Виды трещин в металле
Описание. Линейные нарушения сплошности на поверхности горячекатаных прутков и профилей, а также катаной проволоки, расположенные чаще всего в продольном направлении и проходящие перпендикулярно или наклонно в глубь материала. Их возникновение и распределение обусловлены самыми различными причинами.
1. Трещины, образовавшиеся вследствие неправильной калибровки при горячей прокатке, ориентированные в продольном направлении. Обычно тонкие, короткие, встречаются в большом количестве.
2. Тонкие трещины, расположенные на равном расстоянии друг от друга, возникающие вследствие изменения (чаще посадки) калибра при горячей прокатке. Могут быть распределены по всему объему.
3. Тонкие трещины от проскальзывания в калибре; могут быть короткими или длинными; распределены беспорядочно по объему.
4. Краевые (идущие от ребер) трещины на профилях или на прутках, имеющих сечение, отличающееся от круглого; они проходят перпендикулярно или под углом к направлению прокатки и имеют преимущественно извилистую форму.
5. Трещины обусловленные сотовыми (подкорковыми) пузырями; неравномерно распределены по поверхности в продольном направлении.
6. Трещины, возникшие от остаточных напряжений. Лишь в редких случаях они прямолинейны и расположены параллельно продольной оси. Чаще всего сильно искривлены, частично доходят до сердцевины.
7. Трещины, обусловленные подкорковыми порами; распределены по поверхности неравномерно и вытянуты в продольном направлении; имеют малую протяженность и чаще всего очень тонкие.
1. Одновременная осадка и уширение (сжимающие и растягивающие напряжения) при прокатке (неблагоприятная калибровка).
2. Углубления, возникающие при прокатке из-за дефектной поверхности прокатных валков. Слишком большое различие в диаметрах одновременно работающих (сопряженных) валков.
6. Остаточные (внутренние) напряжения, возникающие в материале из-за слишком быстрого нагрева или охлаждения, а также в процессе деформации (например, от скручивания) или при травлении (водород).
7. Изложницы с горячими трещинами; газовыделение из-за поглощения влаги или водорода; слишком быстрая разливка.
1. Создание правильной калибровки и соблюдение технологии горячей прокатки стем, чтобы исключить возможность одновременной сильной осадки и уширения; особое внимание следует обращать на это в последних проходах.
Не создавать углублений на поверхности прутка при прокатке, не использовать прокатные валки со слишком глубокими насечками.
4. Оптимальные температуры нагрева и прокатки, nbsp;соответствующие данной марке стали и поперечному сечению заготовки.
Правильная калибровка для предупреждения слишком большого уширения с учетом данной марки и поперечного сечения изделия.
6. Предотвращение при термической обработке и горячей прокатке резких нагревов и охлаждении. Стали, склонные к образованию трещин от остаточных (внутренних) напряжений (легированные стали и стали с повышенным содержанием углерода), следует охлаждать в нагревательных колодцах.
Устранение. Возможно с учетом глубины и количества дефектов, размеров полуфабриката, состава стали, а также формы поперечного сечения и назначения проката. Для горячекатаной прутковой стали возможные методы устранения дефектов — зачистка (шлифовка и строжка), а также обточка. Катаная проволока большого диаметра (свыше 10 мм) может быть обточена. Дефекты в профилях могут быть удалены зачисткой (шлифовкой или строжкой).
Примечание. Необходимо совершенствовать соответствующие технологические процессы, с тем чтобы избежать появления поверхностных продольных трещин. Однако так как причины появления этих трещин могут быть самыми разнообразными (см. выше) и в текущем производстве в настоящее время еще нет сквозного контроля всей прокатываемой продукции на поверхностные дефекты, только с большим трудом можно получить абсолютно свободный от трещин материал. Это означает, что поверхностные трещины в реальном производстве встречаются, к сожалению, часто.
Обусловленное продольными трещинами снижение качества продукции зависит от вида, глубины и количества (частоты расположения) трещин, а также от целей применения продукции. При обработке поверхности резанием (при изготовлении деталей) наличие поверхностных трещин не имеет значения в том случае, если глубина их меньше удаляемого при механической обработке слоя. Для заготовок, предназначенных для последующего волочения или деформации другого вида без удаления поверхностного слоя, поверхностные трещины, напротив, весьма нежелательны; к качеству поверхности таких заготовок предъявляются особенно высокие требования.
Источник: Атлас дефектов стали. Пер. с нем. М. "Металлургия", 1979.
Сайт содержит техническую и нормативную информацию по металлургии.
Все материалы размещенные на сайте предоставляются бесплатно.
Горячие и холодные трещины при сварке
Согласно ГОСТу 30242 все дефекты разделяют на шесть групп. Первая из них целиком принадлежит трещинам. Дефект шва, называемый трещиной, - это несплошность в виде разрыва металла. В месте образования появляется очаг напряжения, который при эксплуатации изделия приведет к дальнейшему разрушению.
Поэтому трещина считается недопустимым дефектом и подлежит устранению. Место образования трещин бывает, как в самом шве, так и в околошовной зоне, где сохраняется термическое влияние. Увидеть этот дефект нетрудно при визуальном осмотре. Для уточнения вида и ее размеров можно использовать лупу с большим увеличением. Ее приходится применять обязательно для обнаружения микротрещин.
Виды трещин
Существуют две разновидности трещин: первая их них называется горячей или высокотемпературной, а вторая - холодной или низкотемпературной. Каждая из них имеет градацию по другим признакам. Горячие и холодные трещины при сварке делятся по направлению - продольные, поперечные, могут быть радиальными или находиться в кратере валика. Горячие трещины образуются в металле при очень высокой температуре - более 1000°С, а для холодных достаточно более низкого значения в 200-300°С.
Горячие
Горячие трещины - это, по определению, разрушения межкристаллического характера. Цвет излома имеют темный, а форму - извилистую. Окисление является сильным.
Причины образования горячих трещин при сварке:
- Деформации, вызванные укорочением.
- Жидкие прослойки между зернами.
- Невозможность перемещения деталей для правильного остывания, что происходит при их слишком сильной фиксации.
- Нарушение связей между зернами из-за наличия элементов с низкой температурой затвердевания.
- Присутствие примесей и включений. Особенно влияют сера и фосфор.
Горячие трещины при сварке имеют следующую последовательность образования:
- после прекращения нагрева горячий металл начинает понемногу охлаждаться;
- при определенной температуре в сварном шве начинают образовываться кристаллы, между которыми имеются прослойки в жидком виде;
- происходит возрастание напряжений, приводящих к понижению деформационной способности шва и зоны вокруг него.
В результате неодинаковой усадки шва и свариваемого материала после охлаждения возникают внутренние напряжения, вызывающие появление трещин в разных направлениях.
Холодные
Холодные трещины при сварке образуются в теле самого шва и рядом. Они располагаются в продольном и поперечном направлениях под любым углом ко шву. Излом имеет светлый оттенок. Время появления - период остывания деталей. Трещины могут появляться, начиная с температуры 300 °С, поэтому их называют холодными в отличие от горячих.
Наиболее распространенные места появления холодных трещин - корень шва и место, где стыкуются валик и свариваемый металл. Такой вид трещин может появляться не только на поверхности, но и внутри металла. Их протяженность может быть небольшой. Обнаружить внутренние трещины более сложно.
Холодные трещины не имеют такого сильного разветвления, как у горячих. Меньшим является и их раскрытие. При реакции с кислородом воздуха их цвет становится коричневым или голубоватым. Высокопрочные и низколегированные стали являются наиболее уязвимыми.
Холодные трещины при сварке - причины возникновения:
- Слишком сильное соединение свариваемых деталей.
- Маленький диаметр электрода, не соответствующий толщине свариваемых деталей.
- Несоблюдение технологии сварки.
- Повышенное содержание углерода.
- Слишком быстрое охлаждение.
- Наличие внутренних напряжений.
- Неправильный выбор электрода.
При возможности следует избегать ситуаций, когда образуются холодные трещины при сварке.
Кристаллизация
Кристаллизацией называется процесс, состоящий в образовании кристаллов. Это происходит при переходе металла из состояния жидкого в твердое. Именно это и происходит при сварке металлических изделий.
Этот процесс в сварном шве приводит к деформированию металлов и образованию трещин. Какие виды трещин образуются при кристаллизации сварного шва? Горячие, которые имеют второе название кристаллизационные, могут появиться в металлическом шве на последней стадии кристаллизации. При этом температура близка к солидусу, когда происходит исчезновение последних капель жидкого металла.
Предупреждение появления трещин
Существуют определенные меры, уменьшающие вероятность возникновения различных видов трещин:
- Уменьшение жесткости соединения свариваемых деталей.
- Подбирать ширину сварного шва, соизмеримую с толщиной деталей.
- Значение сварного тока должно соответствовать рекомендуемому данному виду соединения. Превышение приведет к перегреву.
- Сварочную проволоку выбирать с небольшим содержанием серы и углерода.
- Соблюдать угол наклона электрода.
- Шов не должен быть слишком узким.
- Применение многопроходного способа сваривания. Однопроходные швы являются менее прочными.
Не лишним будет предварительный нагрев свариваемых деталей.
Ликвидация трещин
В нормативных материалах указаны меры борьбы с дефектами, в том числе трещинами. Основной метод - сварка трещин. Перед заваркой необходимо произвести подготовку. Она состоит в осмотре повреждения и определении его длины. Окончания трещины высверливают, а при невозможности выполнить эту операцию прижигают концы. Перед началом операции исправляемую область можно слегка подогреть. Если длина трещины составляет более 300 мм, то имеет смысл применить обратноступенчатый метод.
Сварка при ремонте автомобиля
Одной из главных частей автомобиля является головка блока цилиндров. От ее исправности зависит работа двигателя. При образовании в этой детали трещины для ремонта применяется ее заварка. Сварка трещин ГБЦ производится электросваркой. Возможно также применение газовой сварки. После окончания сварки шов покрывают эпоксидной пастой.
Интересное видео
Образование трещин в сталях
С точки зрения простого здравого смысла трещины в сварных соединениях невозможны: металл при выполнении сварного шва сначала жидкий, а затем при охлаждении - пластичный. Однако факторы (причины и следствия), обуславливающие образование сварного соединения являются также и факторами (условиями), образования трещин в нём, как-то: нагревание, плавление, кристаллизация, охлаждение в жёстком закреплении, структурные, фазовые превращения, внутренние напряжения, микро- и макро- неоднородности, и т.п. Появление (получение) сварного соединения без трещин скорее исключение, чем правило.
В любом сварном соединении (особенно при сварке плавлением), строго говоря, присутствуют трещины (хотя бы микро-), но в благоприятных условиях (в удачном случае) они схлопываются, а в неблагоприятных условиях - (в неудачном случае) - раскрываются - обнаруживают себя. Трещины в сварных соединениях классифицируют как показано на рисунке.
Способность материала сварного соединения воспринимать без разрушения деформации и напряжения, вызываемые термодеформационным циклом сварки, называется его технологической прочностью и является важнейшей характеристикой металла, подлежащего сварке.
Горячие трещины
Согласно теории технологической прочности сопротивляемость сварного соединения образованию горячих трещин определяется такими факторами:
а) пластичностью металла в температурном интервале хрупкости;
б) значением (величиной, протяженностью) температурного интервала хрупкости;
в) темпом температурной деформации сварного соединения.
Возникновение сварочных деформаций (и напряжений) обусловлено концентрированным местным нагревом при сварке и имеет место всегда. Это связано с тем, что нагреваемый объём металла при сварке всегда находится в закреплении соседними не нагреваемыми объёмами металла и вынужден претерпевать пластические деформации. Это, в свою очередь, при охлаждении приводит к возникновению силовых напряжений и дополнительных деформаций.
Деформации в твердом металле реализуются по известным механизмам: двойникования, внутризеренного скольжения (приводящего к появлению линий сдвига) и межзёренного проскальзывания, сопровождающегося появлением ступенек по границам зерен. В такой же последовательности возрастает роль этих составляющих деформаций при повышении температуры металла и уменьшении скорости деформации, причем с повышением температуры сопротивление деформации приграничных участков зерен падает более интенсивно, чем внутризеренных объемов, а запас межзеренной пластичности заметно ниже, чем внутризеренной. Поэтому при высоких температурах обычным является межзеренное разрушение при меньшей пластичности.
Горячие как кристаллизационные, так и подсолидусные трещины имеют межкристаллитный характер. Разрушение идет межзеренно, по границам зерен.
Режим сварки, определяющий температурное поле в свариваемом изделии, может привести к тому, что нерасплавленный металл, расположенный вне ванны, будет менять знак дополнительной деформации металла кристаллизующейся ванны (сжатия или растяжения) в различные моменты времени после прохождения рассматриваемого сечения сварочным источником тепла. Мягкие режимы сварки (с малой скоростью, при предварительном подогреве и пр.) с этой точки зрения являются более благоприятными, хотя на уровень пластичности кристаллизующегося металла они могут оказать как положительное, так и отрицательное воздействие.
Одним из наиболее надежных способов исключения горячих трещин в металле швов является выбор металла с повышенной стойкостью против таких разрушений. Это достигается либо повышением деформационной способности металла в области температур возможного возникновения трещин, либо обеспечением "залечивания" образующихся несплошностей подвижной жидкой фазой (легкоплавкими эвтектиками). Следует отметить, что увеличение содержания элемента в сплаве для повышения стойкости против образования трещин в шве (т.е. элемента, образующего легкоплавкую эвтектику) применимо далеко не всегда, так как такой сплав может обладать свойствами, недопустимыми с точки зрения эксплуатационных требований к конструкции. Например, при высоком содержании серы в стали можно исключить кристаллизационные трещины, но механические свойства таких швов окажутся весьма низкими.
Как технологический прием для исключения (ограничения) горячих трещин применяют предварительный подогрев (для низко и среднелегированных сталей), сварку на жестких режимах (для аустенитных сталей), а также выбирают режимы, обеспечивающие благоприятную форму шва, т.е. соотношение ширины и глубины шва (слоя шва). Так, при одном и том же составе металла швы с глубоким проплавлением при малой ширине (т.е. при малом значении b/h; рисунок а, более склонны к горячим трещинам, чем швы с отношением b/h = 1,5-3 – рисунок б).
Для оценки склонности металла швов к образованию горячих трещин существует ряд проб и методик. Технологические пробы основаны главным образом на установлении сравнительных характеристик по сопротивляемости металла швов, выполненных различными сварочными материалами в сопоставимых условиях (размеры и формы образца, режимы сварки и пр.). Количественные, методики основаны на получении при испытаниях сравнительных численных показателей сопротивляемости (или склонности) металла швов к образованию горячих трещин. Они осуществляются в виде серии испытаний с получением численного показателя стойкости, обычно скорости дополнительного принудительного деформирования свариваемого образца в период кристаллизации определенного участка сварочной ванны и последующего охлаждения.
Холодные трещины
В сварных соединениях как в металле сварных швов, так и в околошовных зонах ряда металлов образуются так называемые холодные трещины. Свое наименование они получили в связи с тем, что начало их появления фиксируется либо при относительно умеренных температурах (значительно более низких, чем температуры горячей обработки), либо при комнатной и более низкой температурах.
Наиболее типичными холодными трещинами в сварных соединениях являются поперечные трещины в металле швов, поперечные трещины вблизи границы сплавления в околошовной зоне, а также трещины, параллельные границе сплавления, так называемые отколы.
Обычно холодные трещины образуются в металле с недостаточно высокой деформационной способностью, особенно границ зерен, вызываемой закалкой и пластической деформацией при неравномерном охлаждении и фазовых превращениях. Холодные трещины образуются либо в процессе завершения охлаждения сварного соединения, либо через некоторое время после полного охлаждения (замедленное разрушение).
Образование холодных трещин в процессе продолжающегося охлаждения определяется накоплением пластических деформаций в связи с изменением размеров и формы неравномерно охлаждающегося свариваемого изделия.
Замедленные разрушения связаны с длительным действием поля собственных (сварочных) или создаваемых внешними силами напряжений такой величины, при которой продолжается процесс деформирования, хотя бы с весьма малыми скоростями. В случае наличия закаленного металла сопротивление деформации зерен (например, при мартенситной структуре) весьма значительно. Деформация в этом случае происходит только за счет менее упорядоченных границ зерен (зон металла, прилегающих к границам), главным образом за счет их сдвига. Сдвиги по границам, расположенным параллельно или под углом к направлению действия сил растяжения, приводят к концентрации напряжений (и стоку несовершенств кристаллического строения, дислокации) к границам зерен, расположенным перпендикулярно к растягивающим силам. Эта концентрация напряжений и ослабление таких границ скоплением несовершенств строения приводят к зарождению разрушения, наиболее вероятного в стыке границ этих зерен. Под действием напряжений эти микроразрушения развиваются в трещины, распространяющиеся уже в основном по телу зерен, хотя для некоторых сплавов, когда, например, этот процесс сопровождается и другими (старение и пр.), трещина и далее, после зарождения, распространяется в основном по границам зерен.
Наиболее характерными температурами возникновения холодных трещин при сварке закаливающихся сталей являются температуры, при которых уже произошел распад основной части аустенита, но может продолжаться распад остаточного аустенита. Обычно такими температурами являются 120°С и более низкие. Часто трещины образуются уже при комнатных температурах спустя некоторое время после окончания сварки (десятки минут, часы, а иногда и через более длительные промежутки времени).
В закаливающихся сталях образование ряда холодных трещин связано как с получением структур с низкими пластическими свойствами металла, так и с влиянием водорода, растворяющегося при сварке в жидком металле и затем поступающего и в околошовную зону.
Рассмотрим в этом отношении поведение водорода и его влияние на свойства стали при комнатной температуре. Водород, растворенный в металле либо в виде атомарного (Н), либо в виде протона (ТГ), имея весьма малую величину частицы, легко диффундирует в железе не только при высоких температурах, но и при комнатных. В связи с высокой концентрацией в металле шва, иногда значительно превышающей равновесную растворимость, водород диффузионно распространяется в области с его меньшей концентрацией. Такими областями являются наружная поверхность шва (с которой происходит удаление водорода в воздух), околошовная зона и далее основной металл, а также различные несплошности в металле (поры, пустоты и локальные несовершенства кристаллического строения металла). В результате такого перемещения водорода его общее количество в зоне термического влияния в определенных условиях может увеличиваться или уменьшаться в зависимости от соотношения количества водорода, поступающего в нее в заданный отрезок времени из шва и удаляющегося из этой зоны в более глубокие слои основного металла. Одновременно часть водорода, поступающая в несплошности, ассоциируется в молекулы и перестает быть диффузионно-подвижной. Постепенно в таких несплошностях давление молекулярного водорода растет в связи с дальнейшим поступлением атомарного водорода и образованием новых молекул.
Методами борьбы с образованием холодных трещин при сварке закаливающихся сталей являются:
- уменьшение степени закалки металла при сварке;
- снижение содержания водорода в металле шва и околошовной зоне;
- снижение содержания водорода в околошовной зоне при металле шва, не склонном к образованию трещин.
Основным методом уменьшения возможности закаливаемости металла в сварном соединении, главным образом в околошовной зоне, является снижение скорости охлаждения после сварки, достигаемое практически либо увеличением погонной энергии при сварке, либо предварительным подогревом изделия. Увеличение погонной энергии при сварке, допустимо только в ограниченных пределах. Поэтому основным способом, радикально влияющим на изменение (уменьшение) скорости охлаждения металла при сварке, является предварительный подогрев свариваемого изделия.
Образование трещин при термической обработке стальных изделий
Поскольку макротрещины являются результатом воздействия напряжений первого рода, то очевидно, что их расположение и глубина распространения должны определяться распределением напряжений в объеме изделия.
Хрупкое разрушение чистых металлов и многих пластичных сплавов при комнатной температуре можно вызвать двухосным или трехосным приложением растягивающих внешних усилий; в случае сжимающих усилий металлы разрушаются от касательных напряжений сдвигом, т. е. разрушаются вязко. Это справедливо для материалов и напряженного состояния, при котором проявляются пластические свойства материала. Хрупкие материалы, к которым относится и закаленная сталь, могут разрушаться не только от растягивающих, но и сжимающих напряжений, что хорошо выявляется при одноосном сжатии [50], при котором разрушение происходит по направлению действующего усилия. В данном случае излом проходит перпендикулярно поперечным растягивающим деформациям, т. е. в направлении, в котором согласно понятиям теории упругости растягивающие напряжения отсутствуют. Поэтому целесообразно разрушение хрупких материалов рассматривать по отношению к деформациям растяжения.
В процессе механических испытаний при любом способе приложения внешних усилий, даже одноосном, образец деформируется в трех направлениях и, по существу, в нем всегда возникает объемное деформированное состояние. При одноосном растяжении в направлении действующего усилия появляются деформации растяжения, а в двух других направлениях — сжатия (фиг. 4, а). Хрупкие материалы при растяжении разрушаются перпендикулярно направлению усилия, т. е. перпендикулярно максимальной деформации растяжения.
Одноосное сжатие в направлении действующего усилия вызывает деформацию сжатия, но в двух остальных направлениях— деформации растяжения и перпендикулярно деформациям растяжения наступает разрушение (фиг. 4, б).
При двухосном и трехосном приложении сил растяжения или сжатия хрупкое разрушение также будет направлено перпендикулярно наибольшей деформации растяжения. Двухосное равномерное растяжение изотропных материалов может привести к одновременному разрушению образца в четырех направлениях Двухосное равномерное сжатие (фиг. 4, г) вызывает растягивание в одном направлении и разрушение возможно также в одном направлении, нормальном к деформации.
Закалочные трещины могут образоваться в зоне, подвергнутой не только растягивающим, но и сжимающим напряжениям, при этом они направляются перпендикулярно максимальной деформации растяжения.
При трехосном приложении усилий, когда в двух направлениях действуют растягивающие, а в одном — сжимающие напряжения, последние должны способствовать хрупкому разрушению, поскольку они увеличивают деформацию растяжения (фиг. 4, д), вызываемую растягивающими усилиями.
Термическая обработка создает в изделиях объемно-напряженное состояние. В элементарном объеме очень часто возникает напряженное состояние, аналогичное описанному выше, когда в двух направлениях действуют растягивающие напряжения и в одном — сжимающие. Такое напряженное состояние должно быть опасным для образования трещин.
Объемное напряженное состояние изделий характеризуется различным распределением напряжений по сечению. В одних случаях напряжения меняются по величине постепенно, в других случаях напряжения по величине и знаку изменяются резко (в пределах сотых долей миллиметра). Последнее часто наблюдается в тонких поверхностных слоях изделия, в которых напряжения сжатия или растяжения значительно превышают (до нескольких раз) максимальные напряжения в сердцевине. В этом случае поверхностный тонкий слой можно рассматривать как самостоятельную зону, находящуюся в плосконапряженном состоянии
Макротрещины, возникающие в изделиях, должны располагаться в соответствии с напряженным состоянием: при напряженном состоянии во всем объеме изделия следует ожидать образования глубоких трещин, а при двухосном напряженном состоянии в поверхностном слое — образования поверхностных трещин. Многолетние наблюдения над образованием макротрещин в изделиях, изготовляемых из высоко- и среднеуглеродистой легированной и нелегированной стали, а также низкоуглеродистой цементуемой стали, привели к выводу, что трещины, возникающие в изделиях при термической обработке, также можно подразделить на две группы: глубокие и поверхностные. Каждая
группа трещин подразделяется на две разновидности: выходящих на поверхность изделия и внутренних. Классификация трещин приводится на фиг. 5, согласно которой макротрещийы, возникающие при термической обработке изделия, подразделяются на четыре типа. Пятым типом трещин являются микротрещины, позникающие от напряжений второго рода.
Первый тип трещин — трещины глубокие, раскрывающиеся от поверхности изделия (фиг. 6). Они могут быть продольными или изменять направление в зависимости от конфигурации изделия (концентраторов напряжений). Продольное направление трещин чаще наблюдается в тех изделиях, длина которых превышает их диаметр или толщину, и даже в изделиях сложной формы. Например, на поверхности фрезы, изготовленной из быстрорежущей стали (фиг. 6, а), трещины имеют различные направления, но если эту фрезу сломать по трещинам, то обнаружится их преимущественное направление вдоль оси (фиг. 6,6).
Как показали наблюдения, трещины первого типа возникают в полностью прокаливающихся изделиях. В данном случае под прокаливаемостью понимается слой с мартёнситной структурой, когда твердость сердцевины изделия равна или ниже (не более чем на HRC 1—3) твердости поверхности. В этом случае в поверхностном слое изделия возникают, как правило, растягивающие напряжения, а распределение их по сечению соответствует схеме, приведенной на фиг. 5 для данного типа трещин.
Если исходить из общих представлений об образовании трещин, то следует предположить, что трещины первого типа могут появиться в любом слое стали, где деформация растяжения (в тангенциальном 'направлении) превосходит способность стали к удлинению при данном напряженном состоянии. Вместе с тем практически наблюдается, что наибольшая склонность к трещинам первого типа проявляется в образцах со сквозной прокаливаемостью, когда на поверхности обнаруживаются преимущественно напряжения растяжения (фиг. 5, а). Такое напряженное состояние характерно для прокаливающихся образцов после охлаждения в воде. Очевидно, неодновременность структурных превращений, возникающая при резком охлаждении, вызывает напряжения растяжения в поверхностном слое. Логично предположить, что если под действием растягивающих напряжений в сердцевине возникают трещины, то должны встречаться хотя бы отдельные случаи, когда в изделиях обнаруживаются внутренние продольные трещины. Однако таких трещин пока не отмечалось. По-видимому, практически внутренние напряжения в сердцевине изделий, могущие вызвать деформацию растяжения в тангенциальном направлении, достаточную для разрушения, образуются редко.
Известно, что в цилиндрических образцах после термической обработки осевые напряжения имеют, как правило, большую, а радиальные напряжения — меньшую величину. Казалось бы, и трещины должны возникать от наибольших осевых напряжений. Но в этом случае они располагались бы перпендикулярно оси, а в действительности трещины бывают направлены вдоль оси. Продольное расположение их вызывается тангенциальными напряжениями, хотя величина этих напряжений, как правило, несколько меньше осевых. Продольное расположение трещин в некоторой степени, очевидно, объясняется анизотропией свойств стали. Многие детали, а также и инструмент изготовляются из проката. Прокат, как известно, в продольном и поперечном направлениях имеет различные свойства. При испытании поперечных образцов по сравнению с продольными образцами ([50] обнаруживается понижение следующих механических свойств: пластичности, сопротивления отрыву, истинного сопротивления разрушению. В закаленной на мартенсит инструментальной стали сопротивление отрыву при разрушении поперечных образцов на 30—50% меньше, чем при разрушении продольных образцов.
Второй тип трещин — внутренние дугообразные, отличающиеся от трещин первого типа не только глубиной залегания, но и расположением (фиг. 5, б). Они располагаются главным образом внутри углов изделий. Если изделие имеет небольшую толщину, то трещины, располагаясь в углах, сливаются и принимают дугообразную форму (фиг. 7). Не исключена возможность выхода внутренних трещин на поверхность изделий. Они называются внутренними потому, что берут начало из сердцевинных слоев и только вследствие перераспределения напряжений и повышенной хрупкости стали часто распространяются до поверхности. Внутренние трещины, не выходящие на поверхность после закалки, выявляются после сколов углов изделий или вершин зубьев (фиг. 7, г).
Трещины второго типа возникают в непрокаливающихся или цементованных изделиях. В таких изделиях поверхностный закаленный слой имеет большой удельный объем по сравнению с сердцевиной. Вследствие этого поверхностный слой стремится расшириться и подвергает сердцевину растяжению. Сам поверхностный слой в этом случае будет находиться под воздействием сжимающих напряжений. Распределение напряжений в цементованных или непрокаливающихся образцах неоднократно исслеловалось различными авторами; оно соответствует напряженно му состоянию, схематически представленному на фиг. 5, б. Трещины возникают в зоне, подвергнутой растягивающим напряжениям. Преимущественное образование внутренних трещин в
углах следует объяснить наличием в них объемных растягивающих напряжений. Закаленный или цементованный слой в углах воздействует на сердцевину с трех сторон, создавая напряженное состояние, затрудняющее пластическую деформацию стали и облегчающее образование трещин.
Третий тип трещин — поверхностные, проникающие ιι;ι глубину от 0,01 до 1,5—2 мм. На поверхности эти трещины имеют произвольное направление, не связанное с конфигурацией .изделия. В зависимости от глубины они по-разному выявляются на поверхности изделия.
Трещины, проникающие в глубину до нескольких сотых миллиметра, образуют на поверхности изделия мелкую сетку (фиг. 8, а) . При увеличении глубины трещин ячейки сетки укрупняются, затем сетка становится слабо замкнутой (фиг. 8, б), и, наконец, при глубине около 1,0 мм на поверхности появляется несколько трещин произвольного (фиг. 8,- в) или продольного (фиг. 8, г) направления.
Трещины третьего типа образуются в том случае, когда по каким-либо причинам в поверхностных слоях возникают растягивающие напряжения, а способность металла этих слоев к деформации оказывается недостаточной (см. фиг. 5, в).
Четвертый тип трещин — трещины отслаивания и сколов (см. фиг. 5, г). Для примера приведем многочисленные случаи отслаивания поверхностной корки после шлифования, а также отслаивания диффузионных слоев, полученных химико-термической обработкой. Но к трещинам отслаивания относится значительно более широкий круг встречающихся трещин, и расположение их вблизи поверхности изделия является частным случаем. Анализ многих изделий с трещинами отслаивания приводит к выводу, что трещины появляются вследствие действия сжимающих напряжений и возникают от растягивающих поперечных деформаций.
Трещины отслаивания располагаются вдоль структурных зон, подвергнутых сжатию и отличающихся повышенной хрупкостью. Известна возможность такого разрушения в хрупких материалах при одноосном сжатии [50]. Однако трещины отслаивания возни кают только в том случае, когда напряжения от растягивающих к сжимающим переходят в очень узкой зоне, равной тысячным или сотым миллиметра, т. е. когда знак напряжений меняется в микрослоях (см. фиг. 5, г).
Обычно трещины отслаивания располагаются в структурной зоне малой толщины, напряженное состояние которой можно рассматривать как двухосное равномерное сжатие. Наглядно это можно показать следующим.
Если в зоне образования трещин четвертого типа возникает объемное напряженное состояние и, помимо напряжений двухосного сжатия, появляются и растягивающие напряжения в третьем направлении (радиальном), то они будут способствовать образованию этих трещин.
В изделии одновременно могут присутствовать глубокие и поверхностные трещины. Пример наличия в изделии трещин первого и третьего типов приведен на фиг. 12, где глубокие и большие трещины появились от объемного напряженного состояния, а поверхностные и мелкие вызваны наличием дополнительного напряжения в поверхностном слое изделия. Поскольку глубокие трещины вызываются напряжениями, действующими во всем объеме изделия, то, очевидно, причину их образования следует искать в технологических условиях, влияющих на напряженное состояние объема (например, перепад температур по сечению изделий при сквозном нагреве и охлаждении). Появление поверхностных трещин связано с явлениями, происходящими в поверхностных слоях (изменение состава стали вследствие химико-термических процессов, протекающих в поверхностных слоях, резкий разогрев поверхности и др.).
На основании изучения причин, приводящих к образованию трещин при обработке конкретных изделий, по виду трещин можно определить технологические факторы, вызывающие трещины, и указать мероприятия по их устранению. Например, установлено, что в инструменте из быстрорежущей стали, нагреваемом для закалки в соляных ваннах, поверхностные трещины вызываются наличием обезуглероженного слоя. Если трещины имеют вид мелкой сетки (а следовательно, малую глубину) и расположены по всей поверхности изделия, то обезуглероживание произошло при нагреве в соляной ванне, а если поверхностные трещины располагаются с одной стороны (обычно на плоском инструменте), не образуют сетки, но расположены произвольно, то это указывает на неравномерное снятие припуска при механической обработке. Конкретные причины образования трещин и технологические мероприятия по их предупреждению будут рассмотрены ниже.
Применяемые марки стали и условия обработки настолько разнообразны, что еще встречаются трещины, причины и технологические условия образования которых еще не изучены и они «не классифицируются». Например, еще не совсем ясно, к какому типу можно отнести трещины, возникающие возле кромки изделия и направленные параллельно ей. Известны случаи образования подобных трещин в связи с обезуглероживанием и троститным превращением на .поверхности, и, очевидно, их следует отнести к третьему типу, но для окончательной классификации требуется накопление дополнительных данных.
В классификацию не включены трещины, возникающие при очень сильном перегреве стали (например, нагрев стали У12 до температуры 1200°С), когда трещины уже не имеют определенной ориентировки и иногда образуют сетку, видимую на поверхности. Образование таких трещин связано с понижением прочности границ зерен, и они сравнительно редко встречаются в практике. При классификации следует иметь в виду возможность появления сетки трещин вследствие сильного перегрева, в этом необходимо убедиться по структурному анализу или излому стали.
По мере изменения технологии термической обработки будут включаться новые технологические факторы и виды трещин, требующие специального изучения.
Подрезы (переходы сечений) увеличивают склонность изделий к образованию трещин, изменяют их направление (фиг. 13) „ но влияние технологических и металлургических факторов сохраняется для всех четырех типов трещин. Поэтому все общие закономерности, относящиеся к образцам или изделиям простой формы без резких переходов в сечении или подрезов, в равной степени относятся к изделиям сложной формы.
Пятый тип трещин — микротрещины, в отличие от перечисленных выше трещин, возникающих от напряжений первого рода, образуются под действием микронапряжений или напряжений второго рода (см. фиг. 5, д).
Поскольку напряжения второго рода действуют в пределах микрообъемов и дезориентированы, они должны вызвать трещины, также распространяющиеся на микрообъемы и тоже дезориентированные.
На возможность образования . микротрещин в стали указывается многими авторами. К этому типу относятся трещины, которые различимы под микроскопом и располагаются в пределах игл мартенсита или одного и нескольких зерен. В быстрорежущей стали, согласно данным.
Дефекты сварных швов
Дефекты сварных швов – нередкое явление, приводящее к снижению качественных характеристик изделия вплоть до полного несоответствия заявленным нормам. Допустить ошибки могут как опытные, так и начинающие сварщики, поэтому необходимо понимать природу возникновения отклонений.
Не все дефекты можно считать фатальными: часть легко исправляется, некоторые вообще могут не требовать доработки. В нашей статье мы расскажем, что считается дефектом сварного шва, каким он бывает, а также поговорим про способы выявления и устранения разных видов изъянов.
Причины появления дефектов швов после сварки
Сварными дефектами называются такие поверхностные или внутренние изъяны, которые возникли в результате соединения деталей при помощи сварочного оборудования.
По степени выраженности они различаются по форме, размерам, и практически всегда негативно отражаются на сроке эксплуатации металлоконструкции, поэтому при выполнении сварочных работ следует избегать их возникновения.
VT-metall предлагает услуги:
Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы
Наиболее частыми причинами дефектов сварных швов могут быть следующие:
- Низкое качество соединения может быть причиной невысокого уровня опыта сварщика: при нарушении технологии лучевой, аргоновой, электродуговой сварки, пренебрежении к подготовительной операции техпроцесса, термической обработки узлов, а также в случаях, когда выбирается неверная схема соединения заготовок или применяются неправильные технологические режимы сварочного лазерного оборудования и т. п.
- Плохое качество сварного соединения может стать следствием использования неисправного или кустарно изготовленного оборудования при электродуговой или ручной сварке, применения дешевых расходных материалов или металла низкого качества.
Виды дефектов сварных швов
С полным перечнем возможных скрытых и наружных дефектов сварных швов можно ознакомиться в ГОСТ 30242-97. Видимые наружные изъяны обычно становятся причиной глубинных нарушений структуры сплава. Они могут возникнуть при любой технологии сварки и подразделяются на сквозные, внутренние (скрытые) и наружные (видимые). Рассмотрим их более подробно.
Наружные дефекты сварных швов.
Легко обнаруживаются при помощи визуального осмотра, и в большинстве случаев устраняются в процессе выполнения работы.
Главной причиной появления трещин является нарушение температурного режима. Холодные дефекты формируются из-за недостаточно разогретой поверхности (до +200 °С). Горячие же возникают при использовании температуры свыше +1100 °С. Трещины приводят к снижению пластичности металла, что ведет к разрушению под действием нагрузки.
Наиболее часто встречающимся дефектом сварных швов являются подрезы: между деталью и наплавленной частью можно обнаружить углубления. Причинами их появления могут быть:
- использование электрической дуги со слишком высоким напряжением, что приводит к истончению сварных заготовок;
- если одна деталь проваривается сильнее другой, то происходит смещение ванны расплава от середины зазора.
Подрезы оказывают отрицательное влияние на прочность соединения, поэтому такой дефект необходимо устранить методом повторного нанесения сварного шва.
Появление прожогов чаще всего можно обнаружить при сваривании тонкостенных заготовок или при неуверенном управлении электродом. Только опытный сварщик-специалист может избежать появления изъянов такого рода. Еще одной причиной может стать использование слишком высокого тока.
Свищи – раковины большого размера, внешним видом напоминающие воронку. Их сразу можно увидеть, так как сильно ухудшается внешний вид сварного соединения. Устраняются методом повторного нанесения шва.
Металлическая структура кратера характеризуется усадкой и рыхлостью. От свищей чаще всего расходятся по поверхности трещины. Появляются в зоне непровара в случаях отрыва электродуги от поверхности детали или ее отключении.
Еще одним наружным дефектом сварных швов является наплыв, по сути, представляющий собой вылившийся лишний металл: происходит наполнение сварной ванны наплавкой без образования прочного диффузного слоя, что снижает надежность сварного соединения. Из-за недостаточного напряжения электродуга не успевает проплавить соединяемые поверхности заготовок. Еще одной причиной может быть плохая зачистка кромочных поверхностей, в результате остаточная окалина не может расплавиться.
Внутренние дефекты сварных швов.
Считаются самыми коварными, так как визуально их не определить, а структура металла нарушена. Не допускается использование сборных конструкций с любой формой скрытых дефектов в трубопроводах, деталях, работающих на излом, и в сосудах, предназначенных для эксплуатации с высоким давлением.
Растрескивания или отпотины могут быть двух видов:
- горячие – поперечные или продольные трещины, образующиеся в металле на границе формирующегося зерна;
- холодные – появляющиеся после остывания диффузного слоя и наплавки из-за остаточных напряжений в зоне разогревания.
На этапе зарождения кристаллической решетки в легированных сплавах горячие трещины могут возникнуть:
- при нарушении технологии сварочного процесса (выбран не тот вид электродов или неправильно выставлены параметры рабочего тока);
- когда падающая расплавленная капля становится причиной замыкания и внезапного отключения сварочного оборудования.
Характер таких трещин можно легко определить. Горячие отпотины возникают сразу же, они характерны для области термовлияния, массива шва, при перегревании или же, наоборот, при более низких точках плавления. Формирование холодных происходит не сразу, а по мере фазовых превращений расплавленной массы в кристаллическую решетку. Существуют следующие вероятные причины их появления:
- используется недостаточная экранизация расплава защитной атмосферой;
- повышенная влажность воздуха в пределах рабочего места;
- при недостаточном разогревании молекулы водорода не успевают отделиться.
Поры классифицируются по месту расположения и их размеру. Причины возникновения:
- газовые пузыри – могут возникнуть из-за попадания в сварочную ванну инородных тел, вольфрамовых частиц от неплавящегося электрода, влаги, чешуйчатости ржавчины, шлаковых включений и окислов;
- недостаточная защита расплавленной ванны (обмазка выделяет немного шлака, тонкий флюсовый слой флюса сдувает защитное газовое облако);
- нарушение технологического процесса (неправильно выставлен сварочный ток, нарушение температурного режима при предварительном прогревании заготовок, некачественная подготовка электродов).
При нарушении технологии сварки шлак остается в порах. При недостаточном экранировании инертным газом происходит попадание вольфрама в ванну. Плохая зачистка свариваемых кромок является причиной появления оксидных пленок.
Непровар – такой вид дефекта сварных швов чаще всего характерен для новичков из-за недостаточного заполнения стыка между заготовками, неравномерности толщины диффузного слоя. Преимущественно возникает при многослойной проварке глубоких кромок в тех случаях, когда не выполняется удаление окалины и промежуточная проковка.
Есть и ряд других возможных причин:
- некачественная подготовка кромочных поверхностей перед сваркой;
- установка заготовок с маленьким зазором;
- повышенный режим скорости при сваривании приводит к тому, что наплавка не успевает заполнить пустоты;
- удержание электрода под неправильным углом, поэтому расплав формируется не над стыком, а рядом с ним;
- рабочий ток установлен неправильно (для процесса расплавления электрода недостаточно ампеража).
Пережоги, которые также называют перегревами, появляются при несоблюдении технологии сварки: при завышенном токе и низкой скорости. Такие режимы приводят к нарушению структурной решетки: в соединении происходит формирование слишком крупного зерна, что приводит к хрупкости металла по причине критического уровня ударной вязкости. Такой дефект нельзя устранить при помощи термообработки, оказывающей влияние на микроструктуру, в таких случаях требуется глубокая зачистка, а после этого заделка области пережога.
Сквозной вид дефектов сварных швов.
Просветы обнаруживаются при визуальном осмотре или методом проверки изделия на герметичность. Основной причиной появления дефектов сквозного характера являются прожоги. Чаще всего происходят при обработке деталей с тонкими стенками, электродом насквозь прожигается металл рядом с наплавленным швом. Причина кроется в нарушении технологического процесса:
- между свариваемыми заготовками устанавливается завышенный зазор;
- сварка проводится на повышенном токе;
- перемещение электрода производится на низкой скорости;
- прерывается подача защитного газа.
При появлении сквозного отверстия отсутствует формирование ванны расплава – расплавленный металл протекает сквозь него.
Методы выявления дефектов сварных швов
На этапе предварительного контроля основного и сварочных материалов определяют соответствие сертификатных данных заводов-поставщиков тем требованиям, которые должны предъявляться к материалам согласно их назначению для выполнения ответственных сварных конструкций и узлов. Перед сборкой и сваркой деталей их габаритные размеры и формы проверяют на соответствие чертежам, а также контролируют качество подготовки кромочных свариваемых поверхностей.
При изготовлении конструкций с повышенными требованиями на прочность и качество соединения производят сваривание контрольных образцов. Вырезанные из них пробные экземпляры отправляются на механические испытания, которые не только дадут оценку качества материалов (как основного, так и сварочных), но и покажут уровень квалификации сварщика, допущенного к работе с данной конструкцией.
Текущий контроль предусматривает проверку исправности работы сварочного оборудования и точности установки сварщиками требуемых режимов сварки. Для обнаружения внешних дефектов сварных швов производят визуальный осмотр и замеры геометрических параметров. Все обнаруженные погрешности устраняются непосредственно при изготовлении изделия.
В зависимости от уровня ответственности и назначения конструкции все готовые сварные изделия должны пройти следующие этапы приемочного контроля:
- визуальный осмотр для обнаружения наружных дефектов сварных швов;
- замер геометрических параметров соединений;
- магнитный контроль;
- испытания на плотность;
- просвечивание гамма- или рентгеновским излучением, ультразвуковое воздействие с целью выявления внутренних дефектов.
Испытание на плотность должны проходить такие изделия, как резервуары для хранения жидкостей, трубопроводы и емкости, эксплуатируемые при повышенном давлении, методом наполнения воздухом или жидкостью с использованием керосина или других определителей утечек.
Существуют следующие способы обнаружения дефектов сварных швов:
- Визуальный осмотр. Используется увеличительный прибор, благодаря чему можно увидеть довольно маленькие изъяны точечной сварки.
- Дефектоскопия. Является методом диагностики качества сварного соединения, в основе которого лежит способность специальных реагентов изменять свой цвет при взаимодействии с материалом повышенной текучести, например, с керосином.
- Магнитный способ обнаружения дефектов сварных швов. Основан на определении искажений магнитных волн.
- Метод УЗК. Проверка соединений при помощи ультразвука проводится на специальных ультразвуковых дефектоскопах, измеряющих уровень отражения звуковых колебаний.
- Радиационный метод. В основе такого способа заложено просвечивание сварного шва при помощи рентгеновского излучения с последующим получением фотоснимка, который полностью описывает все дефекты проблемного соединения.
Методика ультразвукового контроля и цветная дефектоскопия являются самыми эффективными способами обнаружения дефектов сварных швов, но их применяемость в бытовых условиях практически невозможна.
Оценка критичности дефектов шва
Кроме информации о видах дефектов сварных швов и причинах их появления, следует знать о том, какое они оказывают влияние на всю конструкцию при дальнейшей ее эксплуатации. Наибольшая часть всей классификации изъянов состоит из сведений, отражающих уровень их критичности. Это слово подразумевает, насколько безопасна эксплуатация конструкции с таким видом дефекта, допускается ли предварительное исправление изъяна или пускать в эксплуатацию категорически нельзя.
Многое будет зависеть от тех условий, в которых планируется использование конструкции. К примеру, один и тот же вид дефекта не окажет существенного влияния на все изделие при его эксплуатации в помещении, но приведет к серьезному разрушению при применении на улице, где неблагоприятное воздействие будут оказывать погодные условия. По этой причине ответ на вопрос о том, можно ли допускать подрезы на сварных соединениях, будет не совсем корректным. Следует всегда учитывать место и условия эксплуатации конструкции с таким дефектом сварного шва.
По степени важности все виды дефектов сварных швов подразделяются на:
- малозначительные;
- значительные;
- критические.
Такое разделение в данном случае будет влиять на определение метода контроля. Для выявления дефектов, попадающих в категорию малозначительных, использовать дорогостоящее оборудование экономически нецелесообразно. А материальные затраты на обнаружение критических окупятся довольно быстро. Большое значение имеет и уровень квалификации контролера. Недавно начавшим работать в этой сфере целесообразно доверять выявление только малозначительных изъянов.
Рекомендуем статьи
Дефекты сварных швов скажутся на работоспособности всей конструкции. По этой причине, рассматривая вопрос о важности сварного соединения, необходимо учитывать все факторы, которые связаны с допустимостью его применения. Следует принять во внимание функциональность изделия, условия его эксплуатации, физические характеристики материалов и общие напряжения всей конструкции. Основные виды дефектов сварных швов, относящиеся к допустимым, следует измерить, чтобы правильно выбрать оборудование и установить соответствующие режимы.
Устранение дефектов сварных швов
Выбор метода устранения дефектов сварных швов производится с учетом характера выявленного повреждения:
- любые дефекты, включающие в себя посторонние примеси, устраняются методом вырезки и заваривания;
- для устранения сварочных деформаций применяют термический или термомеханический способы;
- наплывы необходимо срезать аккуратно, обязательно проверив при этом срез на отсутствие непроваров;
- глубина вырезки свищей и кратеров производится до основного металла, после этого их надо заново переварить;
- непровары следует удалять методом повторного сваривания, предварительно их вырезав;
- исправление трещин производится следующими действиями: сначала их необходимо полностью рассверлить, затем вырубить шов проблемного участка, после этого зачистить поверхности и заварить их повторно, соблюдая технологию сварки и действующие технические требования;
- подрезы устраняются с помощью наплавки тонкого слоя вдоль линии дефекта;
- при исправлении прожогов стык тщательно зачищают, затем обваривают.
Если при обследовании обнаруживаются технологические дефекты сварных швов труб, то их устранение производится в строгом в соответствии с нормативными требованиями с помощью одного из следующих способов:
- полного удаления шва и выполнения нового;
- выреза участка трубы с дефектом;
- механического с завариванием зоны выборки;
- механическим воздействием без последующей заварки.
Во время проверки на герметичность и прочность газораспределительных сетей допускается устранять дефекты сварных швов газопроводов только с помощью дуговой сварки, а не газовой.
Итак, любые дефекты сварочных швов могут возникнуть только при несоблюдении технологического процесса сварки, отражаются на прочности сварного соединения и общей функциональности металлоконструкции. Именно поэтому уважающий себя мастер должен знать обо всех основных изъянах такого рода и причинах их появления ‒ порах, наплывах, прогарах и т. п. Обладая такими знаниями, мастер сможет максимально эффективно определить способ их устранения при использовании аргона, электрической дуги, лазера, точечной сварки и т. п.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Читайте также: