Упрочнение металла в процессе пластической деформации объясняется
Под механическими свойствами металла (или другого материала) понимают характеристики, определяющие его поведение под действием приложенных к нему внешних механических сил в виде статической, динамической или знакопеременной нагрузок.
К механическим свойствам относят прочность - сопротивление металла (сплава) деформации и разрушению и пластичность - способность металла к необратимой без разрушения деформации (остающейся после удаления деформирующих сил).
Деформацией называется изменение размеров и формы тела под действием приложенных сил. Деформация вызывается внешними силами, приложенными к телу, или происходящими в самом теле физико-механическими процессами (например, изменение объема отдельных кристаллитов при фазовых превращениях или вследствие температурного градиента).
Виды напряжений
В случае одноосного растяжения возникающие в теле напряжения равны. Сила Р, (рис. 7) приложенная к некоторой площадке F, обычно направлена к ней под некоторым углом. Поэтому в теле возникают нормальные и касательные напряжения.
Образование внутренних напряжений связано в основном с неоднородным распределением деформаций (в том числе и микродеформаций) по объему тела.
Рекомендуемые материалы
Наличие в испытуемом образце механических надрезов, трещин внутренних дефектов металла приводит к неравномерному распределению напряжений, создавая у основания надреза пиковую концентрацию нормальных напряжений (нормальные напряжения бывают растягивающими и сжимающими) (см. рис. 7). Действие надрезов, сделанных в образце, аналогично конфигурации изделий, имеющих сквозные отверстия, резьбу и т.п., или влиянию внутренних дефектов металла (неметаллических включений, графитных выделений в чугуне, трещин и др.), нарушающих его цельность. Поэтому всевозможные надрезы, отверстия, галтели и другие источники концентрации напряжений называют концентраторами напряжений.
Напряжения вызываются различными причинами. Различают временные, обусловленные действием внешней нагрузки и исчезающие после ее снятия, и внутренние остаточные напряжения, возникающие и уравновешивающиеся в пределах тела без действия внешней нагрузки.
Внутренние напряжения наиболее часто возникают в процессе быстрого нагрева или охлаждения металла вследствие неодинакового расширения (сжатия) поверхностных и внутренних слоев. Эти напряжения называют тепловыми.
Кроме того, напряжения возникают в процессе кристаллизации, при неравномерной деформации, при термической обработке вследствие структурных превращений по объему и т.д., эти напряжения называют фазовыми или структурными.
Внутренние напряжения классифицируют на:
Напряжения 1 рода (или зональные), называемые также макронапряжениями, они уравновешиваются в объеме всего тела, возникают главным образом в результате технологических процессов, которым подвергают деталь в процессе ее изготовления.
Напряжения 2 рода уравновешиваются в объеме зерна (кристаллита) или нескольких блоков (субзерен), их называют иначе микронапряжениями. Чаще всего они возникают в процессе фазовых превращений и деформации металла, когда разные кристаллиты и блоки внутри них оказываются в различном упругонапряженном состоянии.
Напряжения 3 рода, локализующиеся в объемах кристаллической ячейки, представляют собой статические искажения решетки, т. е. смещения атомов на доли ангстрема из узлов кристаллической решетки.
Упругая и пластическая деформация
Упругой называют деформацию, влияние которой на форму, структуру и свойства тела полностью устраняется после прекращения действия внешних сил. Упругая деформация не вызывает заметных остаточных изменений в структуре и свойствах металла; под действием приложенной нагрузки происходит незначительное, полностью обратимое смещение атомов, или поворот блоков кристалла. После снятия нагрузки смещенные атомы вследствие действия сил притяжения или отталкивания возвращаются в исходное равновесное состояние, и кристаллы приобретают первоначальную форму и размеры.
При достижении касательными напряжениями предела или порога упругости деформация становится необратимой. При снятии нагрузки устраняется лишь упругая составляющая деформации. Часть же деформации, которую называют пластической, остается.
Пластическая деформация в кристаллах может осуществляется скольжением и двойникованием. Скольжение - смещение отдельных частей кристалла - одной части относительно другой происходит под действием касательных напряжений, когда эти напряжения в плоскости и в направлении скольжения достигают определенной критической величины.
Схема упругой и пластической деформаций металла с кубической структурой, подвергнутого действию напряжений сдвига, показана на рис.9..
Скольжение в кристаллической решетки протекает по плоскостям и направлениям с наиболее плотной упаковкой атомов, где сопротивление сдвигу (τ ) наименьшее. Это объясняется тем, что расстояние между соседними атомными плоскостями наибольшее, т.е. связь между ними наименьшая.
Чем больше в металле возможных плоскостей и направлений скольжения, тем выше его способность к пластической деформации.
Пластическая деформация металлов с плотноупакованными решетками К12 и Г12, кроме скольжения, может осуществляться двойникованием, которое сводится к переориентировке части кристалла в положение, симметричное по отношению к первой части относительно плоскости, называемой плоскостью двойникования (рис. 8). Двойникование, подобно скольжению, сопровождается прохождением дислокации сквозь кристалл.
Изменение структуры металлов при пластической деформации
Пластическая деформация поликристаллического металла протекает аналогично деформации монокристалла путем сдвига (скольжения) или двойникования. Формоизменение металла при обработке давлением происходит в результате пластической деформации каждого зерна
При больших степенях деформации вследствие скольжения зерна (кристаллиты) меняют свою форму. Так, до деформации зерно имело округлую форму. После деформации в результате смещений по плоскостям скольжения зерна вытягиваются в направлении действующих сил Р, образуя волокнистую или слоистую структуру. Одновременно с изменением формы зерна внутри него происходит дробление блоков и увеличение угла разориентировки между ними.
При больших степенях деформации возникает преимущественная кристаллографическая ориентировка зерен. Закономерная ориентировка кристаллитов относительно внешних деформирующихся сил получила название текстура деформации.
Наклеп. С увеличением степени холодной деформации свойства, характеризующие сопротивление деформации (σв, σ0, 1 твердость и др.), повышаются, а способность к пластической деформации - пластичность(δ и ψ ) уменьшается. Упрочнение металла в процессе пластической деформации получило название наклепа.
Сверхпластичность. Виды, определение, способы получения.
Разрушение металлов
При достаточно высоких напряжениях процесс деформации заканчивается разрушением. Разрушение состоит из двух стадий - зарождения трещины и ее распространения через все сечение образца (изделия). Возникновение микротрещины чаще всего происходит благодаря скоплению движущихся дислокации перед препятствием (границы субзерен, зерен, межфазные границы, всевозможные включения и т. д.), что приводит к концентрации напряжений, достаточных для образования микротрещины.
Разрушение может быть хрупким и вязким. Вязкое разрушение происходит со значительной пластической деформацией; при хрупком разрушении пластическая деформация мала.
Вязкое разрушение обусловлено малой скоростью распространения трещины. Скорость распространения хрупкой трещины велика - близка к скорости звука. Поэтому нередко хрупкое разрушение называют "внезапным" или "катастрофическим" разрушением. Вязкому разрушению соответствует большая работа распространения трещины. При хрупком разрушении работа распространения трещины близка к нулю.
По виду микроструктуры различают разрушение транскристаллитное и интеркристаллитное. При транскристаллитном разрушении трещина распространяется по телу зерна, а при интеркристаллитном она проходит по границам зерен.
Пути повышения прочности, и пластичности, металла
Увеличение прочности металла повышает надежность и долговечность машин (конструкций) и понижает расход металла на их изготовление вследствие уменьшения сечения деталей машин. Реально достигнутая прочность металла (техническая прочность) значительно ниже теоретической.
Под теоретической прочностью понимают сопротивление деформации и разрушению, которое должны бы иметь материалы согласно физическим расчетам сил сцепления в твердых телах. Низкая прочность (сопротивление деформации) металла объясняется легкой подвижностью дислокации. Следовательно, для повышения прочности или необходимо устранить дислокации или повысить сопротивление их движению. Сопротивление их движению дислокации возрастает при взаимодействии их друг с другом и с различного рода другими дефектами кристаллической решетки, создаваемыми при обработке металла.
Дефекты решетки оказывают на сопротивление металла деформации двоякое влияние. С одной стороны, образование в металле дислокации ослабляет металл. С другой стороны, дефекты кристаллического строения упрочняют его, так как препятствуют свободному перемещению дислокации.
Минимальная прочность определяется некоторой критической плотностью дислокации А, приближенно оцениваемой – 10 6 -10 8 см -2 . Эта величина относится к отожженным металлам. Если количество дефектов (плотность дислокации) не превышает величины А, то уменьшение их содержания резко увеличивает сопротивление деформации. Прочность в этом случае быстро приближается к теоретической.
В настоящее время удалось получить кристаллы размером 2-10 мм и толщиной от 0, 5 до 2, 0 мкм, практически лишенные дефектов кристаллической решетки (дислокации). Эти нитевидные кристаллы, названные английскими учеными "усами" (whisker), обладают прочностью, близкой к теоретической. Отсутствие дефектов в усах объясняется условиями их роста и малыми размерами. Увеличение размера усов сопровождается резким снижением прочности. При толщине более 0, 25 мкм усы железа по
Механические свойства при статических испытаниях
К статическим относятся испытания на растяжение, сжатие, кручение и изгиб.
Рис. 8. Диаграмма растяжения металлов
Кривая 1 (рис. 8) характеризует поведение (деформацию) металла под действием напряжений, величина которых является условной, ее вычисляют делением нагрузки Р в данный момент времени на первоначальную площадь поперечного сечения образца (F0).
Кривая 2 описывает поведение (деформацию) металла под действием напряжений S, величина которых является истинной, ее вычисляют делением нагрузки Р в данный момент времени на площадь поперечного сечения образца в этот же момент.
Напряжение, соответствующее точке А, называют пределом пропорциональности (σп.ц). Обычно определяют условный предел пропорциональности, т.е. напряжение, при котором отступление от линейной зависимости между напряжениями и деформациями достигает такой величины, что тангенс угла наклона, образованного касательной к кривой деформации с осью напряжений, увеличивается на 50% от своего значения на линейном (упругом) участке.
Предел упругости определяется как напряжение, при котором остаточная деформация достигает 0, 05% (или еще меньше) от первоначальной длины образца.
Напряжение, вызывающее остаточную деформацию, равную 0, 2 %, называют условным пределом текучести (δ0, 2).
Кроме того, при испытании на растяжение определяют характеристики пластичности. К ним относятся: относительное удлинение и относительное сужение: δ =(lk-l0)*100%/l0 ; ψ =(F0-Fk)*100%/F0, где l0 и lk - длина образца до и после разрушения;
F0 и Fk - площадь поперечного сечения образца до и после разрушения соответственно.
Определение показателей прочности металла σв, σт.
Вязкость разрушения (трещиностойкость) К1С.
Определение твердости HB, HR, HV и микротвердости металлов. Методы, обозначения.
Механические свойства, определяемые при динамических испытаниях: KCV, RCU, KCT.
Порог хладноломкости t50.
Механические свойства при циклических испытаниях: σR, σ-1.
Пластическая деформация металлов
Деформацией называется изменение размеров и формы тела под действием приложенных сил. Деформация делится на упругую и пластическую.
Упругая деформация. Упругой деформацией называют деформацию, влияние которой на форму, структуру и свойства тела полностью устраняется после прекращения действия внешних сил. Упругая деформация не вызывает заметных остаточных изменений в структуре и свойствах металла; под действием приложенной нагрузки происходит только незначительное относительное и полностью обратимое смещение атомов.
Пластическая деформация. При возрастании касательных напряжений выше определенной величины (предел или порог упругости) деформация становится необратимой. При снятии нагрузки устраняется лишь упругая составляющая деформации. Часть же деформации, которую называют пластической, остается.
Пластическая деформация в кристаллах может осуществляться скольжением и двойникованием. Скольжение (смещение) отдельных частей кристалла относительно друг друга происходит под действием касательных напряжений, когда эти напряжения в плоскости и в направлении скольжения достигают определенной критической величины (τк).
Схема упругой и пластической деформаций металла с кубической структурой, подвергнутого действию касательных напряжений, показана на рис. 18. Эта схема дает наглядное представление о смещении атомов в соседних плоскостях при сдвиге на одно межатомное расстояние.
Скольжение в кристаллической решетке протекает по плоскостям, и направлениям с наиболее плотной упаковкой атомов где величина сопротивлению сдвигу (τк) наименьшая, а сама величина τ значительна. Это объясняется тем, что расстояние между соседними атомными плоскостями наибольшее, т. е. связь между ними наименьшая.
Чем больше в металле возможных плоскостей и направлений скольжения, тем выше его способность к пластической деформации. Металлы, имеющие кубическую кристаллическую решетку, обладают высокой пластичностью, так как скольжение в них происходит во многих направлениях. Металлы с гексагональной плотноупакованной структурой менее пластичны и поэтому труднее, чем металлы с кубической структурой, поддаются прокатке, штамповке и другим способам деформации.
Процесс скольжения не следует, однако, представлять как одновременное передвижение одной части кристалла относительно другой. Такой жесткий или синхронный сдвиг потребовал бы напряжений, в сотни или даже тысячи раз превышающих те, при которых в действительности протекает процесс деформации.
Рис. 18. Схема упругой и пластической деформации металла под действием напряжения сдвига:
а – первоначальный кристалл; б – упругая деформация; в – увеличение упругой и пластической деформации, вызванных скольжением, при нагружении, большем предела упругости; г – напряжения, обусловившие появление сдвига (после сдвига сохранилась остаточная деформация); д – образование двойника.
Рис. 19. Движение краевой дислокации, приводящее к образованию ступеньки единичного сдвига на поверхности кристалла:
а – схема движения дислокации; б – краевая дислокация в кристаллической структуре; в – дислокация переместилась на дно; г – на два межатомных расстояния в решетке под влиянием приложенного напряжения; д – выход дислокации на поверхность и появление сдвига.
Скольжение осуществляется в результате перемещения в кристалле дислокаций, что показано на рис. 19. Чтобы дислокация из исходного положения 1 переместилась в соседнее положение 14, не нужно сдвигать всю верхнюю половину кристалла на одно межатомное расстояние.
Достаточно, чтобы произошли следующие перемещения атомов: атом 1 в положение атома 2, атом 3 — в 4, атом 5 — в 6, атом 7 — в 8, атом 9 — в 10, атом 11 — в 12, атом 13 — в 14, атом 15 — в 16 и атом 17 — в 18. Также смещаются атомы не только в плоскости чертежа, но и во всех атомных слоях, параллельных этой плоскости.
Незначительные перемещения атомов в области дислокации приводят к перемещению дислокаций на одно межатомное расстояние.
Следует иметь в виду, что перемещение дислокаций, образовавшихся в процессе кристаллизации, ограничено. Большие деформации возможны только вследствие того, что движение этих дислокаций вызывает появление или размножение большого количества новых дислокаций в процессе пластической деформации.
Двойникование. Пластическая деформация некоторых металлов, имеющих плотноупакованные решетки К12 и Г12, помимо скольжения, может осуществляться двойникованием, которое сводится к переориентировке части кристалла в положение, симметричное по отношению к первой части относительно плоскости, называемой плоскостью двойникования. Двойникование подобно скольжению сопровождается прохождением дислокаций сквозь кристалл.
При большой деформации в результате процессов скольжения зерна (кристаллиты) меняют свою форму. До деформации зерно имело округлую форму, после деформации в результате смещений по плоскостям скольжения зерна вытягиваются в направлении действующих сил τ, образуя волокнистую или слоистую структуру. Одновременно с изменением формы зерна внутри него происходит дробление блоков и увеличение угла разориентировки между ними.
Текстура деформации. При большой степени деформации возникает преимущественная кристаллографическая ориентировка зерен. Закономерная ориентировка кристаллитов относительно внешних деформирующих сил получила название текстуры (текстура деформации).
Наклеп. С увеличением степени деформации свойства, характеризующие сопротивление деформации (σв, σт, НВ и др.), повышаются, а способность к пластической деформации — пластичность (δ и φ) уменьшается. Это явление роста упрочнения получило название наклепа. Упрочнение металла в процессе пластической деформации (наклеп) объясняется увеличением числа дефектов кристаллического строения (дислокаций, вакансий, межузельных атомов).
Все дефекты кристаллического строения затрудняют движение дислокаций, а следовательно, повышают сопротивление деформации и уменьшают пластичность. Наибольшее значение имеет, увеличение плотности дислокаций, так как возникающее при этом взаимодействие между ними тормозит дальнейшее их перемещение. В результате деформации уменьшается плотность, сопротивление коррозии и повышается электросопротивление. Холодная деформация ферромагнитных металлов, например железа, повышает коэрцитивную силу и уменьшает магнитную проницаемость.
Свойства пластически деформированных металлов.
В результате холодного пластического деформирования металл упрочняется и изменяются его физические свойства — электросопротивление, магнитные свойства, плотность. Наклепанный металл запасает 5-10% энергии, затраченной на деформирование. Запасенная энергия тратится на образование дефектов решетки (например, плотность дислокаций возрастает до 10 9- 10 12 см -2 ) и на упругие искажения решетки. Свойства наклепанного металла меняются тем сильнее, чем больше степень деформации (рис. 20).
При деформировании увеличиваются прочностные характеристики (твердость;σв; σ0,2; σупр) и понижаются пластичность и вязкость (δ; φ; ан). Металлы интенсивно наклепываются в начальной стадии деформирования, после 40%-ной деформации механические свойства меняются незначительно. С увеличением степени деформации предел текучести растет быстрее предела прочности (временного сопротивления).
Обе характеристики у сильно наклепанных металлов сравниваются, а удлинение становится равным нулю. Такое состояние наклепанного металла является предельным, при попытке продолжить деформирование металл разрушается.
Путем наклепа твердость и временное сопротивление (предел прочности) удается повысить в 1,5-3 раза, а предел текучести — в 3-7 раз при максимально возможных деформациях. Металлы с ГЦК-решеткой упрочняются сильнее металлов с ОЦК-решеткой. Среди сплавов с ГЦК-решеткой сильнее упрочняются те, у которых энергия дефектов упаковки минимальна (например, интенсивно наклепываются аустенитная сталь; алюминиевая бронза с 7% А1; никель; а алюминий упрочняется незначительно).
Упрочнение при наклепе широко используют для повышения механических свойств деталей, изготовленных методами холодной обработки давлением. В частности, наклеп поверхностного слоя деталей повышает сопротивление усталости. Понижение пластичности при наклепе используют для улучшения обрабатываемости резанием вязких и пластичных материалов (сплавов алюминия, латуней и др.).
Влияние нагрева на структуру и свойства холоднодеформированных металлов.
Неравновесная структура, созданная холодной деформацией у большинства металлов устойчива при комнатной температуре. Переход металла в более стабильное состояние происходит при нагреве. Процессы, происходящие при нагреве подразделяют на две основные стадии: возврат и рекристаллизацию; обе стадии сопровождаются выделением теплоты и уменьшением свободной энергии. Возврат происходит при относительно низких температурах, рекристаллизация — при более высоких.
Возвратом называют все изменения тонкой структуры и свойств, которые не сопровождаются изменением микроструктуры деформированного металла, т. е. размер и форма кристаллов при возврате не изменяются.
Рекристаллизацией называют зарождение и рост новых кристаллов с меньшим количеством дефектов строения; в результате рекристаллизации образуются совершенно новые, чаще всего, равноосные кристаллы.
Возврат. Стадию возврата, в свою очередь, разделяют на две возможные стадии: отдых и полигонизацию. Отдых при нагреве деформированных металлов происходит всегда, а полигонизация развивается лишь при определенных условиях.
Отдыхом холоднодеформированного металла называют стадию возврата, при которой вследствие перемещения атомов уменьшается количество точечных дефектов, в основном вакансий; в ряде металлов, таких как алюминий и железо, отдых включает также переползание дислокаций, которое сопровождается взаимодействием дислокаций разных знаков и приводит к заметному уменьшению их плотности. Перераспределение дислокаций сопровождается также уменьшением остаточных напряжений.
Отдых вызывает значительное уменьшение удельного электросопротивления и повышение плотности металла. Если при отдыхе уменьшается плотность дислокаций, то наблюдается уменьшение твердости и прочности металла (алюминий, железо); если плотность дислокаций при отдыхе не меняется, то отдых не сопровождается изменением механических свойств (медь, латунь, никель).
Полигонизация — это процесс разделения деформированных зерен металла на полигоны — области с малой плотностью дислокаций. Эти области называются блоками. Процесс полигонизации протекает в интервале температур отдых — рекристаллизация и заканчивается созданием блочной структуры.
Полигонизация приводит к дальнейшему снятию упругих искажений кристаллической решетки и более полному восстановлению физических свойств металла. Механические свойства его при этом изменяются незначительно. Текстура сохраняется, хотя и становится блочной.
Вслед за возвратом протекает рекристаллизация, заключающаяся в зарождении и росте новых неискаженных равноосных зерен (рис. 21).
При первичной рекристаллизациив деформированной среде зарождаются и растут равноосные зерна до тех пор, пока полностью не исчезнет текстура, созданная деформацией. Зародышами зерен являются отдельные энергетически выгодные блоки (центры рекристаллизации). После исчезновения текстуры металл приобретает равновесную мелкозернистую структуру.
Суммарная протяженность границ мелких зерен велика. Граничные зоны зерен представляют собой тонкие (в несколько атомных слоев) сильно искаженные области, так как здесь сопрягаются кристаллические решетки различно ориентированных стыкующихся зерен, сюда стекаются точечные дефекты и дислокации. Поэтому граничные зоны зерен и характеризуются высокими значениями энергии (поверхностной энергии), которая уменьшается за счет округления зерен и дальнейшего их роста путем фронтального перемещения граничных зон растущих зерен и поглощения мелких.
Атомы из мелких зерен диффундируют через границу в растущие зерна, отчего первые постепенно исчезают, а вторые разрастаются. В результате число зерен структуры металла уменьшается, а их размеры увеличиваются. Рост одних равноосных зерен за счет исчезновения других представляет собой собирательную рекристаллизацию.
Температура начала рекристаллизации зависит от многих факторов и прежде всего от степени деформации материала и содержания примесей в нем. Определено, что
где Трекр— абсолютная минимальная температура рекристаллизации; α — коэффициент, учитывающий вышеперечисленные факторы; Тпл — абсолютная температура плавления данного вещества.
Минимальная температура рекристаллизации железа и других металлов технической чистоты определяется по формуле А. А. Бочвара:
Термическая операция, заключающаяся в нагреве деформированного (текстурованного) материала до температуры выше Трекр, выдержке и последующем медленном охлаждении (в печи), называется рекристаллизационным отжигом.
Рис. 21. Влияние нагрева на механические свойства и структуру металла, упрочненного деформацией.
Практически температура рекристаллизационного отжига выбирается выше расчетной (обычно на 200. 300°С), так как чем выше температура нагрева, тем быстрее протекает рекристаллизация, характеризующаяся, в частности, уменьшением твердости металла. Для железа и низкоуглеродистой стали температура рекристаллизационного отжига принимается равной 650. 700°С.
Для того чтобы в металле при нагреве протекала рекристаллизация, необходима его хотя бы минимальная предварительная холодная обработка (критическая степень деформации εкр для железа равна 5. 6 %, для малоуглеродистой стали — 7. 15, для меди — около 5, для алюминия — 2. 3 %).
При рекристаллизации после деформирования материала с εкр зерно растет в нем особенно сильно и может увеличиться по сравнению с исходным во много раз. Выбирая степень деформации и температуру рекристаллизационного отжига, можно получить в металле зерно нужного размера. Рекристаллизационный отжиг широко используют для управления формой и размерами зерен, текстурой и свойствами металлов и сплавов.
Создание текстуры и наклеп возможны только в случае холодного деформирования металла. Обработка давлением называется холодной, если она совершается при температурах ниже температуры рекристаллизации, горячей — при температурах выше температуры рекристаллизации.
При горячей обработке давлением одновременно с пластической деформацией металла протекает рекристаллизация, которая продолжается и после деформации до тех пор, пока температура металла не станет ниже Трекр. При этом в металлах не возникает текстура и они не наклепываются. Такая обработка широко используется при производстве горячекатаного стального полуфабриката различного профиля.
Краткие теоретические сведения. Наличие металлической связи придает металлу способность к пластической деформации и к самоупрочнению в результате пластической деформации
Наличие металлической связи придает металлу способность к пластической деформации и к самоупрочнению в результате пластической деформации. Приложение к материалу напряжения (нагрузки) вызывает деформацию.
Деформацией называется изменение размеров или формы тела под действием внешних сил либо физико-механических процессов, протекающих в самом теле (перепад температур, фазовые превращения и т.п.). Деформация тела сопровождается относительным смещением атомов из положения равновесия. Свойства недеформированного и пластически деформи-рованного металла различны.
Различают упругую и пластическую деформацию (рисунок 5.1).
| |
Рисунок 5.1 – Диаграмма деформации | Рисунок 5.2 – Плоскости и направления скольжения в объёмно-центрированной кубической решётке |
Упругой деформацией называют деформацию, влияние которой на форму, структуру и свойства тела исчезают после снятия нагрузки; и она не вызывает заметных остаточных изменений в структуре и свойствах металла.
Способность металлов к остаточной деформации называется пластичностью.
При возрастании касательных напряжений выше определенной величины деформация становится необратимой. При снятии нагрузки исчезают лишь упругая составляющая деформации, часть же деформации, которую называют пластической, остается. При пластической деформации необратимо изменяется структура металла, а следовательно, и его свойства.
В поликристаллических телах пластическая деформация может осуществляться как путем перемещений внутри зерна (внутризёренная), так и смещения зёрен относительно друг друга (межзёренная).
В основе протекания пластической деформации лежит явление зарождения и движения дислокаций под действием касательных напряжений путем сдвига (скольжения) отдельных частей кристалла относительно друг друга по плоскостям с наиболее плотным расположением атомов (рисунок 5.3).
Рисунок 5.3 - Схема сдвига в кристаллах
В металлах с ОЦК решеткой сдвиг происходит по диагональным плоскостям (110) в направлении пространственных диагоналей (111) (могут быть и другие плоскости скольжения).
Пластическая деформация поликристаллических тел происходит весьма неоднородно. Это объясняется двумя обстоятельствами:
1) Различной ориентацией кристаллов относительно приложенной силы, что приводит к неодновременности деформации разных зёрен;
2) Наличием границ зёрен и неметаллических включений, препятствующих перемещению дислокаций и вызывающих их локальное скопление.
Пластическая деформация в основном характеризуется скольжением и двойникованием. В процессе скольжения возникают новые дислокации, и плотность дислокаций увеличивается. В недеформированном кристалле плотность дислокаций достигает 10 6 см -2 ., а в сильнодеформированном металле порядка 10 12 см -2 .
Пластическая деформация некоторых металлов, имеющих плотноупакованные решетки К12 и Г12, кроме скольжения, может осуществляться двойникованием, которое заключается в переориентации части кристалла в положение, симметричное по отношению к первой части, относительно плоскости, называемой плоскостью двойникования.
При деформации поликристалла отдельные зёрна меняют свою форму (вытягиваются), стремятся принять отдельную кристаллографическую ориентировку вдоль направления действия внешних сил. Изменение ориентировки происходит постепенно по мере увеличения степени деформации. При большой деформации металл приобретает определенную кристаллографическую ориентировку зёрен, называемую текстурой.
Рисунок 5.4 - Характер изменения микроструктуры при пластической деформации
При пластической деформации зёрна металла вытягиваются в направлении прокатки, волочения и принимают форму листочков или волокон (рисунок 5.4 б). При больших степенях деформации зёрна разбиваются на большее число фрагментов и блоков, увеличивается травимость металла, и микроструктура выявляется нечетко (рисунок 5.4 в).
Образование текстуры деформации способствует тому, что поликри-сталлический металл становится анизотропным (свойства его изменяются в зависимости от направления испытания). Изменение механических свойств технического железа зависит от степени холодной пластической деформации.
Упрочнение металла в процессе пластической деформации – наклёп объясняется увеличением числа дефектов кристаллического строения (дислокаций, вакансий, межузельных атомов). Пластическая деформация приводит к изменению физических свойств металла: увеличиваются искажения решетки и, следовательно, его внутренняя энергия, растут твердость и прочность, увеличивается электрическое сопротивление, уменьшается пластичность. Деформация происходит не только в результате приложения внешних сил, но и в результате фазовых превращений. Все они приводят к наклёпу.
Наклёпанные металлы более склонны к коррозионному разрушению при эксплуатации.
С увеличением степени холодной деформации характеристики прочности (предел прочности, предел текучести, твёрдость) возрастают, а характеристики пластичности падают. После деформирования у металла со степенью деформации до 70 % предел прочности и твёрдость возрастают до 3 раз, а предел текучести - до 8 раз, при этом относительное удлинение снижается до 40 раз.
Рисунок 5.5 - Влияние нагрева на механические свойства и структуру деформированного металла
Структурное состояние пластически деформированного металла термодинамически неустойчивое. При нагреве пластически деформированный металл постепенно восстанавливает свою структуру и снова переходит в устойчивое состояние. Степень и характер деформации, температура, скорость и продолжительность нагрева влияют на устранение наклёпа и изменения в структуре и свойствах металла. Различают две стадии процесса при нагреве: возврат (отдых и полигонизация) и рекристаллизация (первичная, собирательная и вторичная) (рисунок 5.5).
Возврат - начальная стадия разупрочнения, связанная с изменениями в тонкой кристаллической структуре.
Возврат I-го рода (или отдых) происходит при нагреве до относительно невысоких температур и приводит к частичному снятию упругих искажений в решётке. При отдыхе в металле протекает ряд элементарных процессов, основным из которых следует считать диффузию точечных дефектов и их смещение к дислокациям.
Возврат II-го рода или полигонизация заметно меняет структуру деформированного металла при нагреве. Под полигонизацией понимают перераспределение дислокаций, приводящее к образованию областей кристалла, свободных от дислокаций и отделенных друг от друга поверхностями раздела.
Первичная рекристаллизация. Является следующей стадией изменения структуры деформированных металлов после полигонизации (рисунок 5.5).
Рекристаллизация, т. е. образование новых зёрен, протекает при более высоких температурах, чем возврат и полигонизация, может начаться с заметной скоростью после нагрева выше определенной температуры. Сопоставление температур рекристаллизаций различных металлов показывает, что между минимальной температурой рекристаллизации и температурой плавления существует простая зависимость
где Tp – абсолютная температура рекристаллизации;
Tпл – абсолютная температура плавления;
α – коэффициент, зависящий от чистоты металла
Чем выше чистота металла, тем ниже температура рекристаллизации. У металлов обычной технической чистоты а = 0,3 - 0,4. Температура рекристаллизации сплавов, как правило, выше температуры рекристаллизации чистых металлов и в некоторых случаях достигает 0,8 Тпл. Наоборот, очень чистые металлы имеют низкую температуру рекристаллизации: 0,2 Тпл и даже 0,1 Тпл.
В деформированном металле формируются и растут центры рекристаллизации - участки с неискажённой решеткой, отделенные от матрицы границами с большими углами разориентировки. При критической деформации имеется неоднородность наклёпа разных зерен; и она настолько большая, что из-за разности в накопленной объёмной энергии соседних зёрен при нагреве идёт быстрая миграция отдельных границ на расстояния, соизмеримые с размерами зёрен, т.е. исходные зёрна растут за счёт соседей. Кроме того, плотность дислокаций и избыток дислокаций одного знака недостаточны, чтобы вызвать образование новых высокоугловых границ и центров первичной рекристаллизации.
Собирательная рекристаллизация возникает после первичной, точнее после того, как выросшие центры рекристаллизации приходят во взаимное соприкосновение. Она заключается в равномерном укрупнении структуры путём роста одних зёрен за счёт других, новых и происходит в результате перемещения границ.
Вторичная рекристаллизация протекает в материале при высокой температуре и очень большом увеличении продолжительности отжига. Она заключается в резком избирательном росте отдельных рекристаллизованных зёрен и сопровождается появлением разнозернистости. Этой стадии способствуют следующие факторы:
1) разная величина объёмной энергии у зёрен, менее искажённые зёрна растут за счёт более искажённых;
2) высокая подвижность границ одних зёрен по сравнению с другими, что может быть вызвано разными причинами. Одна из них – неравномерное распределение дисперсных включений по границам зёрен. Границы, которые высвобождаются, в первую очередь, интенсивно мигрируют в направлении уменьшения поверхностной энергии, что создаёт благоприятные условия для ускоренного роста отдельных зёрен.
Если температура деформации ниже температуры рекристаллизации, то деформация считается холодной. Процесс холодной деформации сопровождается наклепом металла, так как малые температуры не обеспечивают разупрочнения металла, механические свойства металлов при холодной деформации изменяются значительно: возрастает прочность и уменьшается пластичность.
Если температура деформации выше температуры рекристаллизации, то деформацию называют горячей. Получаемое в процессе горячей деформации упрочнение тут же полностью или частично снижается за счет рекристаллизации, что снижает сопротивление деформации и повышает пластичность металлов.
Размер зерна рекристаллизованного металла зависит от следующих факторов: размера исходного зерна; степени деформации; температуры и скорости нагрева; длительности выдержки; наличия растворимых и нерастворимых примесей (химического состава сплава).
Процесс рекристаллизации подтверждается рентгенографическим анализом. Линии на рентгенограммах, снятых с неподвижного деформированного образца получаются сплошными и размытыми. По мере снятия напряжений при повышенных температурах на стадии возврата линии становятся чётче и тоньше. Как только начинается процесс рекристаллизации, и в структуре появляются рекристаллизованные зерна, на сплошной линии рентгенограммы возникают отдельные рефлексы. По мере уменьшения поля нерекристаллизованных участков металла число рефлексов на рентгенограмме увеличивается, а сплошной фон линии постепенно исчезает.
Сверхпластичностью называют способность металлов и сплавов к значительной равномерной деформации, при которой относительное удлинение достигает сотен и тысяч процентов. Это явление впервые было обнаружено А.А. Бочваром и З.А. Свилерским на сплавах, содержащих 22 % цинка.
Для того, чтобы сплавы приобрели сверхпластичность, необходимо получить ультрамелкозернистую структуру. Такое структурное состояние достигается путем соответствующей термической обработки. В последние годы сверхпластичность используется в производстве различных деталей и заготовок весьма сложной формы при помощи пневматического формования листов или объёмного прессования.
Различают несколько видов сверхпластичности:
1) мелкозернистая сверхпластичность проявляется при повышенных
температурах не ниже, чем 0,4 Тпл (при очень мелком зерне размером в диаметре от 3 до 5 мкм и при малой скорости деформирования до 10 -4 с -1 );
2) субкритическая сверхпластичность. Имеет место при температурах вблизи (ниже) температуры фазовых превращений и при определённой исходной структуре;
3) мартенситная сверхпластичность при так называемом мартенситном (сдвиговом, бездиффузионном) превращении наблюдается повышенная пластичность;
4) рекристаллизационная сверхпластичность.
Обычно сопротивление деформации объединяют в общее понятие прочность, а сопротивление разрушению - надёжность. Если разрушение происходит не за один, а за многие циклы нагружения, причем за каждый цикл происходит микроразрушение (сюда относятся такие процессы постепенного разрушения, как износ, усталость, коррозия, ползучесть), то это характеризует долговечность материала.
Физические основы пластической деформации
1.1. Общие сведения об обработке металлов давлением
В основе всех процессов обработки металлов давлением (ОМД) лежит способность металлов и их сплавов под действием внешних сил пластически деформироваться, т. е., не разрушаясь, необратимо изменять свою форму и размеры. При этом изменяется структура металла, его механические и физические свойства.
Обработка металлов давлением известна с древнейших времен. Холодная ковка самородной меди и метеоритного железа была известна еще до того, как люди начали добывать металлы из руд (VII в. до н. э.). Техника обработки металлов давлением получила развитие в X. XIII веках, когда кузнецы научились изготавливать многослойные мечи и топоры со стальными закаливаемыми лезвиями, а также предметы бытового назначения, инструменты и ремесленные приспособления. Ручная ковка была исторически первым из применяемых до сих пор способов формоизменяющей обработки металлов. Первый паровой молот, появившийся в 1843 г., деформировал металл силой падения груза, а для поднятия которого использовался пар. В 1888 г. появился молот двойного действия, у которого верхняя «баба» при движении вниз дополнительно разгонялась силой пара. Прокатка металлов возникла позже ковки и волочения. Первые сведения о прокатке относятся к XV в. (прокатка свинцовых полос). Основоположником современных методов прокатки принято считать английского изобретателя Г. Корта, изготовившего первый прокатный стан в 1783 г.
В настоящее время давлением обрабатывают около 90 % всей выплавляемой в мире стали, а также большое количество цветных металлов и их сплавов (до 60 %). В машиностроении наиболее широко применяется штамповка (горячая объемная и листовая). В современном автомобиле насчитывается до 90 % штампованных деталей (облицовочные детали, детали подвески, колесные диски, валы и шестерни коробки передач, детали двигателя (поршни, шатуны, коленчатые и распределительные валы, клапаны), тормозные колодки, бензобаки, глушители и др.), половина из которых не подвергается никаким другим видам обработки, в тракторе — 70 %. Современные двигатели конструктивно состоят из деталей (до 100 %), полученных ОМД.
Обработка металлов давлением — группа методов получения полуфабрикатов или изделий требуемых размеров и формы путем пластического деформирования заготовок за счет приложения внешних усилий.
Основными процессами ОМД являются: прокатка, прессование, волочение, ковка, объемная и листовая штамповка. По назначению они подразделяются на следующие две группы:
1. Процессы ОМД, направленные на получение машиностроительных профилей — изделий постоянного поперечного сечения по их длине (прутков, труб, проволоки, лент, листов и др.). К этим процессам относятся прокатка, прессование и волочение. Изделия, полученные этими методами, применяются в строительных конструкциях или в качестве заготовок для последующего изготовления из них деталей другими методами (резанием, ковкой, штамповкой и т. д.).
2. Процессы ОМД, направленные на получение машиностроительных заготовок, которые имеют форму и размеры, приближенные к готовым деталям, и только в рядечсалеув требуют обработки резанием для придания им окончательных размеров и получения необходимого качества поверхности. К этим процессам относятся ковка и штамповка.
При ОМД, во-первых, достигается получение изделий сложной формы из заготовок простой формы и, во-вторых, улучшается кристаллическая структура исходного литого металла и повышаются его физико-механические свойства.
Преимуществами методов ОМД являются следующие:
1) низкая трудоемкость процессов и, следовательно, их высокая производительность;
2) рациональное использование металла (коэффициент использования металла (КИМ) приближается к единице);
3) стабильность размеров и относительно высокая точность изготавливаемых деталей при большой сложности их форм;
4) универсальность используемого прессового оборудования;
5) возможности для механизации и автоматизации технологических процессов;
6) простота осуществления процесса.
Главными недостатками методов ОМД являются следующие: относительно высокая стоимость инструмента (в условиях серийного производства она составляет до 14 % от себестоимости деталей), а также сложность и уникальность прессового оборудования.
1.2. Сущность пластической деформации
Следует отметить, что металлы характеризуются наличием металлической связи, когда в узлах атомно-кристаллической решетки расположены положительно заряженные ионы, окруженные электронным газом. Наличие такой металлической связи и придает металлу способность подвергаться пластической деформации.
Пластичность — свойство твердого тела под действием внешних сил или внутренних напряжений, не разрушаясь, необратимо изменять свою форму и размеры. Такое изменение формы и размеров металлического тела называют пластической деформацией.
Деформация — изменение формы и размеров твердого тела под влиянием приложенных внешних сил. Деформация может быть упругой, исчезающей после снятия нагрузки, и пластической, остающейся после снятия нагрузки.
Механизмы пластической деформации. Как бы не были малы приложенные к металлу усилия, они вызывают его деформацию. Начальные деформации всегда являются упругими, и величина их находится в прямой зависимости от нагрузки (закон Гука). При упругой деформации под действием внешних сил изменяются расстояния между атомамилвликчреисктоай решетке. После снятия нагрузки атомы под действием межатомных сил возвращаются в исходное положение, и металл восстанавливает свои первоначальные размеры и форму.
Скольжение. При пластической деформации одна часть кристалла необратимо сдвигается по отношению к другой на целое число периодов атомно-кристаллический решетки — смещается по так называемым плоскостям сдвига (скольжения). Следует отметить, что ими являются кристаллографические плоскости, в которых находится наибольшее количество атомов. Расположение этих плоскостей зависит от типа атомно-кристаллической решетки металла. У aжелеза, вольфрама, молибдена и других металлов с объемноцентрированной кубической (ОЦК) решеткой имеется шесть плоскостей сдвига (в каждой из них имеется по два направления сдвига) и так называемая система скольжения (имеет 6 × 2 = 12 элементов сдвига) (рис. 2.1, а). При этом g-железо, медь, алюминий и другие металлы с гранецентрированной кубической (ГЦК) решеткой имеют четыре плоскости сдвига с тремя направлениями скольжения в каждой, т. е. 4 × 3 = 12 элементов сдвига (рис. 2.1, б). У цинка, магния и других металлов с гексагональной плотноупакованной (ГПУ) решеткой имеется одна плоскость с тремя направлениями скольжения, т. е. три элемента сдвига (рис. 2.1, в). Чем больше элементов сдвига в решетке, тем выше пластичность металла.
Рис. 2.1. Плоскости и направления (заштрихованные плоскости) сдвига в кристаллической решетке: а — ОЦК; б — ГЦК; в — ГПУ
Наиболее легкий сдвиг по определенным плоскостям и направлениям объясняется тем, что при таком перемещении атомов из одного устойчивого равновесного положения в другое значения затрачиваемых усилий будут минимальными, и, следовательно, будут наименьшими необходимые для этого затраты энергии.
Если нагрузку снять, перемещенная часть кристалла не возвратится на старое место и деформация сохранится. Наличие плоскостей скольжения в кристалле подтверждается при микроструктурном исследовании пластически деформированных металлов.
Двойникование. Скольжение или сдвиг по определенным кристаллографическим плоскостям является основным, но не единственным механизмом пластической деформации металлов. При некоторых условиях пластическое деформирование может также происходить путем двойникования. При пониженных температурах у металлов с ОЦК решеткой наблюдается переход от механизма скольжения к механизму двойникования. Сущность двойникования заключается в том, что под действием касательных напряжений одна часть зерна оказывается смещенной по отношению к другой части, занимая симметричное положение и являясь как бы ее зеркальным отражением (рис. 2.2).
Дислокационный механизм пластической деформации. Процесс скольжения не следует представлять как одновременное передвижение одной части кристалла относительно другой. Такой жесткий или синхронный сдвиг потребовал бы напряжений в сотни или даже тысячи раз превышающие по величине те, при которых в действительности протекает процесс
Рис. 2.2. Схема процесса двойникования
пластической деформации. В реальных металлах сдвигас(птилче ское деформирование) происходит при напряжениях, величина которых меньше теоретических в сотни и тысячи раз (например, для железа tтеор ≈ 2 600 МПа, а tреал ≈ 290 МПа, для меди
tтеор ≈ 1 540 МПа, а tреал ≈ 1 МПа). Такое расхождение объясняется дислокационным механизмом пластической деформации.
При дислокационном механизме пластической деформации скольжение осуществляется в результате перемещения в кристалле дислокации, когда сдвиг происходит последовательно от атома к атому вблизи ядра дислокации. В этом случае усилие сдвига значительно меньше, чем при одновременном сдвиге всех атомов.
Данный процесс можно объяснить с помощью моделей движения гусеницы (рис. 2.3, а) и перемещения ковра (рис. 2.3, б).
Рис. 2.3. Дислокационный механизм пластической деформации: а — модель движения гусеницы; б — модель перемещения ковра
Гусеница перемещается путем последовательного подъема одной пары ног и перестановки их в новое место, а не за счет подъема всех ног одновременно и перемещения на шаг. Когда
все ноги гусеницы последовательно выполнят эту операцию, то она переместится на шаг (такой режим движения требует от нее значительно меньших усилий). Аналогичным образом происходит перемещение ковра по полу в случае прокатывания на нем складки, что требует значительно меньших усилий, чем, транспортировка ковра целиком.
Дислокационный механизм пластической деформации объясняетсядсулюещим образом. Атомы, расположенные в поле дислокации, возбуждены (их энергия повышена) и выведены из устойчивого положения равновесия с минимальной свободной энергией. Такое состояние кристалла является метастабильным. Поэтому для того чтобы ограниченная группа атомов в области дислокации сдвинулась и заняла новое устойчивое положение равновесия, достаточно приложить существенно меньшее напряжение, чем при их синхронном сдвиге, т. е. совершить незначительную работу и затратить при этом минимум энергии.
Механизм перемещения дислокации на атомном уровне представлен на рисунке 2.4.
Рис. 2.4. Схема перемещения дислокаций
Следует отметить, что силы взаимодействия атомов зависят от расстояния. В зоне дислокации расстояния атомов 3 и 4 от краевого атома 1 экстраплоскости 1 – 1 1 увеличены и связи между этими атомами утрачены. Под действием сдвигающей силы Р смещение плоскостей приводит к уменьшению расстояния 1 – 4 и увеличению расстояния 2 – 4. В результате этого связь между атомами 1 и 4 восстанавливается, а между атомами 2 и 4 обрывается. Дислокация перемещается на одно межатомное расстояние.
Таким образом, движение дислокации — это процесс последовательного разрыва и восстановления связей в кристаллической решетке. В результате пробега дислокации от одной границы кристалла до другой происходит смещение части кристалла на одно межатомное расстояние. Из совокупности пробегов дислокаций складывается общая деформация кристаллического тела.
1.3. Наклеп и рекристаллизация
Пластическая деформация поликристаллических тел (металлов и сплавов) имеет некоторые особенности по сравнению с пластической деформацией одного зерна (монокристалла). В поликристаллическом металле зерна (следовательно, и плоскости скольжения) имеют различную ориентировку (рис. 2.5, а). Из-за влияния соседних зерен деформирование каждого зерна не может совершаться свободно. Пластическая деформация на первой стадии начинается тогда, когда действующие напряжения превысят предел упругости. На первой стадии пластическая деформация может происходить лишь в отдельных зернах с благоприятной ориентировкой, у которых плоскости легкого скольжения совпадают с направлением максимальных касательных напряжений. В каждом зерне сдвиг происходит последовательно: сначала по одной плоскости, затем по другой и т. д. Кроме сдвига, происходит и поворот смещенных частей зерна в направлении уменьшения угла между направлениями плоскостей скольжения и направлением растягивающих сил. В результате сдвигов и поворота плоскостей скольжения зерно постоянно вытягивается в направлении растягивающих сил (рис. 2.5, б). Зерна удлиняются настолько, что напоминают волокна, поэтому структура деформированного металла называется волокнистой (рис. 2.5, в). Дальнейшая деформация (вторая стадия) приводит к дроблению зерен.
Рис. 2.5. Схема образования текстуры в поликристаллитном теле: а — исходное расположение зерен; б — изменение формы зерен при пластической деформации; в — текстура металла после деформации
В процессе межзеренных и внутризеренных сдвигов происходит искажение кристаллической решетки, удлинение и поворот зерен, их последующее дробление, что, в конечном итоге, затрудняет дальнейшее скольжение. Это вызывает возрастание сопротивления деформации. Кроме того, неравномерная деформация отдельных зерен приводит к возникновению внутренних напряжений, которые так же вызывают увеличение сопротивления деформации.
При холодной пластической деформациимиезнения структуры приводят к повышению твердости НВ и предела прочности металла σв, а также понижению его пластических (относительное удлинение δ) и вязкостных (ударная вязкость КС) свойств (рис. 2.6). Чем больше величина пластической деформации ε, тем значительнее эти изменения.
Рис. 2.6. Влияние степени деформации на механические свойства металлов
Изменение свойств и структуры металла в результате пластической деформации в холодном состоянии называется наклепом или упрочнением. Интенсивность нарастания наклепа по мере увеличения степени деформации неодинакова (в начальный момент деформирования она резко увеличивается, а затеммзеадляется ).
Наклеп не всегда является отрицательным фактором, затрудняющим процесс получения заготовки пластическим деформированием. Иногда его используют для получения изделия с необходимыми полезными свойствами (часто в сочетании с последующей термической обработкой). Так, холодной пластической деформацией можно в 2. 3 раза повысить предел прочности (особенно предел текучести). Например, гвозди должны быть изготовленыти могу применяться только из наклепанного металла. Гвозди, у которых наклеп снят термической обработкой (побывавшие в печи), к применению непригодны.
Следует отметить, что наиболее прочным материалом в современной технике является нагартованная (упрочненная) стальная проволока (в немецком языке слово hard означает твердость), получаемая в результате холодного волочения при ε = 80. 90 % и имеющая σв = 3 000. 4 000 МПа. Такая высокая прочность не может быть достигнута легированием и термической обработкой.
Понижение пластических свойств наклепанного металла может быть очень значительным. Например, у низкоуглеродистой стали относительное удлинение δ уменьшается почти в 6 раз (с 30. 35 до 5. 6 %).
При определенной степени деформации металл утрачивает пластичность настолько, что дальнейшее деформирование внешним усилием может привести к его разрушению.
Возврат и рекристаллизация. Деформированный металл по сравнению с недеформированным находится в неравновесном состоянии. В таком металле даже при комнатной температуре могут самопроизвольно протекать процессы, приводящие его в более устойчивоеувтнреннее состояние. При повышении температуры скорость таких процессов возрастает.
При нагреве до сравнительно низких температур протекает процесс возврата, т. е. снятие микронапряжений и частично искажений кристаллической решетки. Изменений структуры при этом еще не наблюдается. Возврат несколько изменяет свойства наклепанного металла (понижается его прочность и повышается пластичность). Возврат происходит при температуре (0,2. 0,3) Тпл, °K.
При дальнейшем нагреве в результате теплового воздействия происходит перестройка кристаллов деформированного тела, зарождение новых зерен (кристаллов) и их рост. Такой процесс называется рекристаллизацией.
В результате рекристаллизации (рис. 2.7) образуются совершенно новые зерна, с неискаженной кристаллической решеткой. Размеры новых зерен могут сильно отличаться от исходных. Образование новых зерен приводит к резкому снижению плотности дислокаций и высвобождению энергии, накопленной при пластической деформации металла. В результате рекристаллизации металл разупрочняется и восстанавливает свои первоначальные свойства, а его зерна становятся равноосными.
Рис. 2.7. Изменения микроструктуры деформированного металла при нагреве:
а — наклепанный металл; б — начало первичной рекристаллизации; в — завершение первичной рекристаллизации; г, д — стадии собирательной рекристаллизации
Пластически деформированные металлы могут рекристаллизоваться лишь после деформации, степень которой превышает определенное критическое значение, которое называется критической степенью деформации. Для алюминия она составляет ~2 %, для железа и меди — ~5 %. Если степень деформации меньше критической, то зарождения новых зерен при нагреве не происходит.
Наименьшая температура нагрева, обеспечивающая возможность зарождения новых зерен, называется температурой рекристаллиза- ции Трекр. Рекристаллизация для технически чистых металлов происходит при температурах Трекр ≥ 0,4 Тпл, °K. Температура рекристаллизации Трекр. некоторых металлов представлена в таблице 2.1.
Читайте также: