (сталь, чугун и др.).

Цветная металлургия — производство остальных металлов и их сплавов.

Широкое применение находят сплавы металлов. Наиболее распространенные сплавы железа — чугун и сталь.

Чугун — это сплав железа, в котором содержится 2-4 масс. % углерода, а также кремний, марганец и небольшие количества серы и фосфора.

Сталь — это сплав железа, в котором содержится 0,3-2 масс. % углерода и небольшие примеси других элементов.

Легированные стали — это сплавы железа с хромом, никелем, марганцем, кобальтом, ванадием, титаном и другими металлами. Добавление металлов придает стали дополнительные свойства. Так, добавление хрома придает сплаву прочность, а добавление никеля придает стали пластичность.

Основные стадии металлургических процессов:

  1. Обогащение природной руды (очистка, удаление примесей)
  2. Получение металла или его сплава.
  3. Механическая обработка металла

1. Нахождение металлов в природе

Большинство металлов встречаются в природе в виде соединений. Наиболее распространенный металл в земной коре — алюминий. Затем железо, кальций, натрий и другие металлы.

2. Получение активных металлов

Активные металлы (щелочные и щелочноземельные) классическими «химическими» методами получить из соединений нельзя. Такие металлы в виде ионов — очень слабые окислители, а в простом виде — очень сильные восстановители, поэтому их очень сложно восстановить из катионов в простые вещества. Чем активнее металл, тем сложнее его получить в чистом виде — ведь он стремится прореагировать с другими веществами.

Получить такие металлы можно, как правило, электролизом расплавов солей, либо вытеснением из солей другими металлами в жестких условиях.

Натрий в промышленности получают электролизом расплава хлорида натрия с добавками хлорида кальция:

2NaCl = 2Na + Cl2

Калий получают пропусканием паров натрия через расплав хлорида калия при 800°С:

KCl + Na = K↑ + NaCl

Литий можно получить электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):

2LiCl = 2Li + Cl2

Цезий можно получить нагреванием смеси хлорида цезия и специально подготовленного кальция:

Са + 2CsCl = 2Cs + CaCl2

Магний получают электролизом расплавленного карналлита или хлорида магния с добавками хлорида натрия при 720–750°С:

Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:

Барий получают из оксида восстановлением алюминием в вакууме при 1200 °C:

4BaO+ 2Al = 3Ba + Ba(AlO2)2

Алюминий получают электролизом раствора оксида алюминия Al2O3 в криолите Na3AlF6:

3. Получение малоактивных и неактивных металлов

Металлы малоактивные и неактивные восстанавливают из оксидов углем, оксидом углерода (II) СО или более активным металлом. Сульфиды металлов сначала обжигают.

3.1. Обжиг сульфидов

При обжиге сульфидов металлов образуются оксиды:

2ZnS + 3O2 → 2ZnO + 2SO2

Металлы получают дальнейшим восстановлением оксидов.

3.2. Восстановление металлов углем

Чистые металлы можно получить восстановлением из оксидов углем. При этом до металлов восстанавливаются только оксиды металлов, расположенных в ряду электрохимической активности после алюминия.

Например , железо получают восстановлением из оксида углем:

2Fe2O3 + 6C → 2Fe + 6CO

ZnO + C → Zn + CO

Оксиды металлов, расположенных в ряду электрохимической активности до алюминия, реагируют с углем с образованием карбидов металлов:

CaO + 3C → CaC2 + CO

3.3. Восстановление металлов угарным газом

Оксид углерода (II) реагирует с оксидами металлов, расположенных в ряду электрохимической активности после алюминия.

Например , железо можно получить восстановлением из оксида с помощью угарного газа:

3.4. Восстановление металлов более активными металлами

Более активные металлы вытесняют из оксидов менее активные. Активность металлов можно примерно оценить по электрохимическому ряду металлов:

Восстановление металлов из оксидов другими металлами — распространенный способ получения металлов. Часто для восстановления металлов применяют алюминий и магний. А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Активные металлы вытесняют менее активные из растворов их солей.

Например , при добавлении меди (Cu) в раствор соли менее активного металла – серебра (AgNO3) произойдет химическая реакция:

2AgNO3 + Cu = Cu(NO3)2 + 2Ag

Медь покроется белыми кристаллами серебра.

При добавлении железа (Fe) в раствор соли меди (CuSO4) на железном гвозде появился розовый налет металлической меди:

CuSO4 + Fe = FeSO4 + Cu

При добавлении цинка в раствор нитрата свинца (II) на цинке образуется слой металлического свинца:

3.5. Восстановление металлов из оксидов водородом

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Как правило, взаимодействие оксидов металлов с водородом протекает в жестких условиях – под давлением или при нагревании.

4. Производство чугуна

Чугун получают из железной руды в доменных печах.

Печь последовательно загружают сверху шихтой, флюсами, коксом, затем снова рудой, коксом и т.д.


1- загрузочное устройство, 2 — колошник, 3 — шахта, 4 — распар, 5 — горн, 6 — регенератор

Доменная печь имеет форму двух усеченных конусов, соединенных основаниями. Верхняя часть доменной печи — колошник, средняя — шахта, а нижняя часть — распар.

В нижней части печи находится горн. Внизу горна скапливается чугун и шлак и отверстия, через которые чугун и шлак покидают горн: чугун через нижнее, а шлак через верхнее.

Наверху печи расположено автоматическое загрузочное устройство. Оно состоит из двух воронок, соединенных друг с другом. Руда и кокс сначала поступают в верхнюю воронку, а затем в нижнюю.

Из нижней воронки руда и кокс поступают в печь. во время загрузки руды и кокса печь остается закрытой, поэтому газы не попадают в атмосферу, а попадают в регенераторы. В регенераторах печной газ сгорает.

Шихта — это железная руда, смешанная с флюсами.

Снизу в печь вдувают нагретый воздух, обогащенный кислородом, кокс сгорает:

Образующийся углекислый газ поднимается вверх и окисляет кокс до оксида углерода (II):

CO2 + С = 2CO

Оксид углерода (II) (угарный газ) — это основной восстановитель железа из оксидов в данных процессах. Последовательность восстановления железа из оксида железа (III):

Последовательность восстановления оксида железа (III):

FeO + CO → Fe + CO2

Суммарное уравнение протекающих процессов:

При этом протекает также частичное восстановление примесей оксидов других элементов (кремния, марганца и др.). Эти вещества растворяются в жидком железе.

Чтобы удалить из железной руды тугоплавкие примеси (оксид кремния (IV) и др.). Для их удаления используют флюсы и плавни (как правило, известняк CaCO3 или доломит CaCO3·MgCO3). Флюсы разлагаются при нагревании:

и образуют с тугоплавкими примесями легкоплавкие вещества (шлаки), которые легко можно удалить из реакционной смеси:

9 класс. Химия. 15.05

Сегодня мы поговорим о разных способах производства металлов.

Природные соединения металлов

Металлы могут встречаться в природе или в виде простого вещества или в виде сложного вещества.

Металлы в природе встречаются в трёх формах:

1. Активные – в виде солей (сульфаты, нитраты, хлориды, карбонаты)

2. Средней активности – в виде оксидов, сульфидов (Fe3O4, FeS2)

3. Благородные – в свободном виде (Au, Pt, Ag)

Чаще всего металлы в природе встречаются в виде солей неорганических кислот или оксидов:

  • хлоридов – сильвинит КСl • NaCl, каменная соль NaCl;
  • нитратов – чилийская селитра NaNO3;
  • сульфатов – глауберова соль Na2SO4 · 10 H2O, гипс CaSO4 • 2Н2О;
  • карбонатов – мел, мрамор, известняк СаСО3, магнезит MgCO3, доломит CaCO3 • MgCO3;
  • сульфидов – серный колчедан FeS2, киноварь HgS, цинковая обманка ZnS;
  • фосфатов – фосфориты, апатиты Ca 3(PO4)2 ;
  • оксидов – магнитный железняк Fe3O4, красный железняк Fe2O3, бурый железняк Fe2O3 • Н2О.

Ещё в середине II тысячелетия до н. э. в Египте было освоено получение железа из железных руд. Это положило начало железному веку в истории человечества, который пришёл на смену каменному и бронзовому векам. На территории нашей страны начало железного века относят к рубежу II и I тысячелетий до н. э.

Минералы и горные породы, содержащие металлы и их соединения и пригодные для промышленного получения металлов, называются рудами.

Отрасль промышленности, которая занимается получением металлов из руд, называется металлургией. Так же называется и наука о промышленных способах получения металлов из руд.

Металлургия – это наука о промышленных способах получения металлов.

Получение металлов

Большинство металлов встречаются в природе в составе соединений, в которых металлы находятся в положительной степени окисления, значит для того, чтобы их получить, в виде простого вещества, необходимо провести процесс восстановления.

I. Пирометаллургический способ

Это восстановление металлов из их руд при высоких температурах с помощью восстановителей неметаллических - кокс, оксид углерода (II), водород; металлических - алюминий, магний, кальций и другие металлы.

1. Получение меди из оксида с помощью водорода – Водородотермия:

Cu +2O + H2 = Cu0 + H2O

2. Получение железа из оксида с помощью алюминия – Алюмотермия:

Fe+32O3 +2Al = 2Fe0 + Al2O3

Для получения железа в промышленности железную руду подвергают магнитному обогащению:

3Fe2 O3 + H2 = 2Fe3 O4 + H2O или 3Fe2O3 + CO = 2Fe3O4 + CO2 , а затем в вертикальной печи проходит процесс восстановления:

Fe3O4 + 4H2 = 3Fe + 4H2O

Fe3O4 + 4CO = 3Fe + 4CO2

II. Гидрометаллургический способ

Способ основан на растворении природного соединения с целью получения раствора соли этого металла и вытеснением данного металла более активным.

Например, руда содержит оксид меди и ее растворяют в серной кислоте:

1 стадия – CuO + H2SO4 = CuSO4 + H2O,

2 стадия – проводят реакцию замещения более активным металлом

CuSO4 + Fe = FeSO4 + Cu.

III. Электрометаллургический способ

Это способы получения металлов с помощью электрического тока (электролиза).

Этим методом получают алюминий, щелочные металлы, щелочноземельные металлы.

При этом подвергают электролизу расплавы оксидов, гидроксидов или хлоридов:

2NaCl эл.ток→ 2Na + Cl2

2Al2O3 эл.ток→ 4Al + 3O2

IV. Термическое разложение соединений

Например, получение железа:

Железо взаимодействует с оксидом углерода (II) при повышенном давлении и температуре 100-2000, образуя пентакарбонил:

Fe + 5CO = Fe (CO)5

Пентакарбонил железа-жидкость, которую можно легко отделить от примесей перегонкой. При температуре около 2500 карбонил разлагается, образуя порошок железа:

Fe (CO)5 = Fe + 5CO↑

Если полученный порошок подвергнуть спеканию в вакууме или в атмосфере водорода, то получится металл, содержащий 99,98– 99,999% железа.

Реакции, лежащие в основе получения металлов

1. Восстановление металлов из оксидов углем или угарным газом

MxOy + C = CO2 + Me или MxOy + CO = CO2 + Me

2. Обжиг сульфидов с последующим восстановлением

1 стадия – MxSy+O2=MxOy+SO2

2 стадия - MxOy + C = CO2 + Me или MxOy + CO = CO2 + Me

3. Алюминотермия (восстановление более активным металлом)

MxOy + Al = Al2O3 + Me

MxOy + H2 = H2O + Me

Таким образом, мы познакомились с природными соединениями металлов и способами выделения из них металла, как простого вещества.

Проблема безотходных производств в металлургии

и охрана окружающей среды

Безотходная технология - технология, подразумевающая наиболее рациональное использование природных ресурсов и энергии в производстве, обеспечивающее защиту окружающей среды.

Безотходная технология - принцип организации производства вообще, подразумевающий использование сырья и энергии в замкнутом цикле. Замкнутый цикл означает цепочку первичное сырьё - производство - потребление - вторичное сырьё.

Как известно, при обжиге руд цветных металлов образуются газы, содержащие оксид серы (IV) – SO2. Этот газ засоряет окружающую среду, но его можно улавливать и использовать для производства серной кислоты. В результате можно не только предотвратить загрязнение окружающей среды, но и получить дополнительную прибыль. Так, например, при получении 1 т меди можно получить примерно 10 т серной кислоты.

Как вы думаете какой из способов производства металлов является лучшим? и почему?

Получение металлов из оксидов с помощью восстановителей: водорода, алюминия, оксида углерода (II). Роль металлов и сплавов в современной технике

Для получения металлов из оксидов используются различные восстановители. Использование водорода позволяет получать активные металлы, не восстанавливаемые оксидом углерода (II). Также этот способ применяется для получения металлов с низким содержанием примесей, например, для химической лаборатории. Стоимость этого способа довольно высока. В качестве примера можно привести реакцию восстановления меди из оксида меди (II) при нагревании в струе водорода:

С указанием степени окисления элементов:

Cu +2 O + H2 0 = Cu 0 + H2 +1 O

Хотя реакция обратимая, но проведение ее в токе водорода, и, как следствие, удаление паров воды из зоны реакции позволяет сместить равновесие вправо и добиться полного восстановления меди.

Железо, поступающее в школьную лабораторию, часто на этикетке имеет надпись: «Восстановлено водородом»:

Способ восстановления металлов алюминием получил название «алюминотермия» или «алюмотермия». Алюминий является еще более активным восстановителем. Этим способом получают хром, марганец:

При реакции оксида железа (III) с порошком алюминия (смесь необходимо поджечь магниевой лентой) выделяется много тепла:

Алюминотермией получают некоторое количество кальция. Обратите внимание, что в электрохимическом ряду напряжений кальций находится левее алюминия, но это не делает невозможным данный способ — не следует забывать, что ряд напряжений говорит о возможности или невозможности протекания реакций только в растворах.

Оксид углерода (II) применяется наиболее широко. Например, при выплавке чугуна в доменной печи восстановителями являются кокс и образующийся оксид углерода(II). Суммарное уравнение получения железа из красного железняка:

Чистые металлы в современной технике используются сравнительно редко. Чистые медь и алюминий применяются для изготовления электрических проводов. Цинк, никель, хром, золото наносятся на поверхность стальных изделий для защиты от коррозии и придания красивого внешнего вида.

Сплавы обладают более высокой прочностью. Легкие сплавы на основе алюминия, например, дуралюмины (содержат медь и магний) — особенно широко применяются в изготовлении летательных аппаратов, автомобилей, скоростных судов.

Сплавы на основе железа — чугун и сталь — основные конструкционные материалы современной техники. Чугун, благодаря более низкой стоимости, устойчивости к коррозии, хорошим литейным качествам широко применяется для изготовления станков, печных плит, декоративных садовых решеток и пр.

Сталь хорошо обрабатывается и обладает высокой прочностью. Добавление в сталь легирующих добавок позволяет придавать ей особые свойства: высокую твердость, устойчивость к коррозии (нержавеющие стали), кислотам (кислотоупорные), высоким температурам (жаропрочные) и т. д.

Сплавы на основе меди — латуни и бронзы — обладают хорошей теплопроводностью, устойчивостью к коррозии (в том числе в морской воде), красивым внешним видом. Применяются для изготовления радиаторов, в судостроении, для декоративных целей.

Сплавы олова и свинца — припо́и — обладают более низкой температурой плавления, чем олово и свинец в отдельности. Используются при пайке.

Читайте также: