Внутренние напряжения в металлах

Обновлено: 08.01.2025

Деформацией называется изменение размеров и формы тела под действием приложенных сил. Тело деформируется под действием приложенных к нему внешних сил или различными физико-механическими процессами, например, вследствие температурного воздействия или изменением объема отдельных кристаллитов при фазовых превращениях.
При этом в теле возникают внутренние напряжения. Напряжением называется отношение действующего усилия к площади поперечного сечения тела или образца σ = P/F.
Сила Р, действующая на некоторой площадке F, обычно не перпендикулярна к ней, а направлена под некоторым углом, поэтому в теле возникают не только нормальные, но и касательные напряжения (рисунок ниже, а). В зависимости от направления действия силы нормальные напряжения подразделяют на растягивающие и сжимающие.
Наличие в испытуемом образце механических надрезов, трещин, внутренних дефектов металла, сквозных отверстий, резких переходов от толстого к тонкому сечению и т.д. приводит к неравномерному распределению напряжений, создавая у основания надреза пиковую концентрацию нормальных напряжений (рисунок ниже, б). Пик напряжений (σk) тем больше, чем меньше радиус концентратора напряжения. Различают временные и остаточные напряжения.
Временные напряжения возникают под действием внешней нагрузки и исчезают после ее снятия, остаточные - остаются в теле после прекращения действия нагрузки.


Образование нормальных (σ) и касательных (τ) напряжений при приложении силы Р к площади F (а) и эпюры растягивающих напряжений при различных концентраторах напряжений (б)
σн — номинальное (среднее) напряжение (штриховая линия); σк — максимальное напряжение;

Внутренние напряжения могут возникать при неравномерном нагреве изделия вследствие неоднородного расширения металла в различных зонах. Эти напряжения называют температурными. Кроме того, напряжения возникают вследствие неоднородного протекания структурных превращений по объему и т. д. Их называют фазовыми или структурными.
В зависимости от взаимно уравновешенных объемов различают напряжения I, II и III рода. Напряжения I рода уравновешены в объеме всего тела, напряжения II рода — в пределах зерна, а напряжения III рода — в объемах кристаллической ячейки.
Все эти виды напряжений взаимосвязаны между собой и изменение микронапряжений III рода вызывает образование макронапряжений I рода.
Деформирование материала может быть упругим и пластическим.
Если после прекращения действия внешних сил изменения формы, структуры и свойств тела полностью устраняются, то такая деформация называется упругой. Упругая деформация не вызывает заметных остаточных изменений в структуре и свойствах металла; под действием приложенной нагрузки происходит только незначительное относительное и полностью обратимое смещение атомов или поворот блоков кристалла.
При возрастании напряжений выше предела упругости деформация становится необратимой. При снятии нагрузки устраняется лишь упругая составляющая деформации, оставшаяся часть называется пластической деформацией.
Пластическая деформация в кристаллах может осуществляться скольжением и двойникованием. Скольжение отдельных частей кристалла относительно друг друга происходит под действием касательных напряжений, когда эти напряжения в плоскости и в направлении скольжения достигают определенной критической величины.
Схема упругой и пластической деформации металла с кубической структурой, подвергнутого действию касательных напряжений, показана на рисунке ниже.
Скольжение в кристаллической решетке протекает по плоскостям и направлениям с наиболее плотной упаковкой атомов, где величина сопротивления сдвигу наименьшая.
Это объясняется тем, что расстояние между соседними атомными плоскостями наибольшее, т.е. связь между ними наименьшая.


Схема упругой и пластической деформации металла под действием напряжения сдвига
а - первоначальный кристалл; б - упругая деформация; в - увеличение упругой и возникновение пластической деформации; г - остаточная деформация; д - образование двойника; С - плоскость сдвига; D - плоскость двойникования;

Плоскости скольжения и направления скольжения, лежащие в этих плоскостях, образуют систему скольжения. В металлах могут действовать одна или несколько систем скольжения одновременно.
Чем больше в металле возможных плоскостей и направлений скольжения, тем выше его способность к пластической деформации. Металлы, имеющие кубическую кристаллическую решетку, обладают высокой пластичностью, так как скольжение в них происходит во многих направлениях. Металлы с гексагональной плотноупакованной структурой менее пластичны и поэтому труднее чем металлы с кубической структурой, поддаются прокатке, штамповке и другим способам деформации.
Процесс скольжения не следует, однако, представлять как одновременное передвижение одной части кристалла относительно другой. Такой жесткий, или синхронный, сдвиг (см. рисунок выше) потребовал бы напряжений, в сотни или даже тысячи раз превышающих те, при которых в действительности протекает процесс деформации.
Скольжение осуществляется в результате перемещения в кристалле дислокаций. Перемещение дислокации в плоскости скольжения через весь кристалл приводит к сдвигу соответствующей части кристалла на одно межплоскостное расстояние, при этом на поверхности кристалла образуется ступенька. Обычно в одном месте выходит на поверхность кристалла группа дислокаций (~ 10. 100). Большие деформации возможны только вследствие того, что движение этих дислокаций вызывает появление или размножение большого количества новых дислокаций в процессе пластической деформации.
Дислокации, движущиеся в деформированном металле, порождают большое количество дислоцированных атомов и вакансий.
Двойиикование. Пластическая деформация некоторых металлов, имеющих плотноупакованные решетки, помимо скольжения может осуществляться двойникованием, которое сводится к переориентировке части кристалла в положение, симметричное по отношению к первой части, относительно плоскости, называемой плоскостью двойникования (см. рисунок выше, д). Двойиикование, подобно скольжению, сопровождается прохождением дислокации сквозь кристалл.
Пластическая деформация поликристаллического металла протекает аналогично деформации монокристалла – путем скольжения или двойникования. Формоизменение металла при обработке давлением происходит в результате пластической деформации каждого зерна. При этом следует иметь в виду, что зерна ориентированы неодинаково, и поэтому пластическая деформация не может протекать одновременно и одинаково во всем объеме поликристалла.
Первоначально под микроскопом на предварительно полип ванных и деформированных образцах можно наблюдать следы скольжения в виде прямых линий, эти линии одинаково ориентированы в пределах отдельных зерен.
При большой деформации в результате процессов скольжения зерна меняют свою форму. До деформации зерно имело округлую форму (рисунок ниже, а), после деформации в результате смещения по плоскостям скольжения зерна вытягиваются в направлении действующих сил Р, образуя волокнистую или слоистую структуру (рисунок ниже, б). Одновременно с изменением формы зерна внутри него происходит дробление блоков и увеличение угла разориентировки между ними. Рентгеноструктурный анализ показывает, что после деформации отдельные зерна и блоки упруго напряжены (внутренние напряжения II рода), а кристаллическая решетка по границам зерен, блоков и вблизи плоскостей скольжения искажена (внутреннее напряжение III рода).
Текстура деформации. При большой степени деформации возникает преимущественная кристаллографическая ориентировка зерен. Закономерная ориентировка кристаллититов относительно внешних деформационных сил получила название текстуры.


Изменение формы зерна в результате скольжения (пунктир - граница деформированного зерна)
а – схема и микроструктура металла до деформации; б – схема и микроструктура металла после деформации;

Чем больше степень деформации, тем большая часть кристаллических зерен получает преимущественную ориентировку. Характер текстуры зависит от природы металла и вида деформации (прокатка, волочение и т.д.) Кристаллографическую текстуру не следует отождествлять с волокнистой структурой. Волокнистость иногда может и не сопровождаться текстурой, так как она определяется наличием примесей. Образование текстуры способствует появлению анизотропии механических и физических свойств.
Наклеп поликристаллического металла. С увеличением степени деформации металла в холодном состоянии свойства, характеризующие сопротивление деформации (σв, σ0,2, НВ и др.), повышаются, а способность к пластической деформации — пластичность (δ и ψ) уменьшается. Металлы интенсивно упрочняются в начальной стадии деформирования, а при увеличении степени деформирования изменяются незначительно (рисунок ниже). Это явление роста упрочнения получило название наклепа.
С увеличением степени деформации предел текучести материала растет быстрее, чем временное сопротивление, и у сильно наклепанного материала они сравниваются, при этом удлинение становится равным нулю. Такое состояние наклепанного металла является предельным, т.к. продолжение деформирования приводит к его разрушению.


Влияние пластической деформации ε на механические свойства стали σ

Упрочнение металла в процессе пластической деформации объясняется увеличением числа дефектов кристаллического строения. Все дефекты кристаллического строения затрудняют движение дислокаций, а следовательно, повышают сопротивление деформации и уменьшают пластичность. Наибольшее значение имеет увеличение плотности дислокаций, так как возникающее при этом взаимодействие между ними тормозит дальнейшее их перемещение. Стадия легкого скольжения при деформации поликристаллического металла, в отличие от монокристаллов, отсутствует. С самого начала пластической деформации происходит упрочнение металла, связанное со скоплением дислокаций у границ. Однако основное упрочнение при холодной пластической деформации поликристаллических металлов определяется характером множественного скольжения в каждом зерне.
Металлы с г.ц.к. решеткой упрочняются сильнее, чем металлы с о.ц.к. решеткой. В результате холодной деформации уменьшается плотность, сопротивление коррозии и повышается электросопротивление. Холодная деформация ферромагнитных металлов, например, железа, повышает коэрцитивную силу и уменьшает магнитную проницаемость.

Виды напряжений и деформаций

внутренние напряжения

ВНУТРЕННИЕ НАПРЯЖЕНИЯ — остаточные напряжения в отливке, приводящие к ее деформации, а иногда к разрушению. Различают внутренние напряжения первого рода термические напряжения, возникающие между отдельными зонами сечения и между различными частями детали из за… … Металлургический словарь

Внутренние напряжения — остаточные напряжения в отливке, приводящие к ее деформации, а иногда к разрушению. Различают внутренние напряжения первого рода термические напряжения, возникающие между отдельными зонами сечения и между различными частями детали из за… … Энциклопедический словарь по металлургии

внутренние напряжения — ГОСТ Р 54480 2011 внутренние (остаточные) напряжения Напряжения, возникающие в прокате, которые частично могут сохраниться после окончания термической обработки. Максимальный зазор между двумя частями стальной полосы при их соединении по линии… … Металлургия. Терминология ГОСТ

Внутренние факторы коррозии — факторы, влияющие на скорость, вид и распределение коррозии, связанные с составом, структурой, внутренними напряжениями в металле и состоянием поверхности. Источник: snip id 5429: Руководство по проектированию и защите от коррозии подземных… … Словарь-справочник терминов нормативно-технической документации

внутренние факторы коррозии — Факторы, влияющие на скорость, вид и распределение коррозии, связанные с природой металла (состав, структура, внутренние напряжения, состояние поверхности). [ГОСТ 5272 68] Тематики коррозия металлов … Справочник технического переводчика

Внутренние факторы коррозии — – факторы, влияющие на скорость, вид и распределение коррозии, связанные с природой металла (состав, структура, внутренние напряжения, состояние поверхности). [ГОСТ 5272 68] Рубрика термина: Виды испарений Рубрики энциклопедии: Абразивное… … Энциклопедия терминов, определений и пояснений строительных материалов

внутренние (остаточные) напряжения — 3.9 внутренние (остаточные) напряжения: Напряжения, возникающие в прокате, которые частично могут сохраниться после окончания термической обработки. Максимальный зазор между двумя частями стальной полосы при их соединении по линии реза после… … Словарь-справочник терминов нормативно-технической документации

Напряжения — [stresses] (Смотри тж. Напряжение): Смотри также: фазовые напряжения термические напряжения пиковые напряжения остаточные напряжения … Энциклопедический словарь по металлургии

ВНУТРЕННИЕ СИЛЫ — силы напряжения, упругие силы (Internal force) силы, возникающие в деформируемом упругом теле. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

НАПРЯЖЕНИЯ ОСТАТОЧНЫЕ — доля (см.) внутри тела, которая сохраняется во времени после снятия внешних воздействий в отличие от внешних напряжений, вызванных непосредственно приложением внешних сил и исчезающих с их удалением. Н. о. приобретаются телом в случае, когда… … Большая политехническая энциклопедия

Внутренние напряжения — остаточные напряжения в отливке, приводящие к ее деформации, а иногда к разрушению. Различают внутренние напряжения первого рода — термические напряжения, возникающие между отдельными зонами сечения и между различными частями детали из-за неравномерного охлаждения или нагрева отливки; Внутренние напряжения второго рода — структурные напряжения, возникающие внутри зерна или между соседними зернами из-за разного коэфициента линейного расширения фаз или из-за образования новых фаз, имеющих разные объемы; Внутренние напряжения третьего рода, возникающие в том случае, когда инородный атом в твёрдом растворе создает вокруг себя упругие искажения кристаллической решетки.

Энциклопедический словарь по металлургии. — М.: Интермет Инжиниринг . Главный редактор Н.П. Лякишев . 2000 .

Смотреть что такое "Внутренние напряжения" в других словарях:

внутренние напряжения — [internal stresses] 1. Напряжения, возникающие между микро или макроэлементами изделия (полуфабриката) вследствие воздействия на него внешних (при обработке давлением) или внутренних (при тепловом воздействии, фазовом превращении) сил, вызывающих … Энциклопедический словарь по металлургии

Внутренние напряжения в металлах

Часто в металлической заготовке может иметься внутреннее напряжение, не имеющее внешних сил. Образуется оно при изготовлении заготовки из-за неравномерного охлаждения, например, при ковке, литье и в местах сварки. Остаточное напряжение может вызвать нарушение формы заготовки, из-за чего происходит быстрый износ или деформация детали. Во избежание подобного, в данной статье описаны способы устранения внутреннего напряжения.

Как правило, в заготовке, которая поступает на металлорежущий станок, обычно имеются внутренние напряжения, сохраняющиеся при отсутствии внешних сил, именно поэтому они называются – остаточными.

Остаточные напряжения различаются на:

  • напряжения первого рода, которые охватывают наибольшую часть заготовки;
  • напряжения второго рода, которые образуются в микроскопических объемах – кристаллах, зернах;
  • напряжения третьего рода, которые характерны для ячеек кристаллической решетки.

Во время механической обработки, когда в виде припуска с заготовки удаляется часть металла, совершается перераспределение внутренних остаточных напряжений и их временное равновесие нарушается. При этом основную роль здесь играют именно напряжения первого рода. Характер и величина распределения остаточных напряжений напрямую зависят от конфигурации заготовки, соотношения размеров отдельных элементов, ее габаритных размеров, способа получения исходной заготовки, а также других немаловажных факторов.

Большие остаточные напряжения появляются в исходных заготовках, которые получаются путем литья, ковки, штамповки, из-за неравномерного охлаждения различных элементов заготовки. В сварно-литых, сварно-штампованных или просто сварных конструкциях наибольшие внутренние напряжения зарождаются именно в местах сварки, где непосредственно из-за местного охлаждения и нагрева происходят неоднородные объемные изменения. При этом диффузионные процессы и структурные превращения металла при сварке также способствуют возникновению остаточных напряжений разного рода.

В особо неблагоприятных моментах остаточные напряжения способны вызвать не только существенные нарушения формы заготовки (например, коробление, изогнутость и др.), но и всевозможные трещины.

Срезание поверхностных слоев с металлической заготовки освобождает ранее уравновешенные силы, поэтому остаточные напряжения деформируют саму заготовку. Однако и сам процесс резания тоже служит источником остаточных напряжений, возникающих как результат пластической деформации верхнего слоя поверхности и нагрева зоны резания.

Обычно перераспределение внутренних напряжений совершается не сразу, а постепенно, также постепенно происходит и изменение формы заготовки или готовой детали. На самом деле в практике случаются моменты, когда исходная заготовка, которая получила большие остаточные напряжения, проходит непосредственно именно черновую обработку. Таким образом, деформация заготовки и внутренние напряжения перераспределяются частично. При этом получившиеся искажения формы устраняются, как правило, при чистовой обработке. Готовая деталь, (если конечно она годная) ставится на машину, а через кое-какое время уже при эксплуатации быстро изнашивается, причина этого одна — деформация данной детали, которая произошла после полной ее обработки.

Чтобы не случались такие казусы именно поэтому – устранению внутренних напряжений – необходимо уделять самое основательное внимание. Простейший путь устранения внутренних напряжений — это разделить обработку резанием на несколько этапов, то есть:

  • на первом этапе выполняется черновая обработка, путем удаления наибольшей части припуска с поверхностей заготовки;
  • на втором этапе заготовка передается на получистовую обработку;
  • на третьем этапе изготовление детали заканчивается путем чистовой обработки.

Так как зачастую заготовки обрабатывают партиями: черновая, получистовая и чистовая обработки производятся на разных станках, а в некоторых случаях и в разных цехах, поэтому между этими обработками проходит определенное время. В основном именно за это время и происходит перераспределение внутренних напряжений и соответственно деформация заготовок. Чем больше временной промежуток между обработками (черновой и чистовой), тем естественно и меньше опасность искажения форм готовых деталей.

Естественное старение

Длительное выдерживание заготовки для снятия остаточных напряжений называется – «естественным старением». Сам процесс естественного старения весьма и весьма медленный. Достаточно уточнить, что самая основная часть остаточных напряжений именно в сложных отливках при естественном старении снимается в течение 2-3х месяцев. Однако следует учесть, что даже после указанного срока еще в течение нескольких месяцев оставшиеся напряжения способны воздействовать на форму заготовки.

Многомесячное естественное старение крайне «не» экономично — потому как чрезвычайно затягивается весь производственный цикл, стремительно возрастает объем неготового производства, значительно снижаются оборотные средства предприятия, поэтому естественное старение главным образом применяют исключительно для особо ответственных и дорогостоящих отливок, к примеру, заготовок станин прецизионных станков.

Для того чтобы ускорить процесс перераспределения, а также снятия остаточных напряжений, очень часто старение происходит на открытом воздухе (то есть, резкая смена температуры «дня и ночи» существенно способствует интенсификации процесса старения).

Снятие остаточного напряжения

Для средних или достаточно мелких отливок самым эффективным способом снятия непосредственно внутренних напряжений является так сказать искусственное старение, то есть специальный процесс термической обработки. Отливка помещается в печь доведенную до температуры в 500-600оС, и выдерживается в ней в течение 1-6 часов (чем крупнее отливка, тем соответственно и больше выдержка). Далее печь вместе с отливкой медленно охлаждают таким образом, чтобы абсолютно все части отливки (толстые и тонкие) охлаждались – равномерно. При этом скорость охлаждения должна составлять 25-75 градусов в час. Когда температура отливки снизится примерно до 200-250оС, она вынимается из печи и на воздухе окончательно охлаждается.

Для снятия напряжений, которые были получены при ковке, литье и штамповке, также применяют и отжиг, то есть нагрев до температуры в 400-600оС с выдержкой в 2,5 минуты на 1 мм толщины сечения заготовки, для сварных же заготовок высокотемпературный отпуск выполняется при нагреве до 600—650оС. Также отжигают и заготовки, получаемые из проката стали.

Вследствие значительных пластических деформаций при прокатке непосредственно в поверхностных слоях заготовок формируются существенные растягивающие, а вот во внутренних слоях наоборот сжимающие напряжения. Если же с такой заготовки снимается неравномерный припуск, то, безусловно, из-за перераспределения внутренних напряжений ее форма может измениться. Именно поэтому, к примеру, после фрезерования на валах длинных шпоночных канавок, изготовляемых из проката, могут случаться искривления валов. Для исправления этой кривизны заготовок валов, стержней, длинных планок, осей и прочих подобных элементов правят их исключительно в холодном состоянии. В таком процессе правки происходит упругая, и затем пластическая деформация материала.

Тщательная правка позволяет практически полностью устранить кривизну заготовки, которая вызвана непосредственно действием остаточных напряжений. Однако во время правки в заготовках появляются новые напряжения, что при дальнейшей чистовой обработке (хуже — в работающей машине) данные остаточные напряжения способны достаточно легко вызвать новые искажения формы. Именно поэтому для ответственных деталей применять правку крайне – нежелательно.

Читайте также: