Внутреннее строение металлов и сплавов
Металлы (от лат. metallum — шахта, рудник) — группа элементов, в виде простых веществ обладающих характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.
Большая часть металлов присутствует в природе в виде руд и соединений. Они образуют оксиды, сульфиды, карбонаты и другие химические соединения. Для получения чистых металлов и дальнейшего их применения необходимо выделить их из руд и провести очистку. При необходимости проводят легирование и другую обработку металлов. Изучением этого занимается наука металлургия. Металлургия различает руды чёрных металлов (на основе железа) и цветных (в их состав не входит железо, всего около 70 элементов).
Все металлы и сплавы подразделяются на две группы: черные металлы и цветные.
Черные металлы представляют собой сплав железа с небольшим количеством углерода. Наряду с углеродом черные металлы могут содержать кремний, марганец, фосфор, серу и другие химические элементы, попадающие в металлы из руд или добавляемые в них в процессе плавки. Для улучшения качества или придания специфических свойств в состав черных металлов вводят легирующие добавки — медь, никель, хром, кремний.
В зависимости от содержания углерода черные металлы подразделяются на чугуны и стали.
В сталях содержится до 2% углерода, а в чугунах содержится от 2 до 6,7% углерода.
Цветные металлы представляют собой сплавы на основе алюминия, магния, меди, никеля, хрома, цинка, олова, свинца.
Металлы состоят из зерен, тесно прилегающих друг к другу. Эти зерна можно заметить на свежем изломе металлического стержня невооруженным глазом. Более четко структура металла видна под микроскопом при сильном увеличении.
В зависимости от химического состава структурные составляющие железоуглеродистых сплавов носят следующие наименования:
- аустенит — твердый раствор углерода в гамма-железе (гамма-железо — одна из форм кристаллов чистого железа); предельная концентрация углерода в аустените 1,7%; аустенит немагнитен, характеризуется большой вязкостью, хорошей сопротивляемостью истиранию и химической стойкостью;
- феррит — технически чистое железо, которое характеризуется малой твердостью, небольшой прочностью и высокой пластичностью; феррит магнитен; свойства феррита в значительной степени зависят от размера его зерна; в структуре стали феррит располагается в виде отдельных светлых зерен, перемежающихся с темными участками перлита, или в виде светлых окаймлений вокруг зёрен перлита;
- цементит — химическое соединение железа с углеродом; обладает высокой твердостью, но в, то, же время хрупок; форма цементита в стали оказывает влияние на ее механические свойства, особенно на ударную вязкость;
- перлит — смесь цементита и феррита; содержание углерода в перлите 0,83 %', чем мельче зерна перлита в металле, тем выше его механические свойства.
Химический состав и структура металла предопределяет его физические и механические свойства: прочность, твердость, плотность. Механические свойства в значительной степени позволяют определить, насколько хорошо будет работать деталь в эксплуатационных условиях.
Строение и структура металлов
Металлы относятся к твердым телам кристаллического строения.
Твердое тело —это агрегатное состояние вещества, характеризующееся стабильностью формы и объема.По своему внутреннему строению твердые тела разделяются на кристаллические и аморфные.
Кристаллы - это твёрдые тела, частицы которых располагаются в строгом порядке, образуя пространственные периодически повторяющиеся структуры.
Точнее, частицы колеблются около определенных положений равновесия. Если их мысленно соединить прямыми линиями, то получается своего рода «скелет» кристалла. Такое изображение кристалла называется кристаллической решеткой.
Теоретически доказано, что всего может существовать 230 различных пространственных кристаллических структур.
Большинство из них (но не все) обнаружены в природе или созданы искусственно.
Рис. 7.1. Виды кристаллического строения металлов
На рис. 7.1. приведены примеры простых кристаллических решеток: 1 – простая кубическая решетка; 2 – гранецентрированная кубическая решетка; 3 – объемно-центрированная кубическая решетка; 4 – гексагональная решетка.
Металлы имеют относительно сложные типы кубических решеток - объемно центрированная (ОЦК) и гранецентрированная (ГЦК) кубические решетки.
Рис. 7.2. Объемно-центрированная кристаллическая решетка
Основу ОЦК-решетки составляет элементарная кубическая ячейка (рис.7.2.), в которой положительно заряженные ионы металла находятся в вершинах куба, и еще один атом в центре его объема, т. е. на пересечении его диагоналей. Такой тип решетки в определенных диапазонах температур имеют железо, хром, ванадий, вольфрам, молибден и др. металлы.
Рис.7.3. Гранецентрированная кристаллическая решетка
В гранецентрированной кристаллической решетке (ГЦК-решетки) (рис.7.3) элементарной ячейкой служит куб с центрированными гранями. Подобную решетку имеют железо, алюминий, медь, никель, свинец и др. металлы.
Рис.7.4. Гексагональная плотноупакованная кристаллическая решетка
Третьей распространенной разновидностью плотноупакованных решеток является гексагональная плотноупакованная (ГПУ, рис.7.4). ГПУ-ячейка состоит из отстоящих друг от друга на параметр с параллельных центрированных гексагональных оснований. Три иона (атома) находятся на средней плоскости между основаниями.
В гексагональных решетках отношение параметра с/а всегда больше единицы. Такую решетку имеют магний, цинк, кадмий, бериллий, титан и др.
Компактность кристаллической решетки или степень заполненности ее объема атомами является важной характеристикой. Она определяется такими показателями, как параметр решетки, число атомов в каждой элементарной ячейке, координационное число и плотность упаковки.
Параметр решетки – это расстояние между атомами по ребру элементарной ячейки. Параметры решетки измеряются в нанометрах (1 нм = 10 -9 м = 10 Å). Параметры кубических решеток характеризуются длиной ребра куба и обозначаются буквой а.
Для характеристики гексагональной решетки принимают два параметра – сторону шестигранника а и высоту призмы с. Когда отношение с/а = 1,633, то атомы упакованы наиболее плотно, и решетка называется гексагональной плотноупакованной (рис. 7.4). Некоторые металлы имеют гексагональную решетку с менее плотной упаковкой атомов (с/а > 1,633). Например, для цинка с/а = 1,86, для кадмия с/а = 1,88.
Параметры кристаллических решеток металлов могут быть измерены с помощью рентгеноструктурного анализа.
При подсчете числа атомов в каждой элементарной ячейке следует иметь в виду, что каждый атом входит одновременно в несколько ячеек. Например, для ГЦК-решетки, каждый атом, находящийся в вершине куба, принадлежит 8 ячейкам, а атом, центрирующий грань, двум. И лишь атом, находящийся в центре куба, полностью принадлежит данной ячейке.
Таким образом, ОЦК - и ГЦК-ячейки содержат соответственно 2 и 4 атома.
Под координационным числом понимается количество ближайших соседей данного атома.
Металлы. Все металлы состоят из множества отдельных зерен — кристаллов, плотно прилегающих друг к другу и крепко связанных между собой внутренними силами сцепления. Поэтому металлы относятся к кристаллическим телам.
Образование кристаллов, или кристаллизация металлов, обычно происходит при остывании жидкого расплавленного металла. Этот процесс протекает следующим образом: при охлаждении жидкого металла его затвердение начинается с образования центров кристаллизации, в которых атомы металла располагаются в определенном порядке, образуя кристалл, имеющий правильную форму геометрических фигур — куба, призмы и др.
Однако в процессе кристаллизации металлов одновременно возникает много центров кристаллизации и полногранных кристаллов не образуется или образуется очень мало, так как кристаллизация происходит несвободно и соседние кристаллы мешают друг другу развиваться правильно. В результате наружные очертания кристаллов не получают геометрических форм — их углы закругляются, сдавливаются, и такие кристаллы называются зернами или кристаллитами.
Чем быстрее металл остывает, тем больше возникает центров кристаллизации и тем мельче образовавшиеся кристаллиты. Размеры зерен металлов очень различны — от нескольких сантиметров в литом, медленно охлажденном металле до тысячных долей миллиметра в быстро охлажденном и механически обработанном металле.
Форма и размеры кристаллов зависят не только от условий, при которых происходит их образование, но и от последующей обработки металла. Если литой металл с сравнительно крупными зернами подвергнуть механической обработке — ковке, штамповке, прокатке, чеканке и т. п., то структура металле изменится, произойдет измельчение зерен. Крупные кристаллы раздробятся на множество мелких, изменится их форма — они станут сплющенными или вытянутыми в зависимости от направления действия приложенной силы.
С изменением размеров, формы, расположения кристаллов изменяются и механические свойства металлов. Они становятся более твердыми, хрупкими, упругими, утрачивается пластичность и вязкость.
Путем длительной механической обработки, например чеканкой, вызывающей измельчение кристаллов, можно довести металл до такого состояния, что он из пластичного и мягкого станет жестким, хрупким, легко разрушающимся при дальнейшей деформации. Такой металл называется нагартованным или получившим наклеп.
Если нагартованный металл нагреть до определенной температуры, то структура его вновь изменится, мелкие зерна исчезнут и вместо них появятся более крупные, но уже не такие, как в литом металле. Размеры зерен будут более или менее одинаковые по всем направлениям. Такую структуру называют равноосной.
Сплавы. Чистые металлы в изделиях художественной промышленности применяются редко, обычно применяются их сплавы. Сплавы обладают самыми разнообразными свойствами. Зная теорию сплавов, можно составлять такие сплавы, которые обладают теми или иными желаемыми свойствами.
Под чистыми металлами понимают химически простое вещество, например железо, медь, олово, серебро и т. п. Однако получение абсолютно чистых металлов сопряжено с большими трудностями. Например, получить железо, совершенно свободное от примесей — серы и углерода, до сих пор невозможно. Даже наиболее чистое железо содержит тысячные доли углерода и серы. В художественной промышленности его не применяют из-за трудности получения и высокой стоимости. В то же время сплавы на железной основе — сталь и чугун — применяются здесь чрезвычайно широко.
То же можно сказать и о меди. Даже в самой чистой меди всегда присутствуют примеси мышьяка, висмута, сурьмы, железа и других веществ, от которых освободиться чрезвычайно трудно.
Однако интересно отметить, что в 1720 г. заводчик Никита Антуфь-ев-Демидов подарил Петру I игральный стол, изготовленный из чистой меди, в которой всяких примесей было меньше, чем в самой лучшей меди, выплавляемой в наше время по современной технологии.
В чистом виде медь применяется гораздо реже, чем ее сплавы — латунь и бронза. Это объясняется тем, что эти сплавы обладают важными свойствами, которых нет у чистой меди.
Сплавы образуются путем соединения металлов с металлами или металлов с металлоидами. Например, при соединениях меди с цинком образуется латунь, алюминия с кремнием — силумин.
Сплавы можно получить из двух или нескольких компонентов методом сплавления. Это наиболее древний способ, известный человечеству еще с доисторических времен. Известно также, что уже в Древнем Египте и Китае за четыре тысячи лет до нашей эры выплавляли металл из полиметали-ческих руд и полученными природными сплавами (например, бронзой) пользовались для производства различных предметов, в том числе и художественных изделий.
Наши предки много веков тому назад умели сплавлять золото с серебром, получая сплав электрум, применявшийся ими для выделки художественных сосудов — кубков, ваз и т. п.
Разработаны новые способы получения сплавов, например, прессованием и спеканием из смеси металлических порошков, а также путем электролиза или конденсации из паров металлов.
В настоящее время сплавы из двух компонентов применяются сравнительно редко. Это объясняется тем, что двойные сплавы имеют недостаточно высокие механические свойства, а поэтому в технике и художественной промышленности в большинстве случаев применяются сплавы более сложного состава — тройные, четверные и т. д. Добавка третьего или четвертого компонента к двойным сплавам существенно изменяет их свойства, особенно в тех случаях, если новый компонент может вызвать образование химического соединения и тем самым резко изменить кристаллическую решетку.
Однако в процессе кристаллизации металлов одновременно возникает много центров кристаллизации и полногранных кристаллов не образуется или образуется очень мало, так как кристаллизация происходит несвободно и соседние кристаллы мешают друг другу развиваться правильно. В результате наружные очертания кристаллов не получают геометрических форм — их углы закругляются, вдавливаются, и такие кристаллы называются зернами или кристаллитами.
Чем быстрее металл остывает, тем больше возникает центров кРисталлизации и тем мельче образовавшиеся кристаллиты. Разме-РЬ| зерен металлов очень различны — от нескольких сантиметров в литом, медленно охлажденном металле до тысячных долей миллима в быстро охлажденном и механически обработанном металле.
Форма и размеры кристаллов зависят не только от условий, при которых происходит их образование, но и от последующей обработки металла. Если литдй металл с сравнительно крупными зернами подвергнуть механической обработке — ковке, штамповке, прокатке, чеканке и т. п., то структура металле изменится, произойдет измельчение зерен. Крупные кристаллы раздробятся на множество мелких, изменится их форма — они станут сплющенными или вытянутыми в зависимости от направления действия приложенной силы.
Сплавы можно получить из ух или нескольких компонен-методом сплавления. Это наиболее древний способ, известный человечеству еще с доисторических времен. Известно также, что уже в Древнем Египте и Китае за четыре тысячи лет до нашей эры выплавляли металл из полиметали-ческих руд и полученными природными сплавами (например, бронзой) пользовались для производства различных предметов, в том числе и художественных изделий.
Внутреннее строение металлов и сплавов Кристаллическое строение металлов
У веществ в твердом состоянии строение кристаллическое или аморфное. В кристаллическом веществе атомы расположены по геометрически правильной схеме и на определенном расстоянии друг от друга, в аморфном же (стекле, канифоли) атомы расположены беспорядочно.
У всех металлов и их сплавов строение кристаллическое. На рис.12показана структура чистого железа. Кристаллические зерна неопределенной формы не похожи на типичные кристаллы - многогранники, поэтому их называюткристаллитами, зернамиили гранулами. Однако строение кристаллитов столь же закономерно, как и у развитых кристаллов.
Рис.12.Микроструктура чистого железа (х - 150)
Виды кристаллических решеток. При затвердевании атомы металлов образуют геометрически правильные системы, называемыекристаллическими решетками. Порядок расположения атомов в решетке может быть различным. Многие важнейшие металлы образуют решетки, простейшие (элементарные) ячейки которых представляют форму центрированного куба (- и- железо, хром, молибден, вольфрам, ванадий, марганец), куба с центрированными гранями (- железо, алюминий, медь, никель, свинец) или гексагональную, как у шестигранной призмы, ячейку (магний, цинк,- титан,- кобальт).
Элементарная ячейкаповторяется непрерывно в трех измерениях, образуя кристаллическую решетку, поэтому положение атомов в элементарной ячейке определяет структуру всего кристалла.
Элементарная ячейка центрированного куба (рис.13) состоит из девяти атомов, из которых восемь расположены по вершинам куба, а девятый — в его центре.
Рис.13. Элементарная ячейкаРис.14. Часть пространственной решет-
центрированного куба ки центрированного куба
Для характеристики кристаллической решетки (атомной структуры кристалла) применяют пространственную решетку, которая является геометрической схемой кристаллической решетки и состоит из точек (узлов), закономерно расположенных в пространств.
Рис.15. Элементарная ячейка кубаРис.16. Часть пространственной ре-
с центрированными гранями шетки куба с центрированными
На рис.14приведена часть пространственной решетки центрированного куба. Здесь взяты восемь смежных элементарных ячеек; узлы, расположенные по вершинам и в центре каждой ячейки, отмечены кружками. Элементарная ячейка куба с центрированными гранями (рис.15) состоит из 14 атомов, из них 8 атомов расположены по вершинам - куба и 6 атомов — по граням.
На рис.16приведена часть пространственной решетки куба с центрированными гранями ( гранецентрированного куба). На схеме имеется восемь элементарных ячеек; узлы расположены по вершинам и по центрам граней каждой ячейки. Гексагональная ячейка (рис.17) состоит из 17 атомов, из них 12 атомов расположены по вершинам шестигранной призмы, 2 атома — в центре оснований и 3 атома — внутри призмы. Для измерения расстояния между атомами кристаллических решеток пользуются специальной единицей, называемойангстремомРис.17. Гексагональная ячейка
Параметр решеток (сторона или шестигранника) у меди 3,6 А, а у алюминия 4,05 А, у цинка 2,67 А и т. д.
Каждый атом состоит из положительно заряженного ядра и нескольких слоев (оболочек) отрицательно заряженных и движущихся вокруг ядра электронов. Электроны внешних оболочек атомов металлов, называемые валентными, легко отщепляются, быстро движутся между ядрами и называютсясвободными. Вследствие наличия свободных электронов атомы металлов являются положительно заряженными ионами.
Таким образом, в узлах решеток, обозначенных кружками рис.14и16, находятся положительно заряженные ионы. Ионы, однако, не находятся в покое, а непрерывно колеблются положения равновесия. С повышением температуры амплитуда колебаний увеличивается, что вызывает расширение кристаллов, а при температуре плавления колебания частиц усиливаются настолько, что кристаллическая решетка разрушается.
Во всех кристаллах наблюдаются небольшие отклонения от идеальной решетки — незанятые узлы и различного рода смещения атомов.
Анизотропность и спайность кристаллов. В отдельных кристаллах свойства различны в разных направлениях. Если взять большой кристалл (существуют лабораторные и даже производственные методы выращивания крупных кристаллов) вырезать из него несколько одинаковых по размеру, но различно ориентированных образцов, и испытать их свойства, то иногда наблюдается весьма значительная разница в свойствах между отдельными образцами. Например, при испытании образцов, вырезанных из кристалла меди, относительное удлинение изменялось в пределах от 10 - 50 %, а предел прочности—от 14 до 35 кГ/мм 2 для различных образцов. Это свойство кристаллов называютанизотропностью. Анизотропность кристаллов объясняется особенностями расположения атомов в пространстве.
Следствием анизотропности кристаллов является спайность, которая выявляется при разрушении. В местах излома кристаллов можно наблюдать правильные плоскости, указывающие на смещение частиц под влиянием внешних сил не беспорядочное, а правильными рядами, в определенном направлении, соответственно расположению частиц в кристалле. Эти плоскости называютсяплоскостями спайности.
Аморфные тела изотропны, т. е. все их свойства одинаковы во всех направлениях. Излом аморфного тела всегда имеет неправильную искривленную, так называемую, раковистую поверхность.
Металлы, затвердевшие в обычных условиях, состоят не из одного кристалла, а из множества отдельных кристаллитов, различно ориентированных друг к другу, поэтому свойства литого металла приблизительно одинаковы во всех направлениях; это явление называют квазиизотропностью(кажущейся изотропностью).
Аллотропия металлов(или полиморфизм) — их свойство перестраивать решетку при определенных температурах в процессе нагревания или охлаждения. Аллотропию обнаруживают все элементы, меняющие валентность при изменении температуры: например, железо, марганец, никель, олово и др. Каждое аллотропическое превращение происходит при определенной температуре. Например, одно из превращений железа происходит при температуре 910°С, ниже которой атомы составляют решетку центрированного куба (см.рис.14), а выше — решетку гранецентрированного куба (см.рис.16).
Та или иная структура называется аллотропической формой или модификацией. Различные модификации обозначают греческими буквами , , и т. д., причем буквойобозначают модификацию, существующую при температурах ниже первого аллотропического превращения. Аллотропические превращения сопровождаются отдачей (уменьшением) или поглощением (увеличением) энергии.
Кристаллизация металлов. Кристаллизацией называется образование кристаллов в металлах (и сплавах) при переходе из жидкого состояния в твердое (первичная кристаллизация). Перекристаллизацию из одной модификации в другую при остывании эатвердевшего металла называют (вторичной кристаллизацией). Процесс кристаллизации металла легче всего проследить с помощью счетчика времени и термоэлектрического пирометра, который представляет собой милливольтметр, подключенный к термопаре. Термопару (две разнородные проволоки спаянные концами) погружают в расплавленный металл. Возникающий при этом термоток пропорционален температуре металла и стрелка милливольтметра отклоняется, указывая эту температуру по градуированной шкале.
Показания пирометра автоматически записываются во времени и по полученным данным строят кривые охлаждения в координатах «температура — время» (такие кривые вычерчивает самописец).
Температура, соответствующая какому-либо превращению в металле, называется критической точкой.
На рис.18, априведена кривая нагрева металла. Здесь точка а- начало плавления, точкаb — окончание плавления.
Рис.18. Кривые нагревания (а) и охлаждения (б- без петли,
в - с петлей) металла
Участок аbуказывает на неизменность температуры во времени при продолжающемся нагревании. Это показывает, что тепловая энергия затрачивается на внутреннее превращение в металле, в данном случае. на превращение твердого металла в жидкий (скрытая теплота плавления).
Переход из жидкого состояния в твердое при охлаждении сопровождается образованием кристаллической решетки, т. е. кристаллизацией. Чтобы вызвать кристаллизацию, жидкий металл нужно переохладитьнесколько ниже температуры плавления. Поэтому площадка на кривой охлаждения (рис.19,6) находится несколько нижеtпл при температуре переохлажденияtпр.
У некоторых металлов переохлаждение (tпл — tпр) может оказаться весьма значительным (например, у сурьмы до 40°С) и при температуре переохлажденияtпр(рис. 18, в) сразу бурно начинается кристаллизация, в результате чего температура скачком повышается почти доtпл. В этом случае на графике вычерчивается петля теплового гистерезиса.
При затвердевании и при аллотропическом превращении в металле вначале возникают зародыши кристалла (центры кристаллизации), вокруг которых группируются атомы, образуя соответствующую кристаллическую решетку.
Таким образом, процесс кристаллизации складывается из двух этапов: образования центров кристаллизации и роста кристаллов.
У каждого из возникающих кристаллов кристаллографические плоскости ориентированы случайно, кроме того, при первичной кристаллизации кристаллы могут поворачиваться, так как они окружены жидкостью. Смежные кристаллы растут навстречу друг другу и точки их соприкосновения определяют границы кристаллитов (зерен).
Кристаллизация железа. Рассмотрим в качестве примера кристаллизацию и критические точки железа.
Рис.19. Кривые охлаждения и нагревания железа
На рис.19приведены кривые охлаждения и нагревания чистого железа, которое плавится при температуре 1539 0 С. Наличие критических точек при меньших температурах указывает на аллотропические превращения в твердом железе.
Критические точки обозначаются буквой А, при нагревании обозначаютАcи при охлажденииAr индексы 2, 3, 4 служат для отличия аллотропических превращений (индекс 1 обозначает превращение на диаграмме состоянияFe - Fe3C.
При температурах ниже 768 0 С железо магнитно и имеет кристаллическую решетку центрированного куба. Эту модификацию называют-железо ; при нагревании она в точкеАс2переходит в немагнитную модификацию-железо. Кристаллическая структура при этом не меняется.
В точке Ас3при температуре 910 0 С-железо переходит в-железо с кристаллической решеткой гранецентрированного куба.
В точке Ас4при температуре 1401 0 С-железо переходит в-железо, причем кристаллическая решетка вновь перестраивается из гранецентрированного куба в центрированный куб.
При охлаждении происходят те же переходы, только в обратной последовательности.
Из перечисленных превращений наибольшее практическое значение имеют превращения А3 как при нагреве (Ас3), так и при охлаждении (Аr3).
Превращение в точке А3сопровождается изменением объема, так как плотность кристаллической решетки-железа больше плотности решетки-железа, в точкеАс3 объем уменьшается, в точкеAr3 - увеличивается.
Строение металлов и сплавов, их кристаллизация
Внутренним строением металлов называется строение и взаимное расположение их атомов, а также более крупная структура, видимая в микроскоп или невооруженным глазом.
Металлы по внутреннему строению представляют собой совокупность нейтральных атомов, положительно или отрицательно заряженных ионов и свободных электронов, образующих так называемый «электронный газ». Наличие «электронного газа» обусловливает высокую электро- и теплопроводность металлов, а взаимосвязь свободных электронов между собой и с ионами создает прочную связь, называемую металлической. Специфика металлической связи делает металлы пластичными (ковкими).
Кроме природы атомов на свойства металлов влияют характер связи между атомами, расстояние между ними и порядок их расположения.
Все металлы в твердом состоянии имеют кристаллическое строение, т.е. их атомы (ионы) расположены в строгом, периодически повторяющемся порядке, образуя в пространстве атомно-кристаллическую решетку (в противоположность аморфным твердым телам, атомы которых расположены в пространстве хаотично).
Порядок расположения атомов у различных металлов неодинаков. Обычно он определяется простыми характерными для большинства металлов (рис. 6) или сложными кристаллическими решетками. Линии на рис. 6 условные Атомы в действительности колеблются возле положений равновесия, т. е. в узлах кристаллической решетки. Расстояние между атомами в кристаллической решетке измеряется в ангстремах (1 Å=10 -9 нм). У большинства металлов расстояние между атомами находится в пределах 0,28—0,8 нм.
Рис 6. Порядок расположения атомов в простых решеткаха — объемная центрированной кубической (9 атомов), б — гранецентрированной кубической (14 атомов), в — гексагональной плотноупакованной (17 атомов)
Наименьший объем кристалла, дающий представление об атомной структуре металла во всем объеме, называется элементарной кристаллической ячейкой.
Получаемые обычным способом металлы представляют собой поликристаллические тела, состоящие из множества элементарных ячеек, ориентированных относительно друг друга самым различным образом. Ячейки имеют неправильную форму и называются кристаллитами, или зернами. Если сочетание элементарных ячеек правильное, по расположению атомов повторяющее элементарную ячейку, то образовавшееся тело называется монокристаллом.
Металлические сплавы, как и металлы, имеют кристаллическое строение. При этом в зависимости от взаимодействия компонентов они подразделяются на твердые растворы, химические соединения и механические смеси.
Твердые растворы образуются тогда, когда при сплавлении атомы одного элемента в разных количествах входят в кристаллическую решетку другого элемента, не изменяя в значительной мере ее формы. Элемент, сохранивший форму своей решетки, называется растворителем, а элемент, атомы которого вошли в эту решетку,— растворенным. По размещению атомов растворенного элемента в решетке растворителя различают твердые растворы замещения (атомы растворенного элемента располагаются в узлах решетки растворителя) и твердые растворы внедрения (атомы растворенного элемента находятся между атомами растворителя и узлами его решетки).
Если входящие в состав твердого раствора замещения компоненты имеют близкое строение решеток и атомов, то такие элементы могут образовывать непрерывный ряд твердых растворов, т. е. количество замещенных атомов может изменяться от 0 до 100 %.
При этом считается, что растворителем является тот элемент, содержание которого в сплаве более 50 %.
Растворы внедрения образуются элементами, сильно отличающимися строением решетки и размерами атомов.
Твердые растворы являются гомогенными (однородными) сплавами, так как их структура представляет собой одинаковые по составу и свойствам зерна. Свойства твердых растворов в значительной степени могут отличаться от свойств входящих в него компонентов. Все металлы в той или иной степени могут растворяться один в другом, образуя твердые растворы.
Химические соединенияобразуются при химическом взаимодействии атомов компонентов сплава, сопровождающемся значительным тепловым эффектом. При этом кристаллическая решетка химического соединения и все его свойства могут резко отличаться от решетки и свойств компонентов. В отличие от твердых растворов химические соединения обычно образуются между компонентами, имеющими большое различие в электронном строении атомов. Типичными примерами химических соединений являются соединения магния с оловом, свинцом, сурьмой, висмутом, серой, селеном, теллуром и др. По своей структуре они гомогенны.
Химические соединения металлов называются интерметаллическими (интерметаллидами), а соединения металлов с неметаллами (нитридами, гидридами, боридами, карбидами), обладающие металлической связью, — металлическими соединениями.
Механические смесиобразуются тогда, когда при затвердении расплава атомы его компонентов не перемешиваются, а кристаллизуются в характерную каждому решетку. Структура таких сплавов гетерогенна (неоднородна) и представляет собой смесь кристаллов компонентов сплава, сохранивших свою структуру.
Рис. 7. Кривые охлаждения аморфного (а), кристаллического тела (б) и металлов (в), где tк tп — температура кристаллизации и переохлаждения, °C; (T1-T2) — время кристаллизации, с.
Строение кристаллического тела обусловливает следующие особенные их свойства по сравнению с аморфными:
§ различие свойств монокристаллов в различных направлениях, т. е. анизотропность, или векториальность, свойств;
§ наличие плоскостей скольжения, приложение внешних сил приводит к скольжению (сдвигу) одной плоскости относительно другой;
§ существование критической температуры при затвердевании или плавлении, при которой происходит переход из жидкого (расплавленного) состояния в твердое или наоборот.
Переход металла из жидкого состояния в твердое называется кристаллизацией, а из твердого в жидкое — плавлением. Если образование кристаллов происходит из жидкости при ее охлаждении, то этот процесс называется первичной кристаллизацией, если образование кристаллов идет в твердом состоянии тела, — вторичной кристаллизацией.
Процессы кристаллизации графически изображают кривыми, строящимися в координатах температура — время (рис. 7).
Явление переохлаждения в кристаллизующемся металле объясняется тем, что в период затвердевания происходит резкое снижение подвижности атомов, вследствие чего скачкообразно изменяется его внутренняя энергия. Это сопровождается выделением тепла, которое подогревает жидкую ванну и некоторое время (T1—Т2) удерживает ее температуру постоянной, пока жидкость полностью не закристаллизуется.
Степень переохлаждения тем больше, чем больше скорость охлаждения.
Русский ученый-металлург Д. К. Чернов в 1878 г. установил, что процесс кристаллизации состоит из нескольких стадий. Первая стадия — образование зародышей (центров) кристаллизации. На последующих стадиях из этих центров образуются дендриты (древовидные образования), которые, срастаясь, образуют зерна (кристаллиты). При этом они не имеют правильной геометрической формы, так как в местах соприкосновения растущих кристаллов рост граней прекращается.
Величина зерна металла — важнейшая характеристика, которая определяет все основные его свойства. Мелкозернистый металл имеет более высокие характеристики твердости, прочности, ударной вязкости, но у него пониженная электропроводность, хуже магнитные свойства.
Размер зерна зависит от количества центров кристаллизации и скорости роста кристаллов (скорости охлаждения). Чем больше центров кристаллизации и меньше скорость их роста, тем меньше будет зерно.
Образование центров кристаллизации может происходить самопроизвольно или на имеющихся в жидком металле частицах примесей, что используется при модифицировании — введении в жидкий металл примесей (модификаторов).
На образование центров кристаллизации, а следовательно, и величину зерна влияет степень переохлаждения tк—tп (см. рис. 7). Чем больше степень переохлаждения, тем больше центров кристаллизации и мельче образующееся зерно.
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней.
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние.
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение.
Читайте также: