Уран это газ или металл

Обновлено: 06.01.2025

УРАН, U (uranium), металлический химический элемент семейства актиноидов, которые включают Ac, Th, Pa, U и трансурановые элементы (Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr). Уран приобрел известность благодаря использованию его в ядерном оружии и атомной энергетике. Оксиды урана применяются также для окрашивания стекла и керамики.

Нахождение в природе.

Содержание урана в земной коре составляет 0,003%, он встречается в поверхностном слое земли в виде четырех видов отложений. Во-первых, это жилы уранинита, или урановой смолки (диоксид урана UO2), очень богатые ураном, но редко встречающиеся. Им сопутствуют отложения радия, так как радий является прямым продуктом изотопного распада урана. Такие жилы встречаются в Заире, Канаде (Большое Медвежье озеро), Чехии и Франции. Вторым источником урана являются конгломераты ториевой и урановой руды совместно с рудами других важных минералов. Конгломераты обычно содержат достаточные для извлечения количества золота и серебра, а сопутствующими элементами становятся уран и торий. Большие месторождения этих руд находятся в Канаде, ЮАР, России и Австралии. Третьим источником урана являются осадочные породы и песчаники, богатые минералом карнотитом (уранил-ванадат калия), который содержит, кроме урана, значительное количество ванадия и других элементов. Такие руды встречаются в западных штатах США. Железоурановые сланцы и фосфатные руды составляют четвертый источник отложений. Богатые отложения обнаружены в глинистых сланцах Швеции. Некоторые фосфатные руды Марокко и США содержат значительные количества урана, а фосфатные залежи в Анголе и Центральноафриканской Республике еще более богаты ураном. Большинство лигнитов и некоторые угли обычно содержат примеси урана. Богатые ураном отложения лигнитов обнаружены в Северной и Южной Дакоте (США) и битумных углях Испании и Чехии.

Открытие.

Уран был открыт в 1789 немецким химиком М.Клапротом, который присвоил имя элементу в честь открытия за 8 лет перед этим планеты Уран. (Клапрот был ведущим химиком своего времени; он открыл также другие элементы, в том числе Ce, Ti и Zr.) В действительности вещество, полученное Клапротом, было не элементным ураном, но окисленной формой его, а элементный уран был впервые получен французским химиком Э.Пелиго в 1841. С момента открытия и до 20 в. уран не имел того значения, какое он имеет сейчас, хотя многие его физические свойства, а также атомная масса и плотность были определены. В 1896 А.Беккерель установил, что соли урана обладают излучением, которое засвечивает фотопластинку в темноте. Это открытие активизировало химиков к исследованиям в области радиоактивности и в 1898 французские физики супруги П.Кюри и М.Склодовская-Кюри выделили соли радиоактивных элементов полония и радия, а Э.Резерфорд, Ф.Содди, К.Фаянс и другие ученые разработали теорию радиоактивного распада, что заложило основы современной ядерной химии и атомной энергетики.

Первые применения урана.

Хотя радиоактивность солей урана была известна, его руды в первой трети нынешнего столетия использовались лишь для получения сопутствующего радия, а уран считался нежелательным побочным продуктом. Его использование было сосредоточено в основном в технологии керамики и в металлургии; оксиды урана широко применяли для окраски стекла в цвета от бледножелтого до темнозеленого, что способствовало развитию недорогих стекольных производств. Сегодня изделия этих производств идентифицируют как флуоресцирующие под ультрафиолетовыми лучами. Во время Первой мировой войны и вскоре после нее уран в виде карбида применяли в производстве инструментальных сталей, аналогично Mo и W; 4–8% урана заменяли вольфрам, производство которого в то время было ограничено. Для получения инструментальных сталей в 1914–1926 ежегодно производили по нескольку тонн ферроурана, содержащего до 30% (масс.) U. Однако такое применение урана продолжалось недолго.

Современное применение урана.

Промышленность урана начала складываться в 1939, когда было осуществлено деление изотопа урана 235 U, что привело к технической реализации контролируемых цепных реакций деления урана в декабре 1942. Это было рождение эры атома, когда уран из незначительного элемента превратился в один из наиболее важных элементов в жизни общества. Военное значение урана для производства атомной бомбы и использование в качестве топлива в ядерных реакторах вызвали спрос на уран, который возрос в астрономических размерах. Интересна хронология роста потребности в уране по истории отложений в Большом Медвежьем озере (Канада). В 1930 в этом озере была обнаружена смоляная обманка – смесь оксидов урана, а в 1932 на этом участке была налажена технология очистки радия. Из каждой тонны руды (смоляной обманки) получали 1 г радия и около половины тонны побочного продукта – уранового концентрата. Однако радия было мало и его добыча была прекращена. С 1940 по 1942 разработку возобновили и начали отправку урановой руды в США. В 1949 аналогичная очистка урана с некоторыми усовершенствованиями была применена для производства чистого UO2. Это производство росло, и в настоящее время оно является одним из наиболее крупных производств урана.

СВОЙСТВА УРАНА
СВОЙСТВА УРАНА
Атомный номер 92
Атомная масса 238,03
Изотопы
стабильные нет
нестабильные 226–242
в т. ч. природные 234, 235, 236 (следы), 238
Температура плавления, °С 1132
Температура кипения, °С 3818
Плотность, г/см 3 18,7
Твердость (по Моосу) 4,0
Содержание в земной коре, % (масс.) 0,003
Степени окисления +3, +4, +5, +6

Свойства.

Уран – один из наиболее тяжелых элементов, встречающихся в природе. Чистый металл очень плотный, пластичный, электроположительный с малой электропроводностью и высокореакционноспособный.

Уран имеет три аллотропные модификации: a -уран (орторомбическая кристаллическая решетка), существует в интервале от комнатной температуры до 668 ° С; b -уран (сложная кристаллическая решетка тетрагонального типа), устойчивый в интервале 668–774 ° С; g -уран (объемноцентрированная кубическая кристаллическая решетка), устойчивый от 774 ° С вплоть до температуры плавления (1132 ° С). Поскольку все изотопы урана нестабильны, все его соединения проявляют радиоактивность.

Изотопы урана

238 U, 235 U, 234 U встречаются в природе в соотношении 99,3:0,7:0,0058, а 236 U – в следовых количествах. Все другие изотопы урана от 226 U до 242 U получают искусственно. Изотоп 235 U имеет особо важное значение. Под действием медленных (тепловых) нейтронов он делится с освобождением огромной энергии. Полное деление 235 U приводит к выделению «теплового энергетического эквивалента» 2 Ч 10 7 кВт Ч ч/кг. Деление 235 U можно использовать не только для получения больших количеств энергии, но также для синтеза других важных актиноидных элементов. Уран природного изотопного состава можно использовать в ядерных реакторах для производства нейтронов, образующихся при делении 235 U, в то же время избыточные нейтроны, не востребуемые цепной реакцией, могут захватываться другим природным изотопом, что приводит к получению плутония:

При бомбардировке 238 U быстрыми нейтронами протекают следующие реакции:

Согласно этой схеме, наиболее распространенный изотоп 238 U может превращаться в плутоний-239, который, подобно 235 U, также способен делиться под действием медленных нейтронов.

В настоящее время получено большое число искусственных изотопов урана. Среди них 233 U особенно примечателен тем, что он также делится при взаимодействии с медленными нейтронами.

Некоторые другие искусственные изотопы урана часто применяются в качестве радиоактивных меток (индикаторов) в химических и физических исследованиях; это прежде всего b -излучатель 237 U и a -излучатель 232 U.

Соединения.

Уран – высокореакционноспособный металл – имеет степени окисления от +3 до +6, близок бериллию в ряду активности, взаимодействует со всеми неметаллами и образует интерметаллические соединения с Al, Be, Bi, Co, Cu, Fe, Hg, Mg, Ni, Pb, Sn и Zn. Тонкораздробленный уран особенно реакционноспособен и при температурах выше 500 ° С часто вступает в реакции, характерные для гидрида урана. Кусковой уран или стружка ярко сгорает при 700–1000 ° С, а пары урана горят уже при 150–250 ° С, с HF уран реагирует при 200–400 ° С, образуя UF4 и H2. Уран медленно растворяется в концентрированной HF или H2SO4 и 85%-ной H3PO4 даже при 90 ° С, но легко реагирует с конц. HCl и менее активно с HBr или HI. Наиболее активно и быстро протекают реакции урана с разбавленной и концентрированной HNO3 с образованием нитрата уранила (см. ниже). В присутствии HCl уран быстро растворяется в органических кислотах, образуя органические соли U 4+ . В зависимости от степени окисления уран образует несколько типов солей (наиболее важные среди них с U 4+ , одна из них UCl4 – легко окисляемая соль зеленого цвета); соли уранила (радикала UO2 2+ ) типа UO2(NO3)2 имеют желтую окраску и флуоресцируют зеленым цветом. Соли уранила образуются при растворении амфотерного оксида UO3 (желтая окраска) в кислой среде. В щелочной среде UO3 образует уранаты типа Na2UO4 или Na2U2O7. Последнее соединение («желтый уранил») применяют для изготовления фарфоровых глазурей и в производстве флуоресцентных стекол. См. также КЕРАМИКА ПРОМЫШЛЕННАЯ.

Галогениды урана широко изучались в 1940–1950, так как на их основе были разработаны методы разделения изотопов урана для атомной бомбы или ядерного реактора. Трифторид урана UF3 был получен восстановлением UF4 водородом, а тетрафторид урана UF4 получают разными способами по реакциям HF с оксидами типа UO3 или U3O8 или электролитическим восстановлением соединений уранила. Гексафторид урана UF6 получают фторированием U или UF4 элементным фтором либо действием кислорода на UF4. Гексафторид образует прозрачные кристаллы с высоким коэффициентом преломления при 64 ° С (1137 мм рт. ст.); соединение летуче (в условиях нормального давления возгоняется при 56,54 ° С). Оксогалогениды урана, например, оксофториды, имеют состав UO2F2 (фторид уранила), UOF2 (оксид-дифторид урана). См. также ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ; РАДИОАКТИВНОСТЬ; УРАНИНИТ; УРАНОВАЯ ПРОМЫШЛЕННОСТЬ.

Уран это газ или металл

Уран — это радиоактивный химический элемент, который можно найти в природе. В основном он используется для производства электрической энергии. Впрочем, его также используют в медицинских целях и, к сожалению, при производстве ядерных бомб.

Этот элемент был открыт на территории Германской империи в 1789 году. Он назван в честь планеты Уран, которая была обнаружена на 8 лет раньше. Однако радиоактивность урана была открыта лишь в 1896 году.

Уран — последний элемент в таблице Менделеева. Он ещё и самый тяжёлый элемент, существующий в естественном виде на Земле. Именно при расщеплении его атома получается электричество.

Электричество, которое производится из урана, является альтернативой горючим ископаемым, таким как нефть и уголь. Сегодня 16% электричества в мире получается из урана.

урановая руда

Урановая руда

Уран и производство электричества

Символ урана в периодической таблице — U. Уран состоит в основном из двух изотопов — 235U и 238U. Уран на 99,7 % состоит из изотопа 238U и только оставшиеся 0,7 % — это изотоп 235U.

Именно изотоп 235U, который составляет столь малый процент урана, позволяет получить энергию посредством расщепления ядра атома. Для производства электричества концентрация изотопа 235U должна составлять 3–4 %. Поэтому химики обогащают уран.

Обогащение урана можно провести двумя способами: с помощью ультрацентрифугирования или газовой диффузии. Оба метода разделяют изотопы и в результате концентрация 235U повышается.

Ядерная энергия считается чистой, потому что она не выделяет парниковые газы и её отходы достаточно малы. Другим преимуществом этой энергии то, что её легко транспортировать и она не требует много места для хранения.

Обогащённый уран прессуют в таблетки размером 1х1 см. Энергоотдача такой таблетки очень высока: две таблетки способны обеспечить энергией семью из 4 человек на 1 месяц.

Таким образом, уран является отличной альтернативой нефти и углю: чтобы произвести столько же электроэнергии, сколько производит 1 килограмм урана, потребуется 10 тонн нефти и 20 тонн угля. Это помимо негативных эффектов, которые последние оказывают на окружающую среду. К тому же нефть и уголь требуют много места.

Недостатки ядерной энергии

Одним из основных недостатков является риск аварий и их последствия для окружающей среды. Зоны, заражённые радиоактивностью урана, становятся непригодными для жилья.

Ядерные отходы — ещё одно негативное последствие. Остатки производства не могут быть использованы повторно и должны быть правильно утилизированы. Контакт людей с такими отходами может вызвать генетическую мутацию, болезни и даже немедленную смерть.

ядерные отходы

Бочки с ядерными отходами

Нахождение и применение урана

После того, как урановую руду извлекают из земли, её измельчают, перерабатывают и делают небольшие урановые таблетки. Таблетки урана подвергаются высоким температурам, чтобы они стали более прочными.

Таблетки помещают в трубки, как правило, циркониевые. Каждая трубка вмещает до 335 таблеток. 236 трубок образуют топливную сборку или ТВЭЛ (тепловыделяющий элемент), которую затем помещают в ядерный реактор.

После того как топливо закладывается в реактор, начинается процесс ядерного деления. Деление происходит в результате бомбардировки нейтронами атомного ядра урана.

Когда нейтрон сталкивается с атомом урана, последний расщепляется на два других атома. Происходит выделение большого количества энергии и других нейтронов. Они сталкиваются с атомами и порождают цепную реакцию.

Выделяемая энергия становится теплотой, которая нагревает воду в реакторе. Пар от горячей воды активирует турбины, а те, в свою очередь, запускают электрогенераторы. Такие генераторы и производят электроэнергию.

Характеристики урана

  • в обычных температурных условиях и под обычным давлением имеет твёрдую форму;
  • имеет серебристо-серый цвет;
  • является радиоактивным. Его радиоактивность возрастает при нагревании;
  • имеет высокую плотность атомов.

Ядерная (атомная) энергетика России

В России функционируют 10 атомных электростанций.

Основные залежи урана в России находятся рядом с городом Краснокаменском. Там же находятся основные горно-химическое объединения и крупнейшее уранодобывающее предприятие.

По объёму добытого урана Россия занимает 5 место. А вот по запасам урана — 3 место.

Уран в мире

Самые большие запасы урана находятся в Австралии. Затем идут Казахстан, Россия, Канада, ЮАР, Нигер и Бразилия.

Что касается производства электроэнергии с помощью атомных электростанций, то Канада, Казахстан и Австралия занимают лидирующие позиции. Эти три страны вместе производят более чем половину ядерной энергии в мире.

Смотрите таблицу с данными по производству и запасам урана каждой из перечисленных стран.

Страна Запасы урана (тысяч тонн / в год) Производство обогащённого урана (тонн / в год)
Австралия 1 661 7 743
Казахстан 629 7 994
Россия 487 3 239
Канада 468 10 485
Нигер 421 3 355
Бразилия 276 238

Уран и ядерные бомбы

Для производства электроэнергии уран обогащают для того, чтобы содержание изотопа 235U составило 3 или 4 %.

Для производства же атомной бомбы его содержание должно быть 90 %.

Когда уран обогащён до таких показателей, ядерное деление путём нейтронной бомбардировки представляет собой серьёзный процесс. При аварии на ядерном реакторе последствия будут катастрофическими.

Бомба, сброшенная США на Хиросиму (город в Японии) в конце Второй мировой войны, называлась "Малыш" (от англ. Little boy). Она содержала 64 кг обогащённого урана. Разрушительная сила этой бомбы была равна 15 000 тоннам тротилового эквивалента.

Взрыв Хиросима облако

Облако над Хиросимой после взрыва атомной бомбы

"Малыш" произвёл тепловую волну, температура которой достигла 4000 градусов, а её скорость равнялась 440 метрам в секунду.

Взрыв стал причиной гибели 80 000 человек. Тысячи людей подверглись радиации.

Помимо того, что атомная бомба прервала жизни многих людей, последствия радиации будут испытывать на себе бессчётное количество поколений жертв бомбардировки.

Уран – полезные свойства, особенности и угроза металла

Первое, что приходит на ум при упоминании этого химического элемента, – ядерная бомба и атомные станции. Уран используют ученые, энергетики, стеклодувы.

Уран

Что представляет собой

Уран – это химический элемент, занимающий ячейку 92 в периодической системе Д.Менделеева.

Относится к металлам семейства актиноидов (сюда же причислен плутоний). Радиоактивен, блестит подобно глянцевой стали.

По составу это смесь из трех изотопов: 234, 235, 238. Доля последнего – 99,3%. Он же (вместе с U 234) создает радиоактивность.

Схема деления 235U

Схема деления 235U

Радиоактивные свойства некоторых изотопов урана (жирным выделены природные изотопы):

Массовое число Период полураспада Основной тип распада
233 1,59⋅105 лет α
234 2,45⋅105 лет α
235 7,13⋅108 лет α
236 2,39⋅107 лет α
237 6,75 сут. β−
238 4,47⋅109 лет α
239 23,54 минуты β−
240 14 часов β−

Создано 11 искусственных изотопов.

Международное обозначение – U (Uranium).

История открытия

Человек начал использовать вещество еще до новой эры. Первой продукцией стала глазурь для керамики: разновалентные соединения урана создавали желтый, бурый, зеленый, черный цвет.

18 век

Систематическое изучение характеристик элемента началось в 18 веке:

  • Немецкий естествоиспытатель Генрих Клапрот исследовал золотисто-желтый концентрат, извлеченный из местной смоляной руды. Полученное вещество окрестил ураном – в честь обнаруженной незадолго до этого новой планеты Солнечной системы.
  • Через полвека француз Эжен Пелиго установил, что это не моновещество, а окисел. Он получил чистый металл и «взвесил» его.
  • В1874 году Дмитрий Менделеев отвел новому элементу последнюю ячейку таблицы, «вычислив» атомный вес – 240 (вдвое больше принятого тогда).

Предвидение Менделеева подтвердил экспериментально немец Циммерман.

19-20 века

История изучения вещества на новом уровне продолжилась на границе 19-20 веков:

  • Французский химик Анри Беккерель открыл лучи (позже названные его именем).
  • Мария Кюри назвала этот феномен радиоактивностью.
  • Анри Муассан (творец ювелирных муассанитов) создал пошаговую инструкцию по получению урана в форме металла.
  • Великий Эрнест Резерфорд выявил виды излучения урановых фрагментов – альфа- и бета-лучи. Поль Вийар пополнил список гамма-лучами.
  • Французско-немецкая команда – Фредерик Лиза Мейтнер, Жолио-Кюри, Отто Фриш – открыла феномен и формулу ядерной реакции.

Резерфорд первым начал экспериментировать с урановым материалом, пытаясь установить возраст горных пород.

Прорыв сотворили советские физики-теоретики Юлий Харитон и Яков Зельдович. Они доказали: незначительное обогащение урана изотопом 235 делает возможным процесс ядерного синтеза.

Нахождение в природе

Уран не относится к редким элементам.

Тонна земной коры содержит 3 грамма урана.

Локации нахождения вещества в природе:

Собственные образования вещества: урановые руды (настуран, или урановая смолка; уранинит, карнотит).

Минерал Основной состав минерала Содержание урана, %
Уранинит UO2, UO3 + ThO2, CeO2 65-74
Карнотит K2(UO2)2(VO4)2·2H2O ~50
Казолит PbO2·UO3·SiO2·H2O ~40
Самарскит (Y, Er, Ce, U, Ca, Fe, Pb, Th)·(Nb, Ta, Ti, Sn)2O6 3,15-14
Браннерит (U, Ca, Fe, Y, Th)3Ti5O15 40
Тюямунит CaO·2UO3·V2O5·nH2O 50-60
Цейнерит Cu(UO2)2(AsO4)2·nH2O 50-53
Отенит Ca(UO2)2(PO4)2·nH2O ~50
Шрекингерит Ca3NaUO2(CO3)3SO4(OH)·9H2O 25
Уранофан CaO·UO2·2SiO2·6H2O ~57
Фергюсонит (Y, Ce)(Fe, U)(Nb, Ta)O4 0,2-8
Торбернит Cu(UO2)2(PO4)2·nH2O ~50
Коффинит U(SiO4)(OH)4 ~50

В месторождениях урану сопутствуют кварц, молибденит, галенит, кальцит, другие минералы.

Месторождения

В литосфере вещество представлено массивами четырех видов.

Они рассредоточены по планете:

  1. Уранинитовые жилы. Богатый, но редкий вид. Ценность вещества повышается наличием радия. Канада, Заир, Чехия,Франция.
  2. Фосфатные руды, железоурановые сланцы. Швеция, Марокко, США, ЦАР, Ангола.
  3. Осадочные породы, богатые карнотитом (с ванадием в составе). США.
  4. Залежи ториево-урановой руды плюс золото,серебро, другие ценные компоненты минералов. Россия, Канада, Австралия, ЮАР.

В России главный поставщик сырья – Читинская область (93%).

Остальное дают рудники Курганской области и Бурятии.

Физико-химические характеристики

Чистый уран чуть мягче стали, пластичный, ковкий. Слабый парамагнетик. Структура кристаллической решетки вещества меняется при разных температурах.

Даже в обычных условиях металл химически активен:

  • Быстро окисляясь, покрывается переливчатой оксидной пленкой.
  • Измельченный до порошка спонтанно воспламеняется при 151°C.
  • Разъедается водой: чем выше температура и мельче фракции, тем быстрее.
  • Растворяется кислотами, устойчив к щелочам.
  • Соли вещества распадаются на ярком свету либо под воздействием органики.

Энергичное встряхивание сосуда с урановой стружкой заставляет ее светиться. По этому признаку элемент легко отличить от других.

Химические свойства вещества также определяются валентностью.

Свойства атома
Название, символ, номер Уран / Uranium (U), 92
Атомная масса
(молярная масса)
238,02891(3) а. е. м. (г/моль)
Электронная конфигурация [Rn] 5f3 6d1 7s2
Радиус атома 138 пм
Химические свойства
Ковалентный радиус 142 пм
Радиус иона (+6e) 80 (+4e) 97 пм
Электроотрицательность 1,38 (шкала Полинга)
Электродный потенциал U←U4+ -1,38В
U←U3+ -1,66В
U←U2+ -0,1В
Степени окисления 6, 5, 4, 3
Энергия ионизации
(первый электрон)
686,4(7,11) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 19,05 г/см³
Температура плавления 1405,5 K
Температура кипения 4018 K
Уд. теплота плавления 12,6 кДж/моль
Уд. теплота испарения 417 кДж/моль
Молярная теплоёмкость 27,67 Дж/(K·моль)
Молярный объём 12,5 см³/моль
Кристаллическая решётка простого вещества
Структура решётки орторомбическая
Параметры решётки a = 2,854 Å;
b = 5,870 Å;
c = 4,955 Å
Прочие характеристики
Теплопроводность (300 K) 27,5 Вт/(м·К)
Номер CAS 7440-61-1

Четырехвалентные образцы урана нестабильны, долго находясь на воздухе, становятся шестивалентными.

Главная характеристика урана – радиоактивность. Ее величина считается достоинством либо недостатком в зависимости от целей использования вещества.

Уран может проявлять степени окисления от +3 до +6.

Степень окисления Оксид Гидроксид Характер Форма Примечание
+3 Не существует Не существует U3+, UH3 Сильный восстановитель
+4 UO2 Не существует Основный UO2, галогениды
+5 Не существует Не существует Галогениды В воде диспропорционирует
+6 UO3 UO2(OH)2 Амфотерный UO22+ (уранил), UO42- (уранат), U2O72- (диуранат) Устойчив на воздухе и в воде

Реакции металлического урана с другими неметаллами приведены ниже в таблице.

Неметалл Условия Продукт
F2 +20 o C, бурно UF6
Cl2 180 o C для измельчённого
500—600 o C для компактного
Смесь UCl4, UCl5, UCl6
Br2 650 o C, спокойно UBr4
I2 350 o C, спокойно UI3, UI4
S 250—300 o C спокойно
500 o C горит
US2, U2S3
Se 250—300 o C спокойно
500 o C горит
USe2, U2Se3
N2 450—700 o C
то же под давлением N
1300 o
U4N7
UN2
UN
P 600—1000 o C U3P4
C 800—1200 o C UC, UC2

Технология получения

Микродозы урана в литосфере обусловили способ получения металлического вещества:

  1. Обогащение. Сырье измельчают, заливают водой. Тяжелые первичные минералы урана осаждаются первыми.
  2. Выщелачивание. На концентрат воздействуют серной кислотой либо щелочью. Из комплексных руд вещество выщелачивают продувкой при 150°C.
  3. Из полученного раствора выделяют уран – экстракцией либо ионообменом. Это многоступенчатая процедура.
  4. Для образования твердой формы вещества из него удаляют примеси. То есть технически чистое соединение вещества растворяют кислотой, кристаллизуют, прокаливают.
  5. На выходе образуется трехокись. Ее восстанавливают до диоксида водородом.

На него воздействуют обезвоженным фтористым водородом. Добавляют магний либо кальций, восстанавливают металлический уран.

Производство обеспечивает четыре пятых потребности – остальное достают из списанных ядерных боеприпасов.

Как используется

Сфера применения тяжелого металла зависит от его вида.

Тяжёлый серебристо-белый глянцеватый металл - уран

Тяжёлый серебристо-белый глянцеватый металл – уран

Обычный уран

Имеет специфичное и ограниченное применение:

  • Главный потребитель вещества – атомная промышленность. Уран 235 – топливо в ядерных реакторах, начинка ядерных, термоядерных боеприпасов (как и плутоний).

Уран-233 исследуется как топливо будущего для ядерных ракетных двигателей.

  • Мирная отрасль использования – геохимия. Вещество используют как маркер определения возраста минералов, горных пород и выяснения картины геологических процессов.
  • Его применяют в нефтяной геологии при исследовании скважин.

Стекловары добавляют микродозы вещества, чтобы получить продукт с эффектом флуоресценции желто-зеленой гаммы.

Буроватый фон фотографий начала XX века – заслуга соединения урана уранилнитрата.

Обедненный уран

Гораздо популярнее обедненный уран.

«Обедненный уран» – это уран-238, из которого изъяли изотопы 234 и 235. Его радиоактивность вдвое меньше природного материала.

Ему нашлось применение в военном и гражданском сегменте:

  • Сердечник бронебойных снарядов.
  • Урановые сплавы – материал танковой брони, например, натовского танка «Абрамс».
  • Балласт в ракетах, самолетах, яхтах.
  • Компонент гироскопов, маховиков.

Вещество используют при бурении нефтяных скважин и для защиты от радиации.

Влияние на организм

Нанодозы вещества (максимум – стотысячные доли процента) зафиксированы во всех биологических организмах. У человека самые уязвимые места – почки, селезенка, кости, печень, бронхи, легкие.

Однако радиоактивный металл, его соединения (особенно в виде аэрозолей) токсичны:

  • Организм поражается целиком до уровня клеток.
  • Первыми страдают почки (в моче появляются белок и сахар).
  • Угнетается деятельность ферментов.

Хроническая интоксикация влечет за собой сбои в нервной системе, кроветворении. Это недуг работников, занятых на добыче и переработке сырья.

УРАН
1. в греческой мифологии
в греческой мифологии, персонификация неба, супруг Геи (Земли), от брака с которой родились титаны, киклопы и сторукие великаны. Уран был свергнут и оскоплен своим сыном Кроном, отцом олимпийских богов. Из его семени родилась Афродита, а из крови - эринии (фурии) и гиганты.
2. химический элемент
U (uranium),
металлический химический элемент семейства актиноидов, которые включают Ac, Th, Pa, U и трансурановые элементы (Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr). Уран приобрел известность благодаря использованию его в ядерном оружии и атомной энергетике. Оксиды урана применяются также для окрашивания стекла и керамики.
Нахождение в природе. Содержание урана в земной коре составляет 0,003%, он встречается в поверхностном слое земли в виде четырех видов отложений. Во-первых, это жилы уранинита, или урановой смолки (диоксид урана UO2), очень богатые ураном, но редко встречающиеся. Им сопутствуют отложения радия, так как радий является прямым продуктом изотопного распада урана. Такие жилы встречаются в Заире, Канаде (Большое Медвежье озеро), Чехии и Франции. Вторым источником урана являются конгломераты ториевой и урановой руды совместно с рудами других важных минералов. Конгломераты обычно содержат достаточные для извлечения количества золота и серебра, а сопутствующими элементами становятся уран и торий. Большие месторождения этих руд находятся в Канаде, ЮАР, России и Австралии. Третьим источником урана являются осадочные породы и песчаники, богатые минералом карнотитом (уранил-ванадат калия), который содержит, кроме урана, значительное количество ванадия и других элементов. Такие руды встречаются в западных штатах США. Железоурановые сланцы и фосфатные руды составляют четвертый источник отложений. Богатые отложения обнаружены в глинистых сланцах Швеции. Некоторые фосфатные руды Марокко и США содержат значительные количества урана, а фосфатные залежи в Анголе и Центральноафриканской Республике еще более богаты ураном. Большинство лигнитов и некоторые угли обычно содержат примеси урана. Богатые ураном отложения лигнитов обнаружены в Северной и Южной Дакоте (США) и битумных углях Испании и Чехии.
Открытие. Уран был открыт в 1789 немецким химиком М.Клапротом, который присвоил имя элементу в честь открытия за 8 лет перед этим планеты Уран. (Клапрот был ведущим химиком своего времени; он открыл также другие элементы, в том числе Ce, Ti и Zr.) В действительности вещество, полученное Клапротом, было не элементным ураном, но окисленной формой его, а элементный уран был впервые получен французским химиком Э.Пелиго в 1841. С момента открытия и до 20 в. уран не имел того значения, какое он имеет сейчас, хотя многие его физические свойства, а также атомная масса и плотность были определены. В 1896 А.Беккерель установил, что соли урана обладают излучением, которое засвечивает фотопластинку в темноте. Это открытие активизировало химиков к исследованиям в области радиоактивности и в 1898 французские физики супруги П.Кюри и М.Склодовская-Кюри выделили соли радиоактивных элементов полония и радия, а Э.Резерфорд, Ф.Содди, К.Фаянс и другие ученые разработали теорию радиоактивного распада, что заложило основы современной ядерной химии и атомной энергетики.
Первые применения урана. Хотя радиоактивность солей урана была известна, его руды в первой трети нынешнего столетия использовались лишь для получения сопутствующего радия, а уран считался нежелательным побочным продуктом. Его использование было сосредоточено в основном в технологии керамики и в металлургии; оксиды урана широко применяли для окраски стекла в цвета от бледножелтого до темнозеленого, что способствовало развитию недорогих стекольных производств. Сегодня изделия этих производств идентифицируют как флуоресцирующие под ультрафиолетовыми лучами. Во время Первой мировой войны и вскоре после нее уран в виде карбида применяли в производстве инструментальных сталей, аналогично Mo и W; 4-8% урана заменяли вольфрам, производство которого в то время было ограничено. Для получения инструментальных сталей в 1914-1926 ежегодно производили по нескольку тонн ферроурана, содержащего до 30% (масс.) U. Однако такое применение урана продолжалось недолго.
Современное применение урана. Промышленность урана начала складываться в 1939, когда было осуществлено деление изотопа урана 235U, что привело к технической реализации контролируемых цепных реакций деления урана в декабре 1942. Это было рождение эры атома, когда уран из незначительного элемента превратился в один из наиболее важных элементов в жизни общества. Военное значение урана для производства атомной бомбы и использование в качестве топлива в ядерных реакторах вызвали спрос на уран, который возрос в астрономических размерах. Интересна хронология роста потребности в уране по истории отложений в Большом Медвежьем озере (Канада). В 1930 в этом озере была обнаружена смоляная обманка - смесь оксидов урана, а в 1932 на этом участке была налажена технология очистки радия. Из каждой тонны руды (смоляной обманки) получали 1 г радия и около половины тонны побочного продукта - уранового концентрата. Однако радия было мало и его добыча была прекращена. С 1940 по 1942 разработку возобновили и начали отправку урановой руды в США. В 1949 аналогичная очистка урана с некоторыми усовершенствованиями была применена для производства чистого UO2. Это производство росло, и в настоящее время оно является одним из наиболее крупных производств урана. СВОЙСТВА УРАНА
Атомный номер 92 Атомная масса 238,03 Изотопы



При бомбардировке 238U быстрыми нейтронами протекают следующие реакции:



Согласно этой схеме, наиболее распространенный изотоп 238U может превращаться в плутоний-239, который, подобно 235U, также способен делиться под действием медленных нейтронов. В настоящее время получено большое число искусственных изотопов урана. Среди них 233U особенно примечателен тем, что он также делится при взаимодействии с медленными нейтронами. Некоторые другие искусственные изотопы урана часто применяются в качестве радиоактивных меток (индикаторов) в химических и физических исследованиях; это прежде всего b-излучатель 237U и a-излучатель 232U.
Соединения. Уран - высокореакционноспособный металл - имеет степени окисления от +3 до +6, близок бериллию в ряду активности, взаимодействует со всеми неметаллами и образует интерметаллические соединения с Al, Be, Bi, Co, Cu, Fe, Hg, Mg, Ni, Pb, Sn и Zn. Тонкораздробленный уран особенно реакционноспособен и при температурах выше 500° С часто вступает в реакции, характерные для гидрида урана. Кусковой уран или стружка ярко сгорает при 700-1000° С, а пары урана горят уже при 150-250° С, с HF уран реагирует при 200-400° С, образуя UF4 и H2. Уран медленно растворяется в концентрированной HF или H2SO4 и 85%-ной H3PO4 даже при 90° С, но легко реагирует с конц. HCl и менее активно с HBr или HI. Наиболее активно и быстро протекают реакции урана с разбавленной и концентрированной HNO3 с образованием нитрата уранила (см. ниже). В присутствии HCl уран быстро растворяется в органических кислотах, образуя органические соли U4+. В зависимости от степени окисления уран образует несколько типов солей (наиболее важные среди них с U4+, одна из них UCl4 - легко окисляемая соль зеленого цвета); соли уранила (радикала UO22+) типа UO2(NO3)2 имеют желтую окраску и флуоресцируют зеленым цветом. Соли уранила образуются при растворении амфотерного оксида UO3 (желтая окраска) в кислой среде. В щелочной среде UO3 образует уранаты типа Na2UO4 или Na2U2O7. Последнее соединение ("желтый уранил") применяют для изготовления фарфоровых глазурей и в производстве флуоресцентных стекол.
См. также КЕРАМИКА ПРОМЫШЛЕННАЯ.
Галогениды урана широко изучались в 1940-1950, так как на их основе были разработаны методы разделения изотопов урана для атомной бомбы или ядерного реактора. Трифторид урана UF3 был получен восстановлением UF4 водородом, а тетрафторид урана UF4 получают разными способами по реакциям HF с оксидами типа UO3 или U3O8 или электролитическим восстановлением соединений уранила. Гексафторид урана UF6 получают фторированием U или UF4 элементным фтором либо действием кислорода на UF4. Гексафторид образует прозрачные кристаллы с высоким коэффициентом преломления при 64° С (1137 мм рт. ст.); соединение летуче (в условиях нормального давления возгоняется при 56,54° С). Оксогалогениды урана, например, оксофториды, имеют состав UO2F2 (фторид уранила), UOF2 (оксид-дифторид урана).
См. также
ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ;
РАДИОАКТИВНОСТЬ;
УРАНИНИТ;
УРАНОВАЯ ПРОМЫШЛЕННОСТЬ.
ЛИТЕРАТУРА
Химия урана. М., 1981 Химия актиноидов. М., т. 1, 1991; т. 2, 1997; т. 3, 1999

Читайте также: