Валовое содержание металлов в почве
Аннотация научной статьи по экологическим биотехнологиям, автор научной работы — Русанов Александр Михайлович, Прихожай Николай Иванович, Тесля Анастасия Валерьевна, Турлибекова Дамеля Мухамбетгалиевна
Данная работа посвящена исследованию проблемы загрязнения почв различными формами тяжелых металлов в условиях их урбанизации на примере города Орска. При этом в зонах иссле= дованных санитарно=защитных территорий города зафиксировано превышение ПДК некоторых тяжелых металлов . Отмечено, что никель оказывается основным загрязняющим элементом в зоне влияния деятельности Южно=Уральского никелевого комбината. Одновременно, при оцен= ке исследованных территорий с точки зрения существующего риска для здоровья населения, полученные данные о химическом составе изученных почв позволяют отнести их к категории с допустимым уровнем загрязнения.
Похожие темы научных работ по экологическим биотехнологиям , автор научной работы — Русанов Александр Михайлович, Прихожай Николай Иванович, Тесля Анастасия Валерьевна, Турлибекова Дамеля Мухамбетгалиевна
Бонитировка почв сельскохозяйственных земель с учетом загрязнения тяжелыми металлами (на примере Волгоградской области)
Содержание тяжёлых металлов в плодах Rosa majalis Herrm. , произрастающего в парковых зонах города Оренбурга
Текст научной работы на тему «Содержание валовых и подвижных форм тяжелых металлов в почвах г. Орска»
УДК. 631.45: 631.42
Русанов А.М., Тесля А.В., Прихожай Н.И., Турлибекова Д.М.
СОДЕРЖАНИЕ ВАЛОВЫХ И ПОДВИЖНЫХ ФОРМ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПОЧВАХ г. ОРСКА
Данная работа посвящена исследованию проблемы загрязнения почв различными формами тяжелых металлов в условиях их урбанизации на примере города Орска. При этом в зонах исследованных санитарно-защитных территорий города зафиксировано превышение ПДК некоторых тяжелых металлов. Отмечено, что никель оказывается основным загрязняющим элементом в зоне влияния деятельности Южно-Уральского никелевого комбината. Одновременно, при оценке исследованных территорий с точки зрения существующего риска для здоровья населения, полученные данные о химическом составе изученных почв позволяют отнести их к категории с допустимым уровнем загрязнения.
Ключевые слова: почва, урбанизированные почвы, токсичность, тяжелые металлы.
Урбанизированные территории представляют особый тип экологических систем, природные компоненты которых, подвергаясь многообразным и интенсивным антропогенным нагрузкам, испытывают существенные и часто необратимые изменения. Город, во многом утративший экологическую устойчивость и способность к самовосстановлению своих компонентов, сравним с живым организмом с ослабленной иммунной системой. Городские почвы, несмотря на коренную перестройку своих важнейших свойств, по мнению ряда ведущих исследователей, признаются базовой составляющей урбогеосистемы, осуществляющей ряд важнейших экологических и хозяйственных функций и определяющей, в значительной степени, условия жизни человека в городской среде [1, 2].
Орский промышленный узел является одним из крупнейших индустриальных центров Южного Урала, в пределах которого, на сравнительно небольшой площади, сконцентрировано большое количество экологически опасных объектов широкого спектра отраслей: черная и цветная металлургия, нефтепереработка и нефтехимия, машиностроение. Под воздействием такой мощной техногенной нагрузки почвы приобретают новый комплекс свойств и режимов, от которых зависит их способность к эффективному выполнению разнообразных экологических функций в условиях городской экосистемы [1].
Одним из наиболее характерных и экологически значимых процессов антропогенного преобразования почв городских территорий является изменение их микроэлементного состава, в частности загрязнение их тяжелыми металлами
(ТМ). Повышенное содержание ТМ в городских почвах - естественный результат комплексного воздействия разнообразных техногенных факторов. Поступающие в почву ТМ оказывают отрицательное воздействие на многие внутрипочвен-ные биохимические процессы, а также способны передаваться по геохимическим и пищевым цепям в сопредельные среды (воздух, поверхностные и подземные воды, растения) и в силу этого представлять опасность для здоровья человека. В настоящее время для широкого круга ТМ, помимо прямого токсического воздействия на живые организмы, установлены отдаленные последствия, выраженные в виде канцерогенного, мутагенного, тератогенного и других эффектов.
Проблема оценки степени загрязнения почв (в том числе и городских) ТМ, несмотря на большое внимание к ее изучению и огромный объем накопленного теоретического, методического и фактологического материала, остается одной из самых сложных и пока еще далека от решения. Об этом свидетельствует, в частности, множество методических подходов и экологических нормативов, официально утвержденных различными ведомствами, и отдельных авторских разработок, которые применяются в нашей стране и за рубежом при изучении загрязнения почв ТМ [3 - 9].
Целью работы являлось изучение динамики содержания валовых и подвижных форм ТМ в почвах города Орска и оценка уровня их загрязнения.
Объекты и методы исследования
Объектом исследования послужила территория жилой застройки в зоне влияния промышленных предприятий. Все участки иссле-
дования находились в пределах санитарно-защитной зоны.
На территории жилой застройки в зоне влияния промышленных предприятий г. Орс-ка для исследования почвы на соли тяжелых металлов было заложено 2 реперных участка:
а) Реперный участок №1 заложен на территории санитарно-защитной зоны (СЗЗ) комбината «Южуралникель» (пр. Никельщиков, 5а).
б) Реперный участок №2 - на территории СЗС ОАО «Орскнефтеоргсинтез» (ул. Гончарова, 1).
Исследования содержания подвижных и валовых форм тяжелых металлов проводились в 2008 и 2009 годах.
Образцы отобраны с учетом требований ГОСТа 17.4.3.01-83 «Охрана природы. Почвы. Общие требования к отбору проб». Анализировались образцы, отбобранные с глубины 0-10 и 30-40 см. Лабораторные исследования проведены на подвижные формы тяжелых металлов и микроэлементов атомно-абсорбционным методом (8 показателей). Кроме того, проводилась оценка уровня химического загрязнения почв (по МУ 2.1.7.730-99 «Гигиеническая оценка качества почвы населенных мест» утвержденным Главным государственным санитарным врачом РФ 7 февраля 1999 г.) как индикатора неблагоприятного воздействия на здоровье населения по показателям, разработанным при сопряженных геохимических и геогигиенических исследованиях окружающей среды городов с действующими источниками загрязнения. Таким показателем является суммарный показатель загрязнения (2с).
Определение содержания ТМ проводилось по методу Крупского и Александровой в модификации ЦИНАО ГОСТ Р 50683-94, а также по ГОСТ 26483-85, ГОСТ Р 50685-94, ГОСТ Р 50684-94, ГОСТ Р 50686-94.
Общую загрязненность почвы характеризует валовое содержание тяжелых металлов, а доступность элементов для растений определяется их подвижными формами. Загрязнение подвижными формами ТМ является наиболее опасным явлением, так как именно в такой форме они могут ассимилироваться растениями и поступать в пищевые цепи.
Результаты исследования почвы двух реперных участков представлены на рисунках 1 и 2.
В связи с тем, что значения ПДК в мг/кг для разных элементов представлены в широком диапазоне, принято условное обозначение в виде единиц ПДК, которое показывает, во сколько раз содержание того или иного элемента превышает допустимую концентрацию. Значения выше 1 указывают на превышение ПДК, все что ниже, т. е. не превышает ПДК - находится в пределах нормы.
В почвах реперного участка №1 (санитарно-защитная зона комбината «Южуралникель») в 2008 г. превышение ПДК отмечено по цинку в слое 0-10 см, в слоях 0-10 и 30-40 см по меди и никелю, причем их содержание вниз по профилю снижается. Отмечено превышение фона по кадмию. В 2009 г. отмечено снижение содержания кадмия и цинка до нормы. А превышение отмечено по свинцу, меди и никелю, но в сравнении с 2008 г. количество этих элементов заметно снижается. По остальным исследуемым элементам превышений допустимых концентраций и фона не обнаружено. На данном реперном участке основным загрязняющим компонентом является никель, который в 26,88 раз превысил норму (2008 г.). Именно деятельность ЮжноУральского никелевого комбината обуславливает повышенные концентрации этого элемента.
На втором реперном участке (территория санитарно-защитной зоны ОАО «Орскнефтеоргсинтез») отмечено загрязнение почв медью, никелем, свинцом и цинком. Максимальное за период наблюдений превышение в почвах ТМ (в 4,16 раза выше ПДК) было зафиксировано по свинцу в 2008 г. в слое 30-40 см; в 2009 году оно снизилось до 2,66 ПДК. За тот же период времени отмечено снижение количества свинца в слое 0-10 см от 3,26 ПДК (2008г.) до нормы в следующем году. В 2009 г. содержание никеля в слое 30-40 см составило 2,89 ПДК, а в слое 0-10 см оно не превысило предельного уровня. Выявлены небольшие превышения нормы по меди и цинку. По остальным определяемым элементам загрязнения превышений ПДК не выявлено.
Следует особо отметить, что на аккумуляцию ТМ в почвах влияют свойства самих почв. Сравнивая динамику показателей содержания ТМ в почвах двух участков нетрудно отметить, что на первом участке колебания показателей признака имеют значительную амплитуду в сравнении с динамикой содержания ТМ в почвах второго объекта работ. Анализ свойств
почв этих площадок показал, что в пределах санитарно-защитная зона комбината «Южуралникель» они характеризуются легким механическим составом и незначительным содержанием почвенной органики - гумуса (2,1%), тогда как территория санитарно-защитной зоны ОАО «Орскнефтеоргсинтез» представлена городскими почвами (урбаноземами) тяжелосуглинистого гранулометрического состава с относительно высоким содержанием гумуса (4,0%). Вероятно, что в связи с повышенной гу-мусированностью верхнего слоя почв второго участка наблюдения, значительная часть поступающих в их верхние горизонты ТМ образует с почвенной органикой малоподвижные метал-лорганические соединения, которые, при нисходящем токе дождевых и талых вод, не мигрируют вниз по почвенному профилю, тогда как невысокое содержание гумуса в почвах первого участка работ позволяет полагать, что основная доля поступивших в верхние горизонты ТМ
продолжают пребывать в свободном состоянии и под влиянием тока почвенной влаги перемещаются в нижележащие горизонты вплоть до генетического горизонта С и почвообразующих пород, чему дополнительно способствует легкий механический состав почв, обеспечивая высокую скорость фильтрации почвенной влаги.
Валовые формы ТМ представляются как потенциальный резерв подвижных элементов, которые активно участвуют в биологическом круговороте. Оно характеризует общую загрязненность почвы, но не отражает степени доступности элементов для растений. Результаты анализов на валовое (кислоторастворимое) содержание ТМ показали, что почвы первого реперного участка загрязнены хромом, свинцом, марганцем, кобальтом, никелем, медью и кадмием, причем содержание первых четырех в 2009 г уменьшается, а содержание никеля (максимальное превышение нормы в 13,2 раз) и кадмия в слое 0 - 10 см возрастает.
Валовое содержание металлов в почве
в почве и растениях является чрезвычайно сложным из-за невозможности полного учета всех факторов природной среды. Так, изменение только агрохимических свойств почвы (реакции среды, содержания гумуса, степени насыщенности основаниями, гранулометрического состава) может в несколько раз уменьшить или увеличить содержание тяжелых металлов в растениях. Имеются противоречивые данные даже о фоновом содержании некоторых металлов. Приводимые исследователями результаты различаются иногда в 5-10 раз.
экологического нормирования тяжелых металлов. В некоторых случаях за предельно допустимую концентрацию принято самое высокое содержание металлов, наблюдаемое в обычных антропогенных почвах, в других- содержание, являющееся предельным по фитотоксичности. В большинстве случаев для тяжелых металлов предложены ПДК, превосходящие верхнюю норму в несколько раз.
тяжелыми металлами используется коэффициент концентрации, равный отношению концентрации элемента в загрязненной почве к его фоновой концентрации. При загрязнении несколькими тяжелыми металлами степень загрязнения оценивается по величине суммарного показателя концентрации (Zc). Предложенная ИМГРЭ шкала загрязнения почвы тяжелыми металлами преведена в таблице 1.
Таблица 1. Схема оценки почв сельскохозяйственного использования по степени загрязнения химическими веществами (Госкомгидромет СССР, № 02-10 51-233 от 10.12.90)
В таблице 2 приведены официально утвержденные ПДК и допустимые уровни их содержания по показателям вредности. В соответствие с принятой медиками-гигиенистами схеме нормирование тяжелых металлов в почвах подразделяется на транслокационное (переход элемента в растения), миграционное водное (переход в воду), и общесанитарное (влияние на самоочищающую способность почв и почвенный микробиоценоз).
Таблица 2. Предельно-допустимые концентрации (ПДК) химических веществ в почвах и допустимые уровни их содержания по показателям вредности (по состоянию на 01.01.1991. Госкомприрода СССР, № 02-2333 от 10.12.90).
*- валовое содержание- ориентировочное.
**- противоречие; для мышьяка среднее фоновое содержание 6 мг/кг, фоновое содержание свинца обычно тоже превышает нормы ПДК.
Разработанные в 1995 г. ОДК для валового содержания 6 тяжелых металлов и мышьяка позволяют получить более полную характеристику о загрязнении почвы тяжелыми металлами, так как учитывают уровень реакции среды и гранулометрический состав почвы.
Таблица 3. Ориентировочно допустимые концентрации (ОДК) тяжелых металлов и мышьяка в почвах с различными физико-химическими свойствами (валовое содержание, мг/кг) (дополнение №1 к перечню ПДК и ОДК №6229-91).
Из материалов следует, что в основном предьявлены требования к валовым формам тяжелых металлов. Среди подвижных только медь, никель, цинк, хром и кобальт. Поэтому в настоящее время разработанные нормативы уже не удовлетворяют всем требованиям.
является фактором емкости, отражающим в первую очередь потенциальную опасность загрязнения растительной продукции, инфильтрационных и поверхностных вод. Характеризует общую загрязненность почвы, но не отражает степени доступности элементов для растения. Для характеристики состояния почвенного питания растений используются только их подвижные формы.
Их определяют используя различные экстрагенты. Общее количество подвижной формы металла- применяя кислотную вытяжку (например 1н HCL). В ацетатно-аммонийный буфер переходит наиболее мобильная часть подвижных запасов тяжелых металлов в почве. Концентрация металлов в водной вытяжке показывает степень подвижности элементов в почве, являясь самой опасной и "агрессивной" фракцией.
Предложено несколько ориентировочных нормативных шкал. Ниже находится пример одной из шкал предельно допустимых подвижных форм тяжелых металлов.
Таблица 4. Предельно допустимое содержание подвижной формы тяжелых металлов в почве, мг/кг экстрагент 1н. HCl (Х. Чулджиян и др., 1988).
Общую загрязненность почвы характеризует валовое количество тяжелого металла. Доступность же элементов для растений определяется их подвижными формами. Поэтому содержание в почве подвижных форм тяжелых металлов - важнейший показатель, характеризующий санитарно-гигиеническую обстановку и определяющий необходимость проведения мелиоративных детоксикационных мероприятий.
В зависимости от применяемого экстрагента извлекается различное количество подвижной формы тяжелого металла, которое с определенной условностью можно считать доступным для растений. Для экстракции подвижных форм тяжелых металлов используются различные химические соединения, обладающие неодинаковой экстрагирующей силой: кислоты, соли, буферные растворы и вода. Наиболее распространенными экстрагентами являются 1н HCl и ацетатно-аммонийный буфер с pH 4.8. В настоящее время еще накоплено недостаточно экспериментального материала, характеризующего зависимость содержания в растениях тяжелых металлов, экстрагируемых различными химическими растворами, от их концентрации в почве. Сложность этого положения обусловливается еще и тем, что доступность для растений подвижной формы тяжелого металла зависит во многом от свойств почвы и специфических особенностей растений. При этом поведение в почве каждого элемента имеет свои конкретные, присущие ему закономерности.
Для изучения влияния свойств почв на трансформацию соединений тяжелых металлов провели модельные опыты с резко различающимися по свойствам почвами (табл. 8). В качестве экстрагентов использовали сильную кислоту - 1н HNO3, нейтральную соль Ca(NO3)2, ацетатно-аммонийный буферный раствор и воду.
Решающую роль в распределении тяжелых металлов в системе почва-раствор играют процессы сорбции-десорбции на твердой фазе почвы, определяемые свойствами почвы и не зависящие от формы внесенного соединения. Образующиеся соединения тяжелых металлов с твердой фазой почвы термодинамически более устойчивы, чем внесенные соединения, и они определяют концентрацию элементов в почвенном растворе (Р.И. Первунина. 1983).
Почва мощный и активный поглотитель тяжелых металлов, она способна прочно связывать и тем самым снижать поступление токсикантов в растения. Активно инактивируют соединения металлов минеральные и органические компоненты почвы, но количественные выражения их действия зависят от типа почв (B A. Большаков и др., 1978, В.Б. Ильин, 1987).
Накопленный экспериментальный материал свидетельствует о том. что наибольшее количество тяжелых металлов из почвы извлекается 1 н кислотной вытяжкой. При этом данные близки к валовому содержанию элементов в почве. Эту форму элементов можно считать общим запасным количеством, способным переходить в мобильную подвижную форму. Содержание тяжелого металла при извлечении из почвы ацетатно-аммонийным буфером характеризует уже более мобильную подвижную часть. Еще более мобильной является обменная форма тяжелого металла. экстрагируемая нейтральным солевым раствором. В.С. Горбатов и Н.Г. Зырин (1987) считают, что наиболее доступной для растений является обменная форма тяжелых металлов, селективно извлекаемая растворами солей, анион которых не образует комплексов с тяжелыми металлами, а катион обладает высокой вытесняющей силой. Именно такими свойствами обладает Ca(NO3)2, используемый в нашем эксперименте. Наиболее же агрессивные растворители - кислоты, чаще всего используемые 1н HCl и 1н HNO3, извлекают из почвы не только усвояемые растениями формы, но и часть валового элемента, которые являются ближайшим резервом, для перехода в подвижные соединения.
Концентрация в почвенном растворе тяжелых металлов, извлекаемых водной вытяжкой, характеризует наиболее активную часть их соединений. Это самая агрессивная и динамичная фракция тяжелых металлов, характеризующая степень подвижности элементов в почве. Высокое содержание воднорастворимых форм TM может приводить не только к загрязнению растительной продукции, но и к резкому снижению урожая вплоть до его гибели. При очень высоком содержании в почве водно-растворимой формы тяжелого металла, она становиться самостоятельным фактором, определяющим величину урожая и степень его загрязненности.
В нашей стране накоплена информация о содержании в незагрязненных почвах подвижной формы TM, главным образом тех из них, которые известны как микроэлементы - Mn, Zn, Cu, Mo. Co (табл. 14). Для определения подвижной формы чаще всего использовались индивидуальные экстрагенты (по Пейве Я.В. и Ринькису Г.Я.). Как видно из таблицы 14, почвы отдельных регионов значительно различались по количеству подвижной формы одного и того же металла.
Причиной могли быть, как считает В.Б. Ильин (1991 г.), генетические особенности почв, прежде всего специфика гранулометрического и минералогического составов, уровень гумусированности, реакция среды. По этой причине могут сильно различаться почвы одного природного региона и более того, даже одного генетического типа в пределах этого региона.
Различие между встреченным минимальным и максимальным количеством подвижной формы может находиться в пределах математического порядка. Совершенно недостаточно сведений о содержании в почвах подвижной формы Pb, Cd, Cr, Hg и других наиболее токсичных элементов. Правильно оценить подвижность TM в почвах затрудняет использование в качестве экстрагента химических веществ, сильно различающихся по своей растворяющей способности. Так, например, 1 н HCl извлекала из пахотного горизонта подвижных форм в мг/кг: Mn - 414, Zn - 7,8 Ni - 8,3, Cu - 3,5, Pb - 6,8, Co - 5,3 (почвы Западной Сибири), тогда как 2,5% CH3COOH извлекала соответственно 76; 0,8; 1,2; 1,3; 0,3; 0,7 (почвы Томского Приобья, данные Ильина. 1991). Эти материалы свидетельствуют о том, что 1 н HCl извлекала из почвы за исключением цинка около 30% металлов от валового количества, а 2,5% CH3COOH - менее 10%. Поэтому экстрагент 1н HCl, широко используемый в агрохимических исследованиях и при характеристике почв, обладает высокой мобилизующей способностью в отношении запасов тяжелых металлов.
Основная часть подвижных соединений тяжелых металлов приурочена к гумусовому или корнеобитаемому горизонтам почвы, в которых активно происходят биохимические процессы и содержится много органических веществ. Тяжелые металлы. входящие в состав органических комплексов, обладают высокой мобильностью. В.Б. Ильин (1991) указывает на возможность накопления тяжелых металлов в иллювиальном и карбонатном горизонтах, в которые попадают мигрирующие из вышележащего слоя тонкодисперсные частицы, насыщенные тяжелыми металлами, и воднорастворимые формы элементов. В иллювиальном и карбонатном горизонтах металлосодержащие соединения выпадают в осадок. Этому в наибольшей степени способствует резкое повышение pH среды в почве указанных горизонтов, обусловленное наличием карбонатов.
Способность тяжелых металлов накапливаться в нижних горизонтах почв, хорошо иллюстрируют данные по профилям почв Сибири (табл. 15). В гумусовом горизонте отмечается повышенное содержание многих элементов (Sr, Mn, Zn, Ni и др.) независимо от их генезиса. Во многих случаях четко прослеживается увеличение содержания подвижного Sr в карбонатном горизонте. Общее содержание подвижных форм в меньшем количестве характерно для песчаных почв, в значительно большем - для суглинистых. То есть, имеется тесная связь между содержанием подвижных форм элементов и гранулометрическим составом почв. Аналогичная положительная зависимость прослеживается между содержанием подвижных форм тяжелых металлов и содержанием гумуса.
Содержание подвижных форм тяжелых металлов подвержено сильным колебаниям, что связано с изменяющейся биологической активностью почв и влиянием растений. Так, по данным исследований, проведенных В.Б. Ильиным, содержание подвижного молибдена в дерново-подзолистой почве и южном черноземе в течение вегетационного периода изменялось в 5 раз.
В некоторых научно-исследовательских учреждениях в последние годы изучаюсь влияние длительного применения минеральных, органических и известковых удобрений на содержание в почве подвижных форм тяжелых металлов.
На Долгопрудной агрохимической опытной станции (ДАОС, Московская область) проведено изучение накопления в почве тяжелых металлов, токсичных элементов и их подвижности в условиях длительного применения фосфорных удобрений на известкованной дерново-подзолистой тяжелосуглинистой почве (Ю.А. Потатуева и др., 1994 г.). Систематическое применение балластных и концентрированных удобрений в течение 60 лет, разных форм фосфатов в течение 20 лет и фосфоритной муки различных месторождений в течение 8 лет не оказало существенного влияния на валовое содержание в почве тяжелых металлов и токсических элементов (ТЭ), но привело к увеличению подвижности в ней некоторых TM и ТЭ. Содержание подвижных и водорастворимых форм в почве возрастало примерно в 2 раза при систематическом применении всех изученных форм фосфорных удобрений, составляя, однако, только 1/3 ПДК. Количество подвижного стронция возрастало в 4,5 раза в почве, получившей простой суперфосфат. Внесение сырых фосфоритов Кингисепского месторождения привело к увеличению содержания в почве подвижных форм (ААБ pH 4,8): свинца в 2 раза, никеля - на 20% и хрома на 17%, что составило соответственно 1/4 и 1/10 ПДК. Увеличение содержания подвижного хрома на 17% отмечено в почве, получавшей сырые фосфориты Чилисайского месторождения (табл. 16).
Сопоставление экспериментальных данных длительных полевых опытов ДАОС с санитарно-гигиеническими нормативами по содержанию подвижных форм тяжелых металлов в почве, а при их отсутствии с предлагаемыми в литературе рекомендациями, свидетельствует о том, что содержание подвижных форм этих элементов в почве было ниже допустимых уровней. Эти эксперементальные данные свидетельствуют о том, что даже очень длительное - в течение 60 лет применение фосфорных удобрений не привело к превышению уровня ПДК в почве ни в отношении валовых ни по подвижным формам тяжелых металлов. В то же время эти данные свидетельствуют о том, что нормирование тяжелых металлов в почве только по валовым формам недостаточно обосновано и должно быть дополнено содержанием подвижной формы, которая отражает как химические свойства самих металлов, так и свойства почвы, на которой выращиваются растения.
На базе длительного полевого опыта, заложенного под руководством академика Н.С. Авдонина на экспериментальной базе МГУ "Чашниково", проведено исследование влияния длительного в течение 41 года применения минеральных, органических, известковых удобрений и их сочетания на содержание подвижных форм тяжелых металлов в почве (В.Г. Минеев и др., 1994). Результаты исследований, проведенные в таблице 17, показали, что создание оптимальных условий для роста и развития растений существенно снижало содержание подвижных форм свинца и кадмия в почве. Систематическое же внесение азотно-калийных удобрений, подкисляя почвенный раствор и снижая содержание подвижного фосфора, удваивало коцентрацию подвижных соединений свинца и никеля и в 1,5 раза увеличивало содержание кадмия в почве.
Содержание валовых и подвижных форм TM в дерново-подзолистой легкосуглинистой почве Беларуси, изучалось при длительном применении осадков городских сточных вод: термофильно-сброженных с иловых полей (ТИП) и термофильно-сброженных с последующим механическим обезвоживанием (ТМО).
За 8 лет исследований насыщенность севооборота OCB составило 6,25 т/га (одинарная доза) и 12,5 т/га (двойная доза), что приблизительно в 2-3 раза выше рекомендуемых доз.
Как видно из таблицы 18, четко прослеживается закономерность повышения содержания валовых и подвижных форм TM в результате трехразового внесения ОСВ. Причем наибольшей подвижностью отличается цинк, количество которого в подвижной форме возросло в 3-4 раза по сравнению с контрольной почвой (Н.П. Решецкий, 1994 г.). При этом содержание подвижных соединений кадмия, меди, свинца и хрома изменялось не существенно.
Исследования ученых Белорусской с.-х. академии показали, что при внесении осадков сточных вод (СИП-осадок сырой с иловых полей, ТИП, ТМО) происходило заметное повышение содержания в почве подвижных форм элементов, но наиболее сильно кадмия, цинка, меди (табл. 19). Известкование практически не повлияло на подвижность металлов. По мнению авторов. использование вытяжки в 1 н HNO3 для характеристики степени подвижности металлов не является удачным, так как в нее переходит свыше 80%, от общего содержания элемента (А.И. Горбылева и др., 1994).
Следовательно, для снижения содержания в почве подвижных форм свинца и меди необходимо проводить повторное известкование почв.
Изучение подвижности тяжелых металлов в черноземах Ростовской области показало, что в метровом слое обыкновенных черноземов количество цинка, извлекаемого ацетатноаммонийной буферной вытяжкой с pH 4,8, колебалось в пределах 0.26-0,54 мг/кг. марганца 23,1-35,7 мг/кг, меди 0,24-0,42 (Г.В Агафонов, 1994), Сопоставление этих цифр с валовыми запасами микроэлементов в почве тех же участков показало, что подвижность различных элементов существенно различается. Цинк на карбонатном черноземе в 2,5-4,0 раза менее доступен растениям, чем медь и в 5-8 раз, чем марганец (табл. 21).
Таким образом, результаты проведенных исследований показывают. что проблема подвижности тяжелых металлов в почве является сложной и многофакторной. Содержание подвижных форм тяжелых металлов в почве зависит от многих условий. Главный прием, приводящий к уменьшению содержания этой формы тяжелых металлов - это повышение плодородия почв (известкование, увеличение содержания гумуса и фосфора и др.). В то же время общепринятой формулировки по подвижным металлам пока нет. Мы в этом разделе предложили наше представление о различных фракциях подвижных металлов в почве:
1) общий запас подвижных форм (извлекаемые кислотами);
2) мобильная подвижная форма (извлекаемая буферными растворами):
3) обменная (извлекаемая нейтральными солями);
4) воднорасторимая.
Исследование содержания тяжелых металлов в почвенном покрове и растительности рекультивированных территорий Текст научной статьи по специальности «Экологические биотехнологии»
Аннотация научной статьи по экологическим биотехнологиям, автор научной работы — Яковченко М. А., Константинова О. Б., Косолапова А. А., Рогова Л. В., Аланкина Д. Н.
Исследовано содержание тяжелых металлов в почвенном и растительном покрове рекультивированных территорий угольного разреза «Участок «Коксовый»
Похожие темы научных работ по экологическим биотехнологиям , автор научной работы — Яковченко М. А., Константинова О. Б., Косолапова А. А., Рогова Л. В., Аланкина Д. Н.
Приоритетные элементы-загрязнители (Zn, Pb, Cd, Al) в огородных почвах и овощах приусадебных участков городов Барнаула, Бийска, Горняка
Агроэкологические условия возделывания картофеля, овощей и зерновых культур в лесостепи Кузнецкой котловины
Природно климатические ресурсы Кузбасса для здоровья кузбассовцев один из факторов социально экономического развития региона
Study of the content of heavy metals in soil and vegetation cover of reclaimed territories
The content of heavy metals in soil and vegetation areas of reclaimed “Section Koksoviy" coal opencast
Текст научной работы на тему «Исследование содержания тяжелых металлов в почвенном покрове и растительности рекультивированных территорий»
ЭКОЛОГИЯ И ОХРАНА ТРУДА
М.А. Яковченко, О.Б. Константинова, А.А. Косолапова,
Л.В. Рогова, Д.Н. Аланкина
ИССЛЕДОВАНИЕ СОДЕРЖАНИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПОЧВЕННОМ ПОКРОВЕ И РАСТИТЕЛЬНОСТИ РЕКУЛЬТИВИРОВАННЫХ ТЕРРИТОРИЙ
Тяжёлые металлы представляют собой большую группу химических элементов с атомной массой более 50 у.е. В почву они попадают различными путями: в составе газопылевых выбросов, атмосферных осадков, поливных вод, загрязнённых промышленными стоками и т.д. Человек может получить "свою долю" тяжёлых металлов не только напрямую с вдыхаемым воздухом и почвенной пылью, но и через продукты питания, производимые на загрязнённых сельскохозяйственных угодьях. Пагубное влияние тяжёлых металлов на человека состоит в том, что ряд их соединений характеризуется высокой токсичностью и канцерогенностью.
Проблема влияния открытых угольных разработок на экологическое состояние прилегающих территорий изучается порядка 50-ти лет. Известно, например, что территории, находящиеся в непосредственной близости к карьерам, со временем становятся непригодны для жизни. Отчуждение земель происходит из-за масштабного неблагоприятного влияния токсикантов, содержащихся в угле, угольной пыли. Наиболее опасную для окружающей среды группу токсикантов составляют тяжелые металлы (ТМ), которые накапливаются в почве и, конечно же, усваиваются растениями, произрастающими на них.
В этой связи проблема очистки почв от тяжёлых металлов становится актуальной для территорий так называемых экологически неблагополучных регионов, к числу которых можно отнести Кемеровскую область.
Цель: Исследование почв, прилежащих к породным отвалам угольных разрезов на предмет содержания подвижных форм тяжелых металлов (ТМ).
Объект исследования: почвы территорий прилегающие к угольному разрезу предприятия ООО «Участок «Коксовый».
Предмет исследования: валовые и подвижные формы тяжелых металлов в почвах.
Задачи настоящего этапа исследования:
1 - отбор образцов грунта в 10-ти стационарных точках вблизи отвала;
2 - отбор образцов грунта в на территории отвала;
3 - исследование образцов грунта на содержание подвижных и валовых форм ТМ;
В ходе проведения научно-исследовательских работ на техногенных ландшафтах планируется разработке комплексной технологии по снижению содержания ТМ в почвенном покрове породных отвалов угледобывающих предприятий Кемеровской области и территорий, прилежащих к ним.
Методика проведения исследования.
Сотрудниками ПНИЛ рекультивации нарушенных земель ФГБОУ ВПО «КемГСХИ» бил проведен отбор почвенных проб для анализа на содержание тяжелых металлов и сопоставление результатов анализа с ПДК, ОДК. Для отбора образцов было выбрано 5 участков на расстоянии 100 м друг от друга. Отбор 10 смешанных проб проведен агрохимическим буром с глубины 0-10 см.
При проведении анализа особое внимание было уделено анализу содержания подвижной формы никеля и свинца в почве, т.е. доступной для растений, путем получения из нее различных вытяжек: водной, вытяжек ацетатно-аммонийным буферным раствором с рН 4.8 или растворами 0.01 М и 1 н. Са(Ш3)2, 1 М КН4Ш3, 1 М СаС12, 0.01 М КМ03, диэтилентриамин-пентауксусной кислоты и т.д.
Определение содержания ТМ проводились на атомно-адсорбционном спектрофотометре (ААС) в лаборатории ФГУ ЦАС «Кемеровский».
Первый этап трансформации тяжелых металлов в почве - взаимодействие их с почвенным раствором и его компонентами.
Оксид цинка - наиболее стабилен и менее растворим по сравнению с оксидами свинца и кадмия. Его растворимость в диапазоне рН 4 - 8 более чем в 100 раз ниже, чем растворимость РЬО, и почти в 10000 раз ниже СdO. В отличие от оксида цинка, оксиды свинца и кадмия неустойчивы в воде и преобразуются в гидроксид и (или) карбонат (гидроксокарбонат) свинца и карбонат кадмия.
Парциальное давление СО2 в почвенном воздухе во много раз превышает таковое в атмосфере и поэтому в почве преобладают более устойчивые гидрокарбонаты и карбонаты цинка и свинца. Следующими реакциями после растворения неустойчивых оксидов являются катионный обмен и специфическая адсорбция.
Ионы тяжелых металлов способны специфически адсорбироваться почвами, с образованием относительно прочных связей координационного типа с некоторыми поверхностными функциональными группами. Специфическая адсорбция более избирательна, чем неспецифическая, и зависит как от свойств сорбирующих ионов, так и от природы поверхностных функциональных групп, поэтому тяжелые металлы энергично адсорбируются почвами из растворов.
Таким образом, тяжелые металлы, поступающие в почву в процессе техногенеза, включает следующие стадии преобразования: оксидов тяжелых металлов в гидроксиды (карбонатов, гидрокарбонатов); растворение гидроксидов (карбонатов, гидрокарбонатов) тяжелых металлов и адсорбция соответствующих катионов тяжелых металлов твёрдыми фазами почвы; образование фосфатов тяжелых металлов и их соединений с органическими веществами почвы.
В качестве характеристики опасности вещества для какого-либо объекта окружающей среды выступает значение его ПДК. Часто оказывается, что концентрация загрязняющих веществ в выбросе ниже ПДК. Однако при оценке последствий загрязнения в данных условиях необходимо учитывать последующие превращения с учетом ПДК промежуточных веществ, так как образующиеся вещества могут обладать более сильными токсичными свойствами, чем первоначальные процессы накопления и выведения веществ, а также синэр-гический эффект при их совместном присутствии.
Тяжёлые металлы, поступающие на поверхность почвы, накапливаются в почвенной толще и медленно удаляются при выщелачивании, потреблении растениями, эрозии и дефляции. Первый период полуудаления (т.е. удаления половины от начальной концентрации) тяжёлых металлов значительно варьирует: 2п - от 70 до 510 лет; Cd - от 13 до 110 лет; Си - от 310 до 1500 лет; РЬ - от 740 до 5900 лет (по Кабата - Пендиас, 1989).
Поглощение тяжёлых металлов почвами существенно зависит от реакции среды (рН). Было обнаружено, что в кислой среде преимущественно сорбируются свинец, цинк, медь; в щелочной -кадмий и кобальт.
Тяжёлые металлы являются протоплазматиче-скими ядами, токсичность которых возрастает по мере увеличения атомной массы. Железо, например, образует хелатоподобные комплексы с обычными метаболитами, нарушая при этом нормальный обмен веществ организма. Такие металлы как кадмий, медь, железо (II) взаимодействуют с кле-
точными мембранами, изменяя их проницаемость и другие свойства. Высокое содержание свинца в почве подавляет рост растений, вызывает хлороз, обусловленный нарушением поступления железа.
Если железо, так же как и алюминий, относится к макроэлементам Земной коры, то такие элементы как медь, цинк, кобальт, марганец, никель, свинец, кадмий, относится к микроэлементам. Среди МЭ можно выделить как типично биогенные (^, Zn, Mn), участвующие в важнейших ферментативных и обменных процессах в живых организмах, так и типичные ксенобиотики Ш).
В зональных почвах содержание тяжелых металлов (микроэлементов и железа), обусловлено, в первую очередь их содержанием в материнской породе и направленностью процессов почвообразования. Кроме того, содержание металлов в почве зависит от количества в ней органического вещества ее гранулометрического состава, реакций почвенного раствора и связано с процессами миграции в почвенном профиле и биологическим круговоротом элементов.
В таблице приведено валовое содержание некоторых металлов в почвах и ориентировочно допустимые концентрации (ОДК), их содержание установленные для суглинистых и глинистых почв (дополнение к перечню ПДК и ОДК №6229-91).
Фоновое содержание меди в почвах Ростовской области составляет 31-38 мг/кг, причем максимальные значения характерны для чернозёмов. Фоновое содержание меди для черноземов Сибири, составляет 14 мг/кг.
Среднее содержание цинка в земной коре составляет 200 мг/кг. В почвах, не загрязненных цинком, он содержится в концентрациях от 10 до 300 мг/кг. Лессовидные суглинки Западной Сибири содержат 71,7 мг/кг цинка. Фоновая концентрация цинка для черноземов Сибири - 45 мг/кг.
Среднее содержание свинца в земной коре составляет 16 мг/кг; почвах - 10 мг/кг. В распределении свинца в ночи имеются значительные различия как по типам почв, так и по региона Фоновые концентрации свинца для черноземов и каштановых почв Ростовской области составляют 21 мг/кг и 27 мг/кг соответственно, для черноземов Сибири - 17 мг/кг.
Среднее содержание кадмия в земной коре составляет 5 МГ/KГ, почвах 0,1-0,3 мг/кг. В почвах содержание кадмия зависит от их типа. В серых лесных почвах содержание кадмия составляет 0,65 мг/кг, в дерново-подзолистых 0,7-2,31 мг/кг, в черноземах - 0,7-1,0 мг/кг. В черноземах Сибири фоновое содержание валового кадмия составляет 0,6 мг/кг.
Никель - довольно широко распространенный элемент в природе. Среднее содержание его в литосфере составляет 80 мг/кг, в почвах - от 10 до 100 мг/кг. Фоновое содержание никеля зависит от механического состава и органического вещества
Валовое содержание металлов в почвах (мг/кг сухой массы)
Металл Среднее содержа- ние Возможный диапазон колебаний ОДК Металл Среднее содержа- ние ОДК Возможный диапазон колебаний
Кадмий 0,06 0,01-0,7 2 Молибден 2,0 - 0,2-5
Кобальт 8,0 1,0-40 - Никель 40 80 10-100
Хром 100 5-3000 - Свинец 10 130 2-200
Медь 20 2-100 132 Цинк 50 220 10-300
Железо 38000 7000-55000 - Стронций 300 - 50-1000
Ртуть 0,03 0,01-0,3 - Барий 500 - 100-300
Марганец 850 100-4000 1500
почв. Валовое содержание никеля в дерновоподзолистых почвах Московской области составляет 20-40 мг/кг. В почвах Краснодарского края среднее содержание никеля составляет 56 мг/кг. Для черноземов Сибири фоновая концентрация никеля составляет 37 мг/кг.
Валовое содержание ТМ в 15-ти стационарных точках верхнего горизонта (0-10 см) почв опытных участков породного отвала ООО «Участок «Коксовый» определялось методом атомноадсорбционной спектрометрии (ААС).
Содержание меди можно оценить как низкое относительно среднего для черноземов Сибири (14 мг/кг). Минимальное содержание меди 5,93 мг/кг, что составляет около 41% от среднего, а максимальное - 13,08 мг/кг (93%). Среднее содержание 8,96 мг/кг, что составляет 64 % от средней для черноземов Сибири. Содержание цинка близко к среднему для лессовидных суглинков Западной Сибири, которое составляет 71,7 мг/кг (Ильин, 1991) и более высокое, чем фоновое содержание для черноземов (45 мг/кг). Минимальное содержание цинка составило 42,12 мг/кг, а максимальное - 69,17 мг/кг, среднее 54,81 мг/кг (при ОДК 220 мг/кг).
Содержание валового свинца меньше среднего для черноземов Сибири (17 мг/кг). Минимальное содержание свинца составило 9,05 мг/кг, максимальное - 15,57 мг/кг, среднее 12,32 мг/кг (при ОДК 130 мг/кг).
Содержание валового кадмия соответствует фоновому содержанию валового кадмия в черноземах Сибири, и в среднем составляет 0,6 мг/кг. Минимальное содержание кадмия составило 0,26 мг/кг, максимальное - 0,93 мг/кг (при ОДК 2 мг/кг).
Содержание валового никеля ниже фоновой концентрации для чернозёмов Сибири (37 мг/кг). Среднее содержание никеля составило 22,84 мг/кг, минимальное - 14,36 мг/кг, максимальное - 29,56 мг/кг (при ОДК 80 мг/кг).
Содержание валового кобальта в почвах согласно табл. 1 может меняться от 1 до 40 мг/кг,
при среднем значении 8 мг/кг. Среднее содержание валового кобальта в почве отвала составило 11,54 мг/кг, минимальное - 8,93 мг/кг, максимальное - 14,79 мг/кг.
Содержание валового марганца в почвах может изменяться от 100 до 4000 мг/кг, при среднем значении 850 мг/кг (таблица 1). Среднее содержание марганца в образцах составило 197,49 мг/кг, минимальное - 141,09 мг/кг, максимальное -265,11 мг/кг (при ОДК 1500 мг/кг), поэтому может быть оценена как очень низкое.
Возможный диапазон колебаний содержания валового железа в почвах от 7000 до 550000 мг/кг, при среднем содержании 38000 мг/кг. Среднее содержание железа в образцах составило 8056,90 мг/кг, минимальное - 4669,17 мг/кг, максимальное
Наличия ТМ в зеленой массе растений не выявлено.
Оценка уровня загрязнения почв тяжелыми металлами связана с доступностью отдельных их форм для растений. Валовое содержание металлов характеризует общее их количество. Для растений наибольшую опасность представляют подвижные формы тяжелых металлов (Тяжелые металлы в системе почва-растение-удобрение, 1997). Вопросы нормирования загрязнения почв, в том числе тяжелыми металлами, не решены в полной мере. В настоящее время действует ГОСТ 17.4.1.02.-83, по которому химические элементы, в том числе тяжелые металлы, по степени токсического действия на почву разделены на три класса опасности. К первому классу опасности относятся мышьяк, кадмий, ртуть, селен, свинец, цинк; ко второму классу - кобальт, никель, медь, хром, молибден, сурьма, бор и к третьему классу - барий, ванадий, вольфрам, марганец, стронций.
Предельно-допустимые концентрации металлов в почвах утверждены для ряда металлов Государственным комитетом санитарно-
эпидемиологического надзора РФ от 19 ноября 1991 г. (Перечень ПДК и ОДК № 6229-91). С 1995 г. введено Дополнение № 1 к перечню ПДК и ОДК
№ 6229-91 «Ориентировочно допустимые концентрации (ОДК) тяжелых металлов и мышьяка в почвах». Концентрации металлов разработаны с учетом механического состава и кислотности почв только для, шести элементов.
Загрязнение почв выше ОДК и ПДК по валовому содержанию свинца, кадмия, цинка и мар-
ганца на обследованной территории не установлено. Основная площадь имеет уровень содержания валовых форм ТМ в почвах - менее 0,5 ПДК.
Исследование содержания ТМ в растительном сырье показало наличие следовых количеств, что является не значительной концентрацией (менее
1. Мотузова, Г.В. Соединения микроэлементов в почвах: системная организация, экологическое значение мониторинг / М.: Эдиториал УРСС, 1999. - 168 с.
2. Просянникова, О.И. Антропогенная трансформация почв Кемеровской области: Монография / Кемерово, 2005. - 300 с.
3. Ильин, В.Б. Тяжелые металлы в системе почва - растение / Новосибирск: Наука, 1991. - 150 с.
4. Методические указания по определению тяжелых металлов в почвах сельхозугодий и продукции растениеводства / Изд. 2-е. Министерство сельского хозяйства РФ. М.: ЦИАНО, 1992. - 61 с.
5. Руководство по санитарно-химическому исследованию почвы (нормат. материал)/ Под ред. Л.Г. Подуновой М.: 1993. - 130с.
6. Черных, Н.А., Экотоксикологические аспекты загрязнения почв тяжелыми металлами / Н.А. Черных, Н. А. Милащенко, В. Ф. Ладонин. // М.: Агропромиздат, 1999. - 176 с.
7. Методические указания по выявлению деградированных и загрязненных земель. М.; 1995. - 50 с.
8. Кабата - Пендиас, А. Микроэлементы в почвах и растениях / А. Кабата - Пендиас, Х. Пендиас.
- М.: Мир, 1989. - 439 с.
9. Тяжелые металлы в системе почва - растение - удобрение/ Под ред. М.М. Овчаренко. - М., 1997.
10. Предельно допустимые концентрации (ПДК) и ориентировочно-допустимые концентрации (ОДК) химических веществ в почве: Гигиенические нормативы. - М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2006. - 15 с.
Константинова Ольга Борисовна, научный сотрудник ПНИЛ рекультивации нарушенных земель (Кемеровский гос..сельскохоз. институт). Тел.
Аланкина Дарья Николаевна, старший лаборант ПНИЛ рекультивации нарушенных земель(Кемеровский гос..сельскохоз. институт). Тел.
Т. В. Г аланина, В. А. Черно, М. И. Баумгартэн
ПРИРОДНО - КЛИМАТИЧЕСКИЕ РЕСУРСЫ КУЗБАССА - ДЛЯ ЗДОРОВЬЯ КУЗБАССОВЦЕВ - ОДИН ИЗ ФАКТОРОВ СОЦИАЛЬНО — ЭКОНОМИЧЕСКОГО РАЗВИТИЯ РЕГИОНА
Кузбасс географически занимает срединное положение между Москвой и Владивостоком в умеренных широтах между 52°08' и 56°54' северной широты, и 84°33' и 89°28' восточной долготы, что соответствует широтам Челябинской, Москов-
ской, Калининградской и Камчатской областей в России; в Западной Европе — это соответствует таким городам и государствам, как Варшава, Берлин, Нижняя Саксония, Дания, Гаага, Уэльс и Ирландия. Важной особенностью географического
Влияние техногенного воздействия на содержание валовых и подвижных форм тяжелых металлов в почвах Текст научной статьи по специальности «Сельское хозяйство, лесное хозяйство, рыбное хозяйство»
Аннотация научной статьи по сельскому хозяйству, лесному хозяйству, рыбному хозяйству, автор научной работы — Соколова О. Я., Стряпков А. В., Антимонов С. В., Соловых С. Ю.
В статье исследуется содержание валовых и подвижных форм в зависимости от степени техногенного воздействия.
Похожие темы научных работ по сельскому хозяйству, лесному хозяйству, рыбному хозяйству , автор научной работы — Соколова О. Я., Стряпков А. В., Антимонов С. В., Соловых С. Ю.
Влияние сточных вод Оренбургского газохимического комплекса на химический состав почвенного покрова зпо
Текст научной работы на тему «Влияние техногенного воздействия на содержание валовых и подвижных форм тяжелых металлов в почвах»
Соколова О.Я., | Стряпков A.B. | , Антимонов C.B., Соловых С.Ю.
Оренбургский государственный университет
ВЛИЯНИЕ ТЕХНОГЕННОГО ВОЗДЕЙСТВИЯ НА СОДЕРЖАНИЕ ВАЛОВЫХ И ПОДВИЖНЫХ ФОРМ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПОЧВАХ
Почва представляет собой верхний слой литосферы, который образуется и развивается в результате совместного воздействия воздуха, воды, климатических факторов и живых организмов. Важнейшим свойством почвы является плодородие, т. е. способность обеспечивать рост и развитие растений. В почве происходят процессы синтеза, биосинтеза и разнообразные химические реакции; она активно участвует в круговороте веществ и превращении энергии в природе, поддерживает газовый состав атмосферы.
Из почвы вместе с урожаем человек изымает определенное количество химических элементов, необходимых для питания растений (азот, фосфор, калий, сера, магний, кальций и др.). Нехватка элементов компенсируется внесением их в почву в виде нитратов аммония, кальция, сульфата аммония, суперфосфатов, калийных удобрений и т. д. Неконтролируемая интенсификация сельского хозяйства не только нарушает круговорот веществ в современных агросистемах, но при повсеместном широком использовании химических удобрений ведет также к необратимому загрязнению культивируемых земель.
Используемые удобрения, как правило, содержат ряд примесей, поэтому вместе с ними в почву попадают тяжелые металлы (ТМ) и их соединения: Л§, Сё, РЬ, N1, Бе, Сг, Со. Все эти формы часто объединяют общим названием -микроэлементы. Аккумулируясь в почве, токсические вещества передаются по пищевым цепям биогеоценоза, оказывая губительное действие на все живое [1].
Перечисленные выше ТМ могут находиться в малоподвижной и подвижной растворимой форме. В химических соединениях с другими элементами и органической частью ТМ в валовой форме малоподвижны. На основе сопоставления концентраций элементов в почвах и растениях и выявления их корреляционных связей установлено, что более достоверную информацию о загрязнении несут их подвижные формы, способные адекватно отражать реакцию мик-
рофлоры почвы и растениеводческой продукции на избыток элементов в среде обитания [2].
Так, к подвижным формам относятся кислоторастворимые ТМ и ацетатно-аммонийные растворимые (для кобальта - аммонийно-натриевые), составляющие небольшую часть от валовых. Доля ТМ от валовых в почвах нашей области ориентировочно составляет, %: N1, Сг
- 5, Мп, Со - 6, РЬ - 8, Си, 7п - 10, Сё - 20 [4].
Таким образом, степень негативного действия ТМ на растения определяется не столько валовым их количеством, сколько содержанием мобильных соединений, находящихся в почве. Формы же соединений металлов и процессы их трансформации в большей мере обусловлены свойствами почв: типом и концентрацией анионов в почвенном растворе, формами гумусовых веществ, способных образовывать с катионами металлов разные по растворимости соединения, и сорбционными процессами на поверхности твердой фазы почвы, а также свойствами самих металлов.
При прогнозировании накопления ТМ в сельскохозяйственных культурах важной характеристикой служит направление трансформации попадающих в почву соединений элементов, изменение степени их доступности для корневых систем растений [3].
Подвижность ТМ в почве и их поступление в растения очень изменчивы и зависят от многих факторов: вида растений, почвенных и климатических условий. Концентрация тяжелых металлов в растениях зависит также от возраста растений и сильно варьирует в различных органах.
Почва проявляет свои буферные свойства, переводя воднорастворимые соединения металлов в труднорастворимые формы, а труднорастворимые - в более мобильные, то есть прослеживается конвергенция внесенных соединений элементов, их превращение в соединения, свойственные самой почве конкретного состава и свойств. Однако буферная способность почвы не беспредельна, и с возрастанием экзогенных кон-
центраций металлов постепенно увеличивается и количество тех соединений, в которых они поступают в почву и далее в растения.
В конкретных почвенно-климатических условиях региона и при наличии определенного типа растительности доступность ТМ определяется свойствами почвы, изменяя которые, можно существенно влиять на накопление тяжелых металлов в растительной продукции. Тяжелые металлы наиболее подвижны на ма-логумусных кислых почвах легкого гранулометрического состава с малой емкостью катионного обмена и низкой буферностью [2].
Наряду с содержанием в почве ТМ и свойствами самих почв сильное влияние на загрязнение растительной продукции может оказывать состав и соотношение элементов-загрязнителей. Однако эта часть проблемы в системе «элемент
- почва - растение» для тяжелых металлов исследована настолько слабо, что ни о каких даже ориентировочных прогнозах нельзя говорить. В то же время в практических условиях загрязнение почвы ТМ или их комплексом является преобладающим.
Фактически слежение (локальный мониторинг) за изменениями экологии почвенного покрова (ЭПП) (засолением, дегумификацией и др.) эпизодически осуществлялось всегда. В последние годы особый акцент сделан на проведение регионального (значительного по территории) слежения за загрязнением почвы тяжелыми металлами (ТМ), поступающими в нее из атмосферы и гидросферы.
В основу методов мониторинга за загрязнением почв химическими элементами положен принцип определения степени превышения их содержания в почвах обследуемых территорий по сравнению с незагрязненными, эталонными. Оценка степени загрязнения почв устанавливается по кратности превышения содержания элементов в сравнении с кларками (Виноградов, 1952, 1957) веществ или предельно допустимыми концентрациями. Значительные трудности возникают при интерпретации фактических данных по содержанию элементов и сопоставлении их с критериями кларка или ПДК. Алексеев Ю.В. с соавторами (1987) считают, что уровень средней степени загрязнения не превышает 3 - 10 кларков, а Шитов Л.Л. (1991) утверждает, что уже двукратное повышение кларка вызывает необходимость защиты почв от элементов-токсикантов. В официальных документах уровень загрязнения почв валовыми фор-
мами химических элементов рекомендуется исчислять по увеличению кларка в разной кратности: меди в 3 раза, кобальта - в 50, цинка -до 500 раз. Немногочисленные пока величины ПДК, предложенные для оценки почв как гигиенические нормы, чаще приравниваются к удвоенному значению кларка: ПДК цинка - 100 мг/кг, меди - 40, никеля - 80, марганца - 1600 мг/кг [4].
Гетерогенность пород и почв, условий их образования определяет разнотипный геохимизм экорегионов, отличный от кларков Среднерусской равнины, содержание элементов для которой принято за критерий (Виноградов, 1957). К таким регионам относится и Оренбургская область. Ее территория, расположенная в районе многочисленных прогибов и горной системы Урала, отличается почвами и породами, в которых естественное содержание многих контролируемых элементов в 1,5-3 раза и более превышает установленные кларки. Это вызвало необходимость выделить территорию области в отдельную эколого-геохимическую провинцию, которая разделена по принципу относительной геохимической природной однотипности почв на два региона - Зауралье и Преду-ралье, каждый из которых включает в себя по две эколого-геохимические зоны - Гайскую, Переволоцкую и Медногорскую, Кувандыкс-кую с выделением аномалии почв над рудными телами, ареалами их рассеивания [3].
В результате производственной деятельности человека в области выбрасывается в атмосферу большое количество химических веществ (т/год): более 80 - окиси ванадия, 680 - никеля, 1100 - цианистого водорода и др. Обладая способностью потенциирования и суммации, они образуют комплексы токсичных для живого и не свойственных природе соединений (диоксида серы и сероводорода, серы, фтористого водорода и фторосолей и др.).
В водные источники области сбрасывается в год около 1,2 млн. м3 стоков, треть которых -неочищенные. Загрязняют почвы области и твердые промышленные отходы (1,2 млрд. т/год), содержащие токсичные дозы никеля, хрома, мышьяка. По высокой степени загрязненности в первом приближении в области выделяются три антропогенные геоэкологические зоны с явно неустойчивой биологической обстановкой: Бугуруслано-Бузулукская (более
20 тыс. км2), Оренбургская - в центре Предура-лья (10 тыс. км2), Медногорско-Орская - в Зау-
ралье (более 20 тыс. км2). Вместе с этим выявлены зоны естественной повышенной радоно-опасности - на юго-западе (в Первомайском районе), на востоке (в Гайском и районе г. Ор-ска) - на фоне общей естественной радиоактивности пород и почв.
Основными источниками антропогенного поступления ТМ в природную среду являются предприятия промышленности: тепловые электростанции, металлургические заводы и транспорт.
Загрязнение природной среды свинцом происходит главным образом в результате сжигания бензина (60%); производства цветных металлов (22%); производство железа, стали, ферросплавов вносит 11% общего выброса свинца [1].
Цинком загрязняют среду выбросы цинкокадмиевых плавильных заводов (60%); при производстве железа, стали, сплавов в окружающую среду поступает 13% общего количества выбросов цинка, в результате сжигания отходов - 17% и древесины 6%. Основные источники загрязнения медью - медно-никелевые плавильные заводы (50%), сжигание топлива (22%), производство железа, стали, ферросплавов (11%), сжигание древесины (11%) [1].
Общую загрязненность почвы характеризует валовое количество ТМ. Валовое содержание элементов в естественных незагрязненных почвах обусловлено их содержанием в материнской породе и определяется генезисом, петро-химией, фациальными различиями материнского субстрата и процессами почвообразования. Кроме того, содержание элементов в почве связано с реакцией среды, содержанием в почве органического вещества, биологическим круговоротом элементов в почвенно-грунтовом слое и с неоднородностью видового состава растительного покрова [2].
Доступность же элементов для растений определяется их подвижными формами. Поэтому содержание в почве подвижных форм ТМ -важнейший показатель, характеризующий санитарно-гигиеническую обстановку и определяющий необходимость проведения мелиоративных детоксикационных мероприятий.
Остановимся наиболее подробно на накоплении отдельных ТМ в разных слоях почв.
В естественных условиях свинец существует в основном в форме PbS, присутствуя в виде РЬ2+. Свинец образует ряд минералов, которые относительно плохо растворимы в природных водах. Среди всех ТМ свинец наименее подви-
жен, снижается подвижность при известковании почв. Наибольшие концентрации свинца обнаруживаются в верхнем слое почвы. Все растворимые соединения свинца ядовиты.
Также в почвах наиболее подвижен ион цинка Zn2+, но могут присутствовать и другие ионные формы. Растворимость цинка в почвенных условиях ниже, чем у Zn(OH)2, ZnCO3 и Zn(PO4)2 в чистых экспериментальных системах. Цинк по сравнению с другими ТМ наиболее растворимый элемент в почве, концентрация его в почвенных растворах колеблется от 4 до 270 мкг/л, в зависимости от свойств почв и методов определения.
Медь - малоактивный металл, образует оксиды Си20, CuO, Си203 Гидроксид меди Си (ОН)2
- очень слабое основание. Все соли меди ядовиты, в почве катионы меди взаимодействуют с органическими и минеральными соединениями и могут осаждаться такими анионами, как сульфид, карбонат, гидроксид. Поэтому медь является малоподвижным элементом в почвах, представлена главным образом валовой формой.
Никель существует в виде сульфидов, арсе-нидов, часто замещает железо, в железомагниевых соединениях, ассоциируется с карбонатами, фосфатами, силикатами. В верхних горизонтах почв никель присутствует в связанных с органическим веществом формах, часть находится в виде легкорастворимых хелатов. Однако более доступны растениям оксиды железа, марганца, никеля. Распределение никеля в почвенном профиле определяется содержанием органического вещества, аморфных оксидов и количеством глинистой фракции. Уровень никеля в верхнем слое зависит от почвообразующих процессов и техногенного загрязнения.
В почве основным состоянием марганца является катион Мп2+, который замещает Бе2+, М§2+ в силикатах и оксидах. Оксиды и гидроксиды Мп осаждаются на почвенных частицах в виде концентрических конкреций, которые содержат железо и некоторые другие микроэлементы.
Распределение кобальта по горизонтам почв зависит от климатических зон и почвообразующих процессов. Нормальное содержание в подвижном слое почв обычно изменяется от 1 до 40 мг/кг с более плотным распределением в пределах 3-15 мг.
В почвах большая часть хрома присутствует в виде Сг3+, который образует оксиды с ионами железа. В кислой среде ион Сг3+ инертен, при рН 5,5 почти полностью выпадает в осадок.
Уровень содержания хрома в почвах зависит от содержания его в материнских породах.
Целью нашего исследования явилось определение содержания валовых и подвижных форм ТМ в почвах районов, прилегающих к г. Оренбургу и подверженных различной степени техногенного воздействия.
В задачи работы входило:
1. Исследование накопления ТМ почвами Оренбургского района (п. Черноречье, п. М. Павловка), находящимися в окрестностях ОГПЗ, и почвами с минимальным техногенным воздействием (Саракташский район, Шарлык-ский район, Соль-Илецкий район).
2. Провести сравнительный анализ накопления ТМ почвами заданных районов.
Территория санитарно-защитной зоны (СЗЗ) ОГПЗ расположена на Общем Сырте на водоразделе правого берега реки Урал, между притоками реки Каргалки и реки Черной. Преобладающие ветры: в летний период - южный, в зимний - южного и юго-западного направлений. Почвообразующими породами являются элювио-делювии мергелистых глин и суглинков татарского яруса пермского геологического периода и желто-бурые карбонатные четвертичные глины.
Главной их особенностью является высокая карбонатность, что определяет характер почвообразующих процессов и невозможность их быстрых изменений под влиянием технического подкисления.
Почвы района исследования - черноземы южные карбонатные среднегумусные среднемощные, преимущественно тяжелого механического состава (Оренбургский район, п. Черноречье, п. М. Павловка) и черноземы обыкновенные (Соль-Илецкий район, Саракташский район, Шарлыкский район).
Анализ морфологической характеристики почв ОГПЗ ключевых участков позволяет утверждать, что все они испытывают мощное постороннее воздействие, изменяющее естественный характер выщелачивания трудно растворимых простых солей (Русанов А.М., 1993). Наиболее вероятной причиной может быть систематическое подкисление почв территории техническими выбросами.
Для исследования были взяты пробы почв по разрезам (глубина от 0 до 100 см). Отбор проб и первичная подготовка проб проведены в соответствии с действующей НД на объект.
Исследуемый образец пробы почв сушили при температуре 1000 С в течение 3 часов, просеивали через стальное сито с диаметром отверстий 1-2 мм.
При определении валовых форм ТМ в почвах пробы измельчали в почвенной мельнице. Пробы с содержанием органических веществ свыше 10% предварительно прокаливали в муфельной печи, взвешивая образец до и после прокаливания. Для анализа использовали 0,51 г пробы, которую измельчали в агатовой ступке до полного прохождения через капроновое сито с диаметром отверстий 0,1-0,2 мм.
Для определения подвижных форм ТМ вытяжки готовили в соответствии с действующим НД. Почвенные вытяжки выпаривали досуха и использовали для анализа сухой остаток. Остаток от выпаривания раствора прокаливали при температуре не выше 4000 С и количественно переносили в агатовую ступку, измельчали и помещали в микрокювету, уплотняли и разравнивали. Определение содержания всех форм ТМ проводили методом рентгено-флуо-ресцентного анализа на кафедре химии ОГУ. Результаты исследования приведены на рисунках (1-6).
По итогам анализа, сравнивая полученные данные валовых и подвижных форм ТМ по слоям, следует отметить существенное различие в порядке размещения элементов. Содержание валовых и подвижных форм в почвенных разрезах Оренбургского района существенно отличается от Саракташского, Шарлыкского, Соль-Илецкого районов. В районах, прилегающих к ОГПЗ, содержание валовых форм меди, свинца и цинка в почве в целом выше, чем в контрольных районах, хотя и находится в пределах ПДК.
При этом в почвах Оренбургского района для легколетучих (РЬ, Zn, Си) выявлено достаточно высокие значения в верхнем слое 0-20 и 20-40 см, что в целом свидетельствует о том, что содержание рассматриваемой группы ТМ отражает воздействие загрязнения. При этом для нелетучих ТМ (N1, Мп, Сг, Со) содержание по слоям колеблется вокруг среднего значения. Можно отметить, что колебания содержания ТМ по разрезам незначительные и накопление отдельных ТМ выше ПДК в разных слоях почв не происходит. Содержание подвижных форм ТМ во всех случаях намного меньше, чем валовых форм. В среднем в районах, прилегающих к ОГПЗ, их несколько выше, чем в контрольных. Можно
Рисунок 1. Содержание валовых и подвижных форм никеля (мг/кг) в почвенных разрезах различных территорий
Рисунок 2. Содержание валовых и подвижных форм марганца (мг/кг) в почвенных разрезах различных территорий
Читайте также: