Установка для получения металлического порошка
Изобретение относится к технике получения порошков из жидкого металла.
Известна конструкция устройства для получения металлического порошка, содержащая электромоторы, ведущие валы и расплавляемую заготовку металла, причем порошок получается путем центробежного pаспыления быстровращающейся заготовки, один из торцов которой оплавляется плазмотроном.
Недостатками известного устройства являются наличие больших центробежных сил, возникающих во вращающихся узлах конструкции электромоторах, передаточных валах и заготовках, приводящих к быстрому износу этих узлов и, следовательно, малому сроку надежной эксплуатации.
В качестве прототипа выбрана конструкция газоструйной установки, содержащая расплавляемые металлические заготовки, соединенные с источником тока, систему центробежного распыления струи жидкого металла, выполненную в виде газового вихреобразователя, и систему рециркуляции газа. В этом устройстве порошок получается из струи жидкого металла путем распыления под действием двух вращающихся вихревых газовых потоков.
Недостатком прототипа является сложность технологии получения порошка, при которой требуются большие расходы вихреобразующего газа, а также сложные системы фильтрации этого газа при рециркуляции.
Целью изобретения является повышение срока надежности устройства и уменьшение массогабаритов путем максимального исключения быстровращающихся механических узлов и исключения газоструйной системы.
Указанная цель достигается тем, что устройство для получения металлического порошка содержит заготовки, соединенные с источником тока, систему центробежного вращения струи металла, выполненную в виде полого электромагнитного индуктора, размещенного под заготовками, а заготовки имеют осевую и азимутальную степени свободы; устройство содержит также звуковой облучатель, установленный под накопителем.
Заявляемое устройство отличается от прототипа:
выполнением системы центробежного вращения струи расплавляемого металла на основе электромагнитного индуктора и его расположением, что обеспечивает быстрое электромагнитное вращение падающих капель металла и их центробежное распыление;
введением звукового облучателя, предохраняющего нагретый порошок от слипания;
придание заготовке двух степеней свободы в продольном и азимутальном направлениях, что позволяет стабилизировать электродуговую плавку заготовок.
Система образования струи жидкого металла выполнена, например, в виде двух электродов, приготовленных непосредственно из расплавляемого металла, которые в процессе дуговой электроплавки поворачиваются относительно друг друга и по мере плавления сближаются на заданное расстояние. Струя жидкого металла в виде капель получается путем свободного стекания из зоны плавки.
Система вращения падающих капель металла выполнена в форме полого электромагнитного индуктора, например цилиндрического, расположенного под расплавляемыми заготовками. Ось симметрии индуктора проходит через центр зоны плавки и индуктор питается переменным многофазным электротоком.
Для предотвращения слипания нагретого металлического порошка в устройстве предусмотрен звуковой облучатель, расположенный непосредственно под дном накопителя порошка.
На чертеже показано описываемое устройство, общий вид.
Устройство состоит из электромагнитного индуктора 4, создающего вращающееся магнитное поле 6 внутри индуктора 4, расплавляемых заготовок 1 и 2, расположенных над индуктором 4, к которым подводится электрический ток по электровводам 7 и 8, и звукового генератора 9, расположенного под накопителем 10.
Устройство работает следующим образом. По электровводам 7 и 8 к металлическим заготовкам 1 и 2 подается электроток для создания дуговой плавки в зоне 3, из которой струя или капли расплавленного металла 5 в процессе свободного падения попадают в полость индуктора 4 с вращающимся магнитным полем 6. Это поле за счет эффекта электроиндукции приводит капли металла в быстрое вращательное движение и осуществляет их многократное центробежное распыление на мелкие фракции. Порошок, частично остывший в процессе свободного падения в среде инертного газа устройства, собирается на дне накопителя 10 и облучается звуковым генератором 9 с целью предотвращения слипания.
Для проверки работоспособности устройства была изготовлена модель, в которой в качестве струи жидкого металла использовалась ртуть. Капли ртути падали в индукторе статорной обмотки асинхронного электродвигателя мощностью 500 Вт, из которого был удален ротор. В опыте подтвердилась принципиальная часть идеи предлагаемого устройства дробление капель жидкого металла за счет вращающегося магнитного поля индуктора.
Таким образом, заявляемое устройство для получения металлического порошка не содержит механических узлов, движущихся с большими центробежными ускорениями; большая скорость вращения магнитного поля позволяет создать более однородную фракцию порошка. Устройство не содержит также газовой вихревой системы и плазмотронного генератора. Наряду с этим устройство имеет резко сниженные массогабариты. Следовательно, заявляемое устройство по сравнению с известными устройствами имеет более длительный срок надежной эксплуатации и является более экономичным в изготовлении и обслуживании.
Похожие патенты RU2048276C1
- Писарев Алексей Федорович
- Терехов Юрий Васильевич
- Панюков Борис Андреевич
- Агеев Сергей Викторович
- Москвичев Юрий Петрович
- Каблов Евгений Николаевич
- Князев Андрей Евгеньевич
- Мин Павел Георгиевич
- Востриков Алексей Владимирович
- Бакрадзе Михаил Михайлович
- Вадеев Виталий Евгеньевич
- Мин Максим Георгиевич
- Новожилов Алексей Николаевич
- Сафронов Борис Владимирович
- Орлов Владислав Константинович
- Глебов Алексей Владимирович
- Иванов Сергей Игоревич
- Клочков Олег Александрович
- Писарев Алексей Федорович
- Терехов Юрий Васильевич
- Тингаев Николай Владимирович
- Цепилов Григорий Викторович
- Фролов Владимир Яковлевич
- Юшин Борис Альбертович
- Кадыров Арслан Алмазович
- Андриянов Ю.В.
- Андриянова О.Н.
- Гарилевич Б.А.
- Рябцев Г.В.
- Ващенко Анатолий Федорович
- Гиршов Владимир Леонидович
- Губернаторов Виктор Петрович
- Орлов Евгений Дмитриевич
- Сапожников Юрий Леонидович
- Сигачев Юрий Николаевич
- Уткин Василий Антонович
- Ковалёв Геннадий Дмитриевич
- Авдюхин Сергей Павлович
- Ваулин Дмитрий Дмитриевич
- Старовойтенко Евгений Иванович
- Агеев Сергей Викторович
- Москвичев Юрий Петрович
Иллюстрации к изобретению RU 2 048 276 C1
Реферат патента 1995 года УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО ПОРОШКА
Использование: в области получения металлического порошка из расплавленного металла с применением физических процессов. Изобретение решает задачу повышения надежности и уменьшения габаритов устройства. Сущность изобретения: устройство для получения металлического порошка содержит заготовки, соединенные с источником тока, систему центробежного вращения струи металла, выполненную в виде полого электромагнитного индуктора, размещенного под заготовками, а заготовки имеют осевую и азимутальную степени свободы, при этом устройство снабжено звуковым облучателе, установленным под накопителем. 1 ил.
Формула изобретения RU 2 048 276 C1
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО ПОРОШКА, содержащее металлические заготовки, соединенные с источником тока, систему центробежного вращения струи расплавленного металла и накопитель порошка, отличающееся тем, что оно снабжено звуковым облучателем, размещенным под накопителем металлического порошка, а система центробежного вращения струи металла выполнена в виде полого электромагнитного индуктора, расположенного под заготовками с осью симметрии, проходящей между заготовками, при этом заготовки выполнены с возможностью вращения и продольного перемещения.
устройство для получения металлического порошка
Изобретение относится к получению металлических порошков. Устройство содержит водоохлаждаемую рабочую камеру с контролируемой атмосферой, установленный в верхней части рабочей камеры плазмотрон для формирования плазменного потока, одно или несколько устройств для подачи пруткового материала в плазменный поток и сборник порошка, установленный в нижней части рабочей камеры. Рабочая камера выполнена с параллельно ей установленной рабочей ветвью, соединенной с ней при помощи верхнего и нижнего перепускных патрубков, с возможностью обеспечения циркуляции газового потока навстречу движению потока частиц порошка за счет установки вентилятора в нижнем перепускном патрубке. Верхний перепускной патрубок расположен ниже точки пересечения плазменного потока с прутковым материалом. Параллельная рабочая ветвь имеет расположенный в нижней её части дополнительный сборник порошка. Обеспечивается получение порошков сферической формы при отсутствии слипания частиц. 2 ил., 1 пр.Формула изобретения
Устройство для получения металлического порошка, содержащее водоохлаждаемую рабочую камеру с контролируемой атмосферой, установленный в верхней части рабочей камеры плазмотрон для формирования плазменного потока, одно или несколько устройств для подачи пруткового материала в плазменный поток и сборник порошка, установленный в нижней части рабочей камеры, отличающееся тем, что рабочая камера выполнена с параллельно ей установленной рабочей ветвью, соединенной с ней при помощи верхнего и нижнего перепускных патрубков, с возможностью обеспечения циркуляции газового потока навстречу движению потока частиц порошка за счет установки вентилятора в нижнем перепускном патрубке, при этом верхний перепускной патрубок расположен ниже точки пересечения плазменного потока с прутковым материалом, а параллельная рабочая ветвь имеет расположенный в нижней её части дополнительный сборник порошка.
Описание изобретения к патенту
Область техники, к которой относится изобретение
Изобретение относится к области получения металлических порошков с использованием плазменного распыления.
Известно устройство для получения металлических порошков плазменным распылением, работающее по способу, описанному в заявке на изобретение № 92011252, кл. B22F 9/06, B01J 2/00, опубл. 20.04.1995. Устройство содержит плазмотрон для создания плазменного потока, при помощи которого осуществляется нагрев и распыление материала, подаваемого в плазменный поток.
Признаки известного устройства, совпадающие с признаками заявленного изобретения, заключаются в том, что устройство содержит плазмотрон для нагрева и распыления материала.
Причина, препятствующая получению в известном устройстве технического результата, который обеспечивается изобретением, заключается в том, что нагрев и распыление материала осуществляется в открытой атмосфере, что приводит к изменению химического состава распыляемого материала. Кроме того, для отсутствия спекания и деформации частиц порошка требуется большая длина пролета частиц порошка (до 10 метров и более). Частицы порошка имеют большой разброс по размерам и форме.
Известно устройство для получения металлических порошков, содержащее плазмотрон, одно или несколько устройств для подачи пруткового материала в направлении поперечном оси плазменного потока, охлаждаемый водой экран для торможения частиц, сборник частиц (Патент Японии № 62270706, кл. B22F 9/08, B01J 2/02, опубл. 25.11 1987).
Признаки известного устройства, совпадающие с признаками заявленного изобретения, заключаются в наличии плазмотрона, одного или нескольких устройств, для подачи пруткового материала в направлении, поперечном оси плазменного потока.
Причина, препятствующая получению и известном устройстве технического результата, который обеспечивается изобретением, заключается в том, что нагрев и распыление материала осуществляется в открытой атмосфере, что приводит к изменению химического состава распыляемого материала. Кроме того, при соударении частиц с охлаждаемым экраном, происходит их деформация.
Известно устройство для получения металлических и керамических порошков, содержащее охлаждаемую водой камеру с контролируемой атмосферой, в которой размещено устройство для подачи пруткового материала, один или несколько плазмотронов, расположенных под углом к оси подачи пруткового материала, сборник порошка, установленный в нижней части рабочей камеры (патент США № 5707419, кл. B22F 9/22, 13.01.1998 г.).
Признаки известного устройства, совпадающие с признаками заявленного изобретения, заключаются в наличии охлаждаемой водой камеры с контролируемой атмосферой; в верхней части камеры установлены один или несколько плазмотронов для формирования плазменного потока, устройство для подачи пруткового материала в плазменный поток; сборник порошка, установленный в нижней части рабочей камеры.
Причина, препятствующая получению в известном устройстве технического результата, который обеспечивается изобретением, заключается в том, что для отсутствия слипания и деформации частиц требуется большая длина их пролета (до 6 метров и более), что приводит к значительным габаритам устройства и требуемым производственным объемам.
Наиболее близким аналогом (прототипом) является устройство для получения металлических порошков плазменным распылением, содержащее водоохлаждаемую рабочую камеру с контролируемой атмосферой, установленный в верхней части рабочей камеры плазмотрон для формирования плазменного потока, одно или несколько устройств, для подачи пруткового материала в плазменный поток и сборник порошка, установленный в нижней части рабочей камеры (патент США № 6398125 B1, 04.06.2002, B05B 1/24). В камере создается встречный движению частиц порошка поток газа через установленные в стенках камеры, под углом к оси камеры, патрубки. Встречный поток газа служит для охлаждения и торможения частиц порошка.
Признаки известного устройства, совпадающие с признаками заявленного изобретения, заключаются в наличии охлаждаемой водой рабочей камеры с контролируемой атмосферой; установленного в верхней части камеры плазмотрона для формирования плазменного потока, одного или нескольких устройств для подачи пруткового материала в плазменный поток; сборник порошка, установленный в нижней части рабочей камеры.
Причина, препятствующая получению в известном устройстве технического результата, который обеспечивается изобретением, заключается в том, что в известном устройстве трудно управлять распределением параметров встречного движению частиц порошка потока газа, что приводит к неравномерности охлаждения и торможения частиц порошка, хаотичному их перемещению, что усложняет получение порошков с заданными параметрами. Кроме того, устройство имеет значительные габариты.
Задача, на решение которой направлено изобретение, заключается в обеспечении возможности получения порошков материалов заданного химического состава сферической формы при отсутствии слипания частиц, снижение габаритов и массы оборудования, используемого для получения порошков.
Поставленная задача была решена за счет того, что в известном устройстве для получения металлического порошка, содержащем рабочую водоохлаждаемую камеру с контролируемой атмосферой, установленный в верхней части рабочей камеры плазмотрон для формирования плазменного потока, одно или несколько устройств для подачи пруткового материала в плазменный поток и сборник порошка, установленный в нижней части рабочей камеры, согласно изобретению рабочая камера выполнена с параллельно ей установленной рабочей ветвью, соединенной с ней при помощи верхнего и нижнего перепускных патрубков, с возможностью обеспечения циркуляции газового потока навстречу движению частиц порошка за счет установки вентилятора в нижнем перепускном патрубке, при этом верхний перепускной патрубок расположен ниже точки пересечения плазменного потока с прутковым материалом, а параллельная рабочая ветвь имеет расположенный в нижней ее части дополнительный сборник порошка.
Признаки заявляемого устройства, отличительные от прототипа: параллельно рабочей камере установлена рабочая ветвь, соединенная с ней при помощи верхнего и нижнего перепускных патрубков, с возможностью обеспечения циркуляции газового потока навстречу движению частиц порошка за счет установки вентилятора в нижнем перепускном патрубке, при этом верхний перепускной патрубок расположен ниже точки пересечения плазменного потока с прутковым материалом, а параллельная рабочая ветвь имеет расположенный в нижней ее части дополнительный сборник порошка.
Наличие циркулирующего встречного газового потока в камере, с равномерным распределением параметров по сечению камеры, повышает интенсивность охлаждения частиц порошка, обеспечивает торможение частиц и предотвращает деформацию их при соударении со стенками камеры. Повышение скорости охлаждения частиц и их торможение встречным потоком газа позволяет сократить габариты (длину) камеры, уменьшить необходимый производственный объем, снизить стоимость оборудования.
На фиг.1 показана функциональная схема устройства для получения металлических порошков плазменным распылением.
На фиг.2 показан внешний вид порошков: c - титан; d - медь; e - высоколегированная сталь.
Сведения, подтверждающие возможность осуществления изобретений
Устройство для получения металлического порошка (фиг.1) содержит рабочую камеру 1, в которой в верхней ее части установлен плазмотрон 2 для формирования плазменного потока, устройство (одно или несколько) 3 для подачи пруткового материала 4 в направлении, поперечном оси плазменного потока, параллельную рабочей камере рабочую ветвь 5, соединенную верхним 6 и нижним 7 перепускными патрубками с рабочей камерой 1. Верхний 6 перепускной патрубок расположен ниже точки пересечения плазменного потока с прутковым материалом 4. В нижнем перепускном патрубке 7 установлен вентилятор 8, служащий для создания газового потока в навстречу движению потока частиц порошка а. В нижней части рабочей камеры и рабочей ветви установлены сборники частиц порошка 9 и 10 соответственно. Рабочая камера и рабочая ветвь имеют водяное охлаждение (на фиг.1 не показано) с контролируемой атмосферой. Движение полученных частиц а и встречного газового потока в в камере показано стрелками.
Устройство работает следующим образом.
Из рабочей камеры 1 производится откачка воздуха (на схеме не показано), затем производится заполнение камеры 1 требуемым газом, например аргоном. Включается плазмотрон 2, генерирующий плазменную струю или плазменную дугу, включается устройство 3 (одно или несколько) для подачи пруткового материала 4, плазменной струей или дутой прутковый материал плавится и распыляется в виде сферических частиц заданного размера. Включается вентилятор 8, установленный в нижнем патрубке 7, соединяющем рабочую камеру 1 и параллельную рабочую ветвь 5. Распыленные частицы порошка движутся вдоль рабочей камеры 1 (направление движения по стрелкам а). Вентилятор 8 создает циркулирующий встречный газовый поток (циркуляция потока организована посредством наличия параллельной рабочей ветви 5 (направление движения по стрелкам в), который тормозит и охлаждает распыленные частицы порошка. Охлажденные частицы порошка собираются в сборнике 9. Деформация и спекание частиц порошка отсутствуют. Встречный циркулирующий поток может служить для отделения мелких фракций порошка, которые через параллельную рабочую ветвь 5 попадают в сборник 10. Плазмообразующий и распыляющий газ плазмотрона выбирается того же состава, что и газ, заполняющий камеру. В процессе работы дополнительный наддув газа в камеру не требуется.
Пример конкретного исполнения.
По предложенной схеме изготовлена установка с рабочей ветвью камеры диаметром 120 мм и длиной 2800 мм, диаметр параллельной ветви 80 мм. Камера устанавливается вертикально. Плазмотрон, установленный в камере для распыления, обеспечивает работу в диапазоне токов дуги 80-300 А. Скорость встречного газового потока регулируется в диапазоне 10-100 м/с.
На установке получали порошки (фиг.2) из титана (c), меди (d) и высоколегированной стали (e). Размер частиц регулировался в пределах 0,063-0,8 мм. Производительность 2,0-23 кг/ч.
Таким образом, заявляемое изобретение обеспечивает получение порошков металлов заданного химического состава сферической формы при отсутствии слипания частиц при снижении габаритов и массы оборудования, используемого для их получения.
установка для получения металлического порошка
Изобретение относится к области металлургии, а именно к установкам для получения металлических порошков. Установка содержит плавильную камеру с нагревателем, соединенную с ней камеру механизмов, дозатор заготовок в плавильную камеру, вакуумную систему, приемную камеру, емкость для сбора порошка и размещенные в камере механизмов механизм осевого перемещения заготовок с толкателем и механизм вращения заготовок с приводными валками. Механизм вращения заготовок снабжен прижимным роликом и подшипниковыми опорами с устройствами газового охлаждения, электроизолирующими втулками противоэрозионного износа поверхностей качения подшипниковых опор, датчиками контроля температуры и уровня виброколебаний. Приводные валки и прижимной ролик механизма вращения заготовок установлены на подшипниковых опорах, толкатель выполнен с сопловым аппаратом на торце, обращенным в сторону подачи заготовки. Плавильная камера и камера механизмов соединены между собой байпасным трубопроводом с клапаном. Технический результат - расширение диапазона размеров получаемых порошков и повышение однородности их размера. 3 ил., 1 табл.
Установка для получения металлического порошка, содержащая плавильную камеру с нагревателем, соединенную с ней камеру механизмов, дозатор заготовок в плавильную камеру, вакуумную систему, приемную камеру, емкость для сбора порошка и размещенные в камере механизмов механизм осевого перемещения заготовок с толкателем и механизм вращения заготовок с приводными валками, отличающаяся тем, что механизм вращения заготовок снабжен прижимным роликом и подшипниковыми опорами с устройствами газового охлаждения, электроизолирующими втулками противоэрозионного износа поверхностей качения подшипниковых опор, датчиками контроля температуры и уровня виброколебаний, при этом приводные валки и прижимной ролик механизма вращения заготовок установлены на подшипниковых опорах, толкатель выполнен с сопловым аппаратом на торце, обращенным в сторону подачи заготовки, а плавильная камера и камера механизмов соединены между собой байпасным трубопроводом с клапаном.
Предлагаемое изобретение относится к области металлургии и может быть использовано при получении металлических порошков.
Известна установка для получения металлического порошка, состоящая из плавильной камеры с нагревателем, камеры подачи заготовок и копильника, причем плавильная камера выполнена составной из двух частей с разъемом между ними в вертикальной плоскости, первая из которых (стационарная) связана с камерой подачи заготовок и копильником, а вторая (отъемная) связана с нагревателем (Авторское свидетельство на изобретение СССР № 820068, B22F 9/08, 1979 г.).
Недостатком этой установки является низкое качество производимого порошка из-за возможных инородных включений и повышенного содержания окислов на поверхности частиц.
Известна установка для получения металлического порошка, содержащая плавильную камеру с нагревателем, механизм вращения и осевого перемещения заготовки, размещенные в герметичном кожухе, дозатор заготовок, приемную камеру для порошка и емкость для порошка (Авторское свидетельство СССР № 534304, B22F 9/08, 1976 г.) - прототип.
Недостатком этой установки является ограничение номенклатуры производимых порошков, неоднородность их фракционного состава.
Предлагаемая установка для получения металлического порошка содержит плавильную камеру с нагревателем, соединенную с ней камеру механизмов, дозатор заготовок в плавильную камеру, вакуумную систему, приемную камеру, емкость для сбора порошка и размещенные в камере механизмов механизм осевого перемещения заготовок с толкателем и механизм вращения заготовок с приводными валками, при этом механизм вращения заготовок снабжен прижимным роликом и подшипниковыми опорами с устройствами газового охлаждения, электроизолирующими втулками противоэрозионного износа поверхностей качения подшипниковых опор, датчиками контроля температуры и уровня виброколебаний, при этом приводные валки и прижимной ролик механизма вращения заготовок установлены на подшипниковых опорах, толкатель выполнен с сопловым аппаратом на торце, обращенным в сторону подачи заготовки, а плавильная камера и камера механизмов соединены между собой байпасным трубопроводом с клапаном.
Предлагаемая установка отличается от прототипа тем, что механизм вращения заготовок снабжен прижимным роликом и подшипниковыми опорами с устройствами газового охлаждения, электроизолирующими втулками противоэрозионного износа поверхностей качения подшипниковых опор, датчиками контроля температуры и уровня виброколебаний, при этом приводные валки и прижимной ролик механизма вращения заготовок установлены на подшипниковых опорах, толкатель выполнен с сопловым аппаратом на торце, обращенным в сторону подачи заготовки, а плавильная камера и камера механизмов соединены между собой байпасным трубопроводом с клапаном.
Технический результат - расширение диапазона по крупности частиц получаемых порошков, повышение их однородности по фракционному составу и, как следствие, расширение сортамента изделий, получаемых из этих порошков, с повышенным уровнем физико-механических свойств и, как следствие, повышение срока службы.
Предлагаемая установка позволяет получать металлические порошки различной крупности, в том числе и ультрадисперсные с крупностью частиц менее 100 мкм, однородного фракционного состава за счет расширения диапазона частоты вращения заготовки вплоть до очень высоких значений, порядка 20000-25000 мин -1 . Поддержание такой высокой частоты вращения заготовки обеспечивают конструктивные особенности установки, заключающиеся в том, что подшипниковые опоры приводных валков механизма вращения и прижимного ролика, испытавающие повышенный нагрев трущихся частей, генерацию электростатических зарядов, повышенную частоту виброколебаний, снабжены устройствами газового охлаждения, электроизолирующими втулками противоэрозионного износа поверхностей качения подшипниковых опор, датчиками контроля температуры и уровня виброколебаний.
Для снижения износа толкателя от трения, особенно при повышенных частотах вращения заготовки, толкатель, размещенный в камере механизмов, выполнен с сопловым аппаратом на торце, обращенным в сторону подачи заготовки. При этом за счет газовой струи, выходящей из сопла, создается «газовая подушка» между толкателем и торцом заготовки, резко снижающей трение и образование металлической пыли, проникновению которой в трущиеся части подшипниковых опор препятствует наличие байпасного трубопровода с клапаном между плавильной камерой и камерой механизмов. Клапан, обеспечивающий перепуск газа, можно настроить так, что в камере механизмов поддерживается более высокое давление газа, чем в плавильной камере, и газ, содержащий металлическую пыль, будет перетекать в плавильную камеру, тем самым препятствуя осаждению пыли в камере механизмов и в том числе в подшипниковых опорах.
Установка позволяет получать мелкозернистую структуру самих частиц, уменьшить их размер и размер примесных частиц, которые практически всегда присутствуют в массе основного порошка и благодаря этому снизить их вредное влияние на механические свойства компактных изделий, отпрессованных из порошков. Изделия, получаемые из таких порошков, обладают более высоким уровнем физико-механических свойств (предел прочности, пластичности), которые позволяют расширить сортамент выпускаемых изделий из них, в том числе применять порошки для изготовления изделий ответственного назначения с повышением эксплуатационного ресурса.
Предлагаемая установка поясняется чертежами, где на:
- фиг.1 показано фронтальное сечение;
- фиг.2 - поперечное сечение;
- фиг.3 - вид сверху.
Установка состоит из опоры 1, на которой смонтированы плавильная камера 2, камера механизмов 3, соединенные между собой фланцевым разъемом 4.
Плавильная камера 2 снабжена откатной крышкой 5, в которой установлен нагреватель 6 (плазмотрон) с механизмом 7 его рабочего перемещения. Стенки плавильной камеры 2 и плазмотрон 6 сообщены трубопроводами 8 с источником охлаждающей воды (на фиг.1-3 не показан).
Камера механизмов 3 состоит из вакуум-плотного корпуса, в объеме которого смонтированы два горизонтальных цилиндрических валка 9 на подшипниковых опорах 10 с газовым охлаждением, противоэрозионными втулками на их поверхностях качения, датчиками контроля температуры и уровня виброколебаний (на фиг.1-3 не показаны), с электроприводом вращения от индивидуальных электродвигателей 11, нажимной подвижной ролик 12 на подшипниковых опорах той же конструкции, что и опоры 10, размещенный над валками 9 и снабженный механизмом 13 прижатия его к цилиндрической заготовке, опирающейся на оба валка одновременно.
Во фланцевом разъеме 4 камер смонтирован водоохлаждаемый экран 14 с центральным отверстием под заготовку. Соосно с заготовкой размещен механизм продольной подачи 15 с толкателем 16 и сопловым аппаратом 17.
Установка снабжена электросистемой 18, системой создания вакуума и газовой системой, с которой сообщен сопловый аппарат 17. К камере механизмов 3 сбоку пристыкован дозатор заготовок (на фиг.1-3 не показан), который снабжен механизмом подачи заготовки 19 с лотком 20.
Камера плавильная 2 и камера механизмов 3 сообщены между собой байпасным трубопроводом 21 с регулирующим клапаном 22.
Установка работает следующим образом.
Запуск установки начинают с включения вакуумной системы на откачку воздуха из камер установки до заданного остаточного давления 0,013 Па. При достижении заданного вакуума систему откачки отключают и из газовой системы заполняют полости камер рабочей газовой атмосферой (например, инертными газами) до заданного давления.
Из дозатора заготовок по лотку 20 с помощью механизма подачи 19 на валки 9 подается заготовка 23 и прижимается к валкам 9 нажимным роликом 12 посредством механизма 13. Механизмом продольной подачи 15 с толкателем 16 заготовка перемещается вдоль валков в плавильную камеру 2 через отверстие водоохлаждаемого экрана 14 в положение, при котором расстояние от плоскости экрана 14 до торца заготовки 23 составляет ~25÷30 мм. Включают газовую систему и рециркулируют рабочий газ через камеры установки с подачей его в сопловый аппарат 17 толкателя 16 для создания газовой подушки между толкателем и торцем заготовки, подшипниковые опоры 10 на охлаждение, причем клапан 22 на байпасном трубопроводе 21 настраивают так, чтобы давление газа в камере механизмов было выше, чем в плавильной камере, и газ всегда двигался в сторону плавильной камеры, обеспечивая вынос металлической пыли из камеры механизмов.
Задается рабочая частота вращения валков 9, после чего зажигается дуга плазмотрона 6, устанавливается заданное значение мощности (тока и напряжения). Плазмотрон 6 механизмом 7 перемещается к торцу вращающейся заготовки на расстояние ~20 мм, и начинается процесс плавления и диспергации заготовки. Включается механизм продольной подачи 15 заготовки, и устанавливается на нем заданная скорость подачи (плавления) заготовки и корректируется мощность (ток, напряжение) плазмотрона таким образом, чтобы положение торца заготовки 23 относительно плазмотрона 6 оставалось неизменным. Процесс подачи заготовки механизмом 15 с толкателем 16 продолжается до тех пор, пока длина оставшейся (нерасплавленной) ее части (огарка) не достигнет той минимальной длины, которую способен еще надежно удержать на валках 9 прижимной ролик 12. После этого плавка останавливается, плазмотрон 6 механизмом 7 отводится от торца огарка, снижается ток и напряжение на плазмотроне до минимальных значений, обеспечивающих устойчивое горение дуги в плазмотроне 6, останавливается вращение валков 9, отводится от огарка прижимной ролик 12 и сбрасывается огарок в камеру 2. Затем отводится механизм продольной подачи 15 в крайнее, удаленное от плавильной камеры 2, положение и на валки 9 подается из дозатора заготовок механизмом 19 следующая заготовка 23 и далее, действуя аналогично тому, как описано ранее по распылению первой заготовки, обеспечивается плавление и диспергация второй и последующих заготовок, находящихся в загрузочной камере.
Были проведены сравнительные исследования физических, химических и технологических свойств гранул, полученных на предлагаемой установке и установке-прототипе. Результаты исследования приведены в таблице 1.
Таблица 1 | |||
Свойства гранул, полученных на предлагаемой установке распыления и установке-прототипе | |||
№ п/п | Наименование параметра | Предлагаемая установка | Установка-прототип |
1 | Содержание кислорода | 0,005 | 0,007 |
2 | Крупность основной фракции порошка, мкм | ||
3 | Содержание в партии гранул основной фракции, % | 92 | 76 |
4 | Насыпная плотность, г/см 3 | 5,12 | 4,96 |
5 | Плотность после утряски, г/см 3 | 5,68 | 5,49 |
*6 | Предел прочности, МПа | 1450 | 1250 |
*7 | Предел текучести, МПа | 1020 | 800 |
*8 | Относительное удлинение, % | 18 | 13 |
9* | Сопротивление малоцикловой усталости, количество циклов | до 10000 | 5000 |
* - свойства даны для изделий, отпрессованных из гранул, полученных по указанным вариантам. |
Данные, приведенные в таблице 1, свидетельствуют о том, что предлагаемая установка позволяет получать металлические порошки (гранулы) различной крупности, в том числе и ультрадисперсные с крупностью менее 100 мкм более однородного фракционного состава, что повышает уровень физико-механических свойств изделий, отпрессованных из них. Ресурс работы изделий под фиксированной нагрузкой при этом возрастает, как следует из данных таблицы 1, также до двух раз.
RU2475336C1 - Способ получения металлического порошка методом центробежного распыления - Google Patents
Publication number RU2475336C1 RU2475336C1 RU2011138304/02A RU2011138304A RU2475336C1 RU 2475336 C1 RU2475336 C1 RU 2475336C1 RU 2011138304/02 A RU2011138304/02 A RU 2011138304/02A RU 2011138304 A RU2011138304 A RU 2011138304A RU 2475336 C1 RU2475336 C1 RU 2475336C1 Authority RU Russia Prior art keywords disk melt blank workpiece plasma jet Prior art date 2011-09-19 Application number RU2011138304/02A Other languages English ( en ) Inventor Евгений Иванович Старовойтенко Original Assignee Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.) 2011-09-19 Filing date 2011-09-19 Publication date 2013-02-20 2011-09-19 Application filed by Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") filed Critical Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") 2011-09-19 Priority to RU2011138304/02A priority Critical patent/RU2475336C1/ru 2013-02-20 Application granted granted Critical 2013-02-20 Publication of RU2475336C1 publication Critical patent/RU2475336C1/ru
Links
- Espacenet
- Global Dossier
- Discuss
- 239000000843 powder Substances 0.000 title claims abstract description 19
- 239000002184 metal Substances 0.000 title claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 9
- 238000005507 spraying Methods 0.000 title claims description 12
- 210000002381 Plasma Anatomy 0.000 claims abstract description 24
- 238000002844 melting Methods 0.000 claims abstract description 11
- 239000002245 particle Substances 0.000 claims abstract description 8
- 238000010924 continuous production Methods 0.000 claims abstract 2
- 239000000155 melt Substances 0.000 claims description 22
- 238000007711 solidification Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 238000010327 methods by industry Methods 0.000 abstract 1
- 238000004663 powder metallurgy Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000007789 gas Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003818 cinder Substances 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- 238000005755 formation reaction Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 235000010599 Verbascum thapsus Nutrition 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000005272 metallurgy Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 230000001143 conditioned Effects 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 230000002093 peripheral Effects 0.000 description 1
- 238000004157 plasmatron Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Abstract
Изобретение относится к порошковой металлургии, в частности к способам непрерывного получения металлического порошка. Литую заготовку плавят плазменной струей, направленной на ее торец. Центробежное распыление расплава осуществляют посредством вращающегося диска с центральным отверстием, через которое под плазменную струю подают заготовку, вращающуюся вокруг своей оси в одном направлении с диском. Полученные частицы охлаждают в газе. Диск подогревают отработавшей плазменной струей с подмешиванием к ней холодного газа. К неоплавляемому торцу распыляемой заготовки пристыковывают следующую заготовку. Способ обеспечивает повышение выхода годного, производительности процесса за счет его непрерывности и устранения образования настыли на вращающемся диске, частичное устранение механической обработки заготовок. 2 з.п. ф-лы, 1 ил.
Description
Предлагаемое изобретение относится к металлургии, к области производства металлических порошков, их обработке и получению изделий из них.
Известен способ получения металлических порошков методом центробежного распыления, включающий плавку исходного материала и получение расплава, дозированную подачу расплава на быстро вращающийся в горизонтальной плоскости диск и распыление расплава на капли с последующим их охлаждением и затвердеванием в газе с образованием частиц порошка [«Разработка установки для получения гранул центробежным распылением расплава», авт. Каринский В.Н. и др. Сб. статей «Металлургия гранул», под. ред. А.Ф.Белова, вып.2, М., 1984, стр.277-282].
Недостатком данного метода является нестабильность процесса распыления расплава, обусловленная его подхолаживанием при контакте с диском с образованием настыли (гарниссажа) на поверхности. Дисбаланс вращающихся масс диска, возникающий при этом, приводит к вибрациям и, в конечном итоге, может явиться причиной остановки процесса распыления, выпуску бракованной продукции.
Другим известным способом получения порошка методом центробежного распыления является метод быстровращающейся цилиндрической заготовки, торец которой оплавляют посредством плазменной струи, направленной перпендикулярно к поверхности торца [«Установки для получения порошков методом центробежного распыления вращающейся заготовки», авт. Кононов И.А. и др. В сб. «Металлургия гранул», под ред. Белова А.Ф., вып.2, М., 1984, стр.242-250].
Данный способ производства порошков, принятый за прототип, имеет недостатки, заключающиеся в следующем:
- быстровращающуюся заготовку, являющуюся диспергатором для приведения ее вращающейся массы к допустимому уровню дисбаланса, подвергают трудоемкой механической обработке, на которую приходятся значительные затраты производства;
- заготовка не может быть распылена полностью без остатка, остается неоплавляемая часть («огарок»), за которую удерживают ее при вращении. Это обстоятельство снижает выход готовой продукции с каждой заготовки и, следовательно, снижает показатель производства по выходам годной продукции;
- процесс распыления ведется в циклическом, прерывистом режиме от одной заготовки к другой, что не способствует достижению высокой производительности процесса.
Задачей предлагаемого изобретения является снижение затрат производства, повышение выхода годной продукции и производительности процесса получения порошка. Поставленная задача решается способом, который включает плавку литой заготовки плазменной струей, направленной на ее торец, и центробежное распыление расплава на частицы с последующим их охлаждением и затвердеванием в газе, при этом расплав распыляют посредством вращающегося диска (диспергатора) с центральным отверстием, через которое подают литую заготовку под плазменную струю с малой или нулевой скоростью вращения. К другому неоплавляемому торцу заготовки пристыковывают следующую заготовку, а диск подогревают отработавшей плазменной струей с подмешиванием к ней необходимого количества холодного газа, расплав на диск подают по касательной к поверхности диска, плазменную струю перемещают по оплавляемому торцу заготовки, а заготовку при плавлении вращают вокруг своей оси в одном с диском направлении, причем диск совместно с заготовкой ориентируют в пространстве произвольно (например, в горизонтальной плоскости, вертикальном или наклонном положениях).
Предлагаемый способ получения металлических порошков за счет центробежного распыления расплава посредством вращающегося диска с центральным отверстием, через которое подают литую заготовку под плазменную струю, а к неоплавляемому торцу заготовки пристыковывают следующую заготовку, обеспечивает по сравнению с прототипом снижение затрат производства, повышение производительности процесса и выходов годного продукта. Это достигается посредством ведения процесса в непрерывном режиме, поскольку заготовка благодаря стыковке отдельных мерных заготовок друг с другом становится непрерывной, ее сплавляют и распыляют полностью без образования «огарка».
Заготовка при этом не требует значительных затрат на механическую обработку, например точения и шлифования, поскольку она не является диспергатором и скорость ее вращения невелика (вплоть до нулевого значения).
Подогрев диска отработавшей плазменной струей с подмешиванием к ней необходимого количества холодного газа предотвращает образование настыли на поверхности диска и тем самым предотвращает затраты на остановки и ремонты оборудования, поддерживает его высокую производительность и выход годной продукции за счет снижения брака с некондиционными фракциями порошка.
Подача расплава на диск по касательной к поверхности диска предотвращает образование брызг, из которых формируются отходы или некондиционные фракции порошка.
Равномерное оплавление заготовки плазменной струей, достигаемое за счет ее перемещения по оплавляемому торцу, равно как и за счет вращения заготовки вокруг своей оси стабилизирует фракционный состав получаемого порошка и тем обеспечивает высокий выход кондиционной фракции.
Вращение заготовки вокруг своей оси в одном с диском направлении, независимо от ориентации в пространстве диска совместно с заготовкой, обеспечивает плавный вход расплава на поверхность диска с минимальной относительной скоростью его к поверхности (в частном случае при одинаковой частоте вращения диска и заготовки обеспечивается практически нулевая относительная скорость входа расплава на диск).
Этот результат важен для формирования пленки расплава на поверхности диска, которая определяет процесс деления (диспергации) расплава на кромке диска на капли, превращающиеся в частицы порошка после разлета и затвердевания. Равномерная по толщине пленка обеспечивает однородный фракционный состав капель и, следовательно, высокий выход товарной фракции.
Пленка расплава, движущаяся по поверхности диска, кроме этого, благодаря перемешиванию слоев расплава в ней способствует выравниванию состава расплава и соответственно однородности структуры частиц порошка, т.е. в конечном итоге, достижению высоких показателей качества продукта.
Предлагаемое техническое решение поясняется фиг.1, где приведена схема процесса получения порошка по предлагаемому способу.
Диск-диспергатор 1 с центральным отверстием 2, через которое подают непрерывную распыляемую заготовку 3, приводят во вращение. Заготовку формируют пристыковкой отдельных ее частей - мерных заготовок 4 посредством, например, запрессовки выступающего шипа 5 одной заготовки в торцевое отверстие 6 другой. На выходе из отверстия диска торец распыляемой заготовки подают под плазменную струю 7, генерируемую плазмотроном 8, и оплавляют ее.
Расплав поступает по касательной на поверхность вращающегося с заданной угловой скоростью ω2 диска, где под действием центробежной силы растекается по его поверхности и в виде отдельных капель срывается с внешней кромки диска. Капли в процессе полета в газе охлаждаются, затвердевают и в виде порошинок накапливаются в приемнике (на фиг.1 не показан).
Плазменную струю 7 для равномерного оплавления заготовки и стабилизации этого процесса перемещают по поверхности торца заготовки, совершая либо круговые, либо радиальные движения, равно как и вращают заготовку вокруг своей оси с угловой скоростью ω1 в одном с диском направлении.
Отработавшая плазменная струя под действием насосного эффекта вращающегося диска натекает на его поверхность и обеспечивает его подогрев до температуры, при которой на поверхности диска не образуется настыль. Регулирование температуры поверхности диска обеспечивают подмешиванием холодного газа к плазме, расход которого дозируют для достижения нужного результата.
Представленная схема процесса может быть реализована при различных вариантах ориентации диска совместно с заготовкой в пространстве. Например, в варианте, представленном на фиг.1, где диск с заготовкой ориентированы с горизонтальной осью вращения.
Предлагаемый способ можно реализовать в варианте, при котором диск совместно с заготовкой ориентированы в пространстве с осью вращения в вертикальной плоскости.
В этом варианте заготовка должна обязательно вращаться с тем, чтобы расплав с ее торца поступал на поверхность диска под действием центробежной силы.
Получение порошка в соответствии с представленной на фиг.1 схемой процесса обеспечивают следующим порядком:
На вход процесса подают литые заготовки, которые для обеспечения непрерывного поступления металла на плавку и распыление стыкуют в процессе работы между собой любым приемлемым способом, например запрессовкой их торцевых элементов (выступа предыдущей с отверстием последующей заготовки). Заготовку направляют в отверстие диска-диспергатора, который приводят во вращение с заданной угловой скоростью (ω2). Включают плазмотрон и плазменную струю, которую он непрерывно генерирует, направляют на торец заготовки, подаваемой на нее через отверстие в диске с заданной скоростью так, чтобы образующийся на торце расплав поступал на диск по касательной к его боковой поверхности.
Плазмотрон при этом перемещают так, чтобы его плазменная струя перемещалась по оплавляемому торцу заготовки и обеспечивала равномерное его оплавление и стабильное поступление расплава на поверхность диска.
Расплав, поступающий на поверхность вращающегося диска, растекается по нему под действием центробежных сил тонкой пленкой и срывается с внешней кромки диска в виде отдельных капель.
Капли в процессе полета охлаждаются в газе, который подают к внешней кромке диска. Другой поток охлаждающего газа подают с заданной скоростью по периметру кромки отверстия диска для смешения его с отработавшей плазменной струей. Смесь газа и плазмы под действием насосного эффекта вращающегося диска подогревает его поверхность, предотвращая образование настыли на поверхности контакта диска с расплавом.
Предлагаемый способ получения металлического порошка был опробован экспериментально на модельной установке центробежного распыления. При этом была распылена партия заготовок ⌀ 80 мм в количестве 20 шт., длиной по 700 мм из никелевого сплава типа ЭП-741НП на частицы крупностью - 140 мкм, при окружной скорости на внешней кромке диска ~ 50 м/сек и при скорости плавки ~ 100 кг/час.
Выход годного по отношению к способу-прототипу, который серийно реализован на установках типа УЦР с применением аналогичных заготовок, возрос ~ на 10-11% за счет полного без «огарка» сплавления заготовок.
Затраты на механическую обработку заготовок по предлагаемому способу по отношению к таковой, используемой под распыление заготовок на установке типа УЦР, сократились ~ на 60÷70%, т.к. отпала необходимость в шлифовании их боковой поверхности для обеспечения приемлемого дисбаланса при вращении. Производительность процесса в сопоставимых показателях за счет непрерывности предлагаемого процесса по отношению к прототипу повышена на 15-20%.
Таким образом, предлагаемый способ получения металлических порошков позволяет существенно повысить выход годной продукции и производительность при производстве продукта (порошка), а также сократить затраты производства.
Claims ( 3 )
1. Способ непрерывного получения металлического порошка методом центробежного распыления, включающий плавку литой заготовки плазменной струей, направленной на ее торец, центробежное распыление расплава с получением частиц, их охлаждение и затвердевание в газе, отличающийся тем, что распыление расплава осуществляют посредством вращающегося диска с центральным отверстием, через которое под плазменную струю подают заготовку, вращающуюся вокруг своей оси в одном направлении с диском, при этом диск подогревают отработавшей плазменной струей с подмешиванием к ней холодного газа, а к неоплавляемому торцу распыляемой заготовки пристыковывают следующую заготовку.
RU2011138304/02A 2011-09-19 2011-09-19 Способ получения металлического порошка методом центробежного распыления RU2475336C1 ( ru )
Читайте также: