Ультразвуковой контроль толщины металла
Вся технология ультразвукового контроля (УЗК) построена на простом физическом законе: траектория движения звуковых волн в однородной среде остаётся неизменной. Подповерхностные дефекты являются отражателями УЗ-волн. При помощи дефектоскопа и пьезоэлектрического преобразователя (ПЭП) в материал вводятся упругие колебания с частотой более 20 кГц (чаще всего - от 0,5 до 10 МГц). Они исходят от излучателя, преломляются в призме (в наклонных ПЭП), входят в объект контроля (ОК), преломляясь ещё раз на границе раздела, и дальше отражаются от дефектов (если таковые имеются) либо донной поверхности (если таковых нет). По амплитуде и времени прихода эхо-сигнала можно судить о размерах и глубине залегания отражателя. Конечно, это очень грубое, упрощённое описание технологии. На деле возникают тысячи нюансов. Среди опытных дефектоскопистов есть даже такое выражение: чем больше знаешь УЗК, тем меньше знаешь УЗК.
Ультразвуковой метод контроля предполагает использование продольных, поперечных, нормальных, подповерхностных и головных волн. У первых - самая высокая скорость. Они генерируются прямыми и, реже, наклонными ПЭП. Поперечные волны могут создавать только наклонные искатели - совмещённые и раздельно-совмещённые. Они же могут применяться для контроля нормальными волнами (преимущественно для УЗК листов и прутков), поверхностными (контроль такими волнами подходит в качестве альтернативы ПВК и МПД) или головными (для выявления подповерхностных дефектов в основном металле и наплавках на глубине 2-8 мм).
Другая важная характеристика упругих колебаний – длина волны. Чем она выше, тем выше разрешающая способность и, следовательно, чувствительность. Правда, пропорционально ей растёт и затухание (уменьшение энергии колебаний). Чем меньше длина волны - тем выше частота. Чем выше частота - тем выше чувствительность. При работе с толстостенными и крупнозернистыми материалами это чревато увеличением затухания, но об этом позже.
Для чего проводят ультразвуковой контроль
- обнаруживать подповерхностные дефекты – поры, пустоты, расслоения в наплавленном металле, трещины, шлаковые и иные включения;
- выявлять очаги коррозионного поражения;
- определять неоднородность структуры материалов;
- оценивать качество сварных, паяных, клееных соединений практически любых типов (тавровых, нахлёсточных, кольцевых, стыковых, угловых), в том числе – соединений разных материалов;
- измерять глубину залегания дефектов и их размеры.
В силу всех этих факторов ультразвуковой контроль всё чаще противопоставляют радиографическому. В пользу первого говорит ещё и то, что он безвреден для человеческого здоровья. Приборы для УЗК хороши своей портативностью, удобство работы в полевых условиях, большим многообразием датчиков, призм, сканеров и прочих принадлежностей для самых разных задач дефектоскопии.
- существенные ограничения при сканировании материалов с крупнозернистой структурой и высоким коэффициентом затухания. Это объясняется слишком интенсивным рассеиванием колебаний. К таким «проблемным» материалам относятся, например, аустенитная сталь, титан, чугун и сплавы с повышенным содержанием никеля;
- сложность при проведении контроля соединений разнородных материалов;
- ограниченная пригодность к дефектоскопии объектов сложной конфигурации;
- относительно низкая точность при оценке реальных размеров дефектов. Условная протяжённость, как правила, равна фактической протяжённости или, чаще всего, превышает её. С измерениями условной ширины и высоты сложнее - они коррелируют с реальными значениями ещё хуже. Именно поэтому ряд НТД не предусматривают определение условной ширины и высоты (тем не менее, данные результаты могут пригодиться для определения типа дефекта по коэффициенту отношения условной ширины к высоте и для классификации дефектов на развитые и не развитые по высоте). Данная проблема успешнее решена в технологиях ФР и TOFD, о которых написано ниже.
Ультразвуковой контроль сварных соединений: последовательность действий
1) зачистку металлической поверхности – сварного шва и околошовной зоны – от краски, ржавчины, окалины, загрязнений. После этого наносится разметка. При использовании мерительного пояса - обозначение начала и направление отсчёта координат. При его отсутствии - разделение на участки по 300-500 мм (если на ОК заложен РК - то лучше делать разметку сообразно с размером рентгеновской плёнки);
2) настройку чувствительности, амплитудной и временной шкалы дефектоскопа. Для начала - необходимо проверить (и при необходимости - скорректировать) точку выхода, стрелу, угол ввода, мёртвую зону, задержку в призме ПЭП. Затем необходимо правильно задать дефектоскопу параметры ОК - толщину, скорость распространения УЗ-волны, поправку на шероховатость и на затухание, выбрать единицу измерений для горизонтальной шкалы (обычно - в мм глубины). Далее - настроить временную регулировку чувствительности (для "выравнивания" эхо-сигналов от одинаковых отражателей на разной глубине) либо АРД-диаграммы (для определения эквивалентной площади отражателей). Задать опорный (браковочный уровень), поправку чувствительности (если таковая предусмотрена - в зависимости от того, по какому искусственному отражателю выполнялась настройка), выставить поисковое усиление, контрольный уровень (уровень фиксации) и браковочный уровень. Наконец, необходимо выставить усиление и масштаб развёртки, чтобы эхо-сигнал от опорного отражателя достигал 50-80% высоты экрана - кому как удобнее;
3) непосредственное прозвучивание объекта. Прижимая датчик к поверхности, оператор выполняет возвратно-поступательные поперечно-продольные либо продольно-поперечные движения с поворотом датчика на 10-15 градусов (для наклонного ПЭП) или вращением (для прямого ПЭП). В процессе прозвучивания нужно следить за тем, чтобы шаг перемещения пьезоэлектрического преобразователя не превышал 2-3 мм и не осталось пропущенных участков. Важно следить за осцилляциями сигналов на экране дефектоскопа - чтобы не пропустить эхо-сигналы, которые достигли контрольного уровня. Здесь-то и подтверждает свою полезность звуковая и световая АСД;
4) сохранение результатов, передача на ПК. Современные дефектоскопы позволяют "замораживать" изображение развёртки для последующего анализа. Либо - можно сразу наносить разметку мелом или маркером на поверхности ОК в местах выявленных дефектов;
5) расшифровку данных, оформление заключения. Обычно дефекты классифицируются на допустимые и недопустимые по амплитуде, протяжённые и непротяжённые, поперечные, в корне и в сечении шва. Формат заключения/протокола/акта по результатам УЗК утверждается в нормативно-технической документации на контроль и согласовывается с заказчиком. Запись дефектов осуществляется с использованием условных обозначений, указанием глубины залегания, координат относительно начала отсчёта, амплитуды, протяжённости и пр. Чтобы упростить выборку дефекта и ремонт ОК, рекомендуется указывать начальные и конечные координаты каждого дефекта. В зависимости от того, какие дефекты обнаружены и какими параметрами они обладают, объект контроля относят к категории "годен", "ремонтировать" или "вырезать".
На каких объектах практикуется ультразвуковой контроль
- магистральные и технологические трубопроводы газа, пара, нефти, нефтепродуктов и прочих рабочих сред;
- оболочки реакторных установок;
- рельсы, стрелочные переводы, колёсные пары, боковые рамы;
- литые детали тележек грузовых вагонов;
- обшивка сосудов, работающих под давлением;
- корпуса насосов и многое-многое другое.
Виды ультразвукового контроля
- теневой. По обе стороны ОК, перпендикулярно к его поверхности устанавливаются два преобразователя, один выполняет функцию излучателя, второй служит приёмником. При наличии инородной среды (несплошности) образуется глухая зона, что позволяет судить о наличии дефекта;
- эхо-импульсный. Самый популярный метод. Повсеместно применяется для ультразвукового контроля сварных соединений. Система "дефектоскоп-преобразователь" одновременно и возбуждает, и принимает упругие колебания. Если они беспрепятственно проходят через материал и отражаются только от донной поверхности, значит, дефектов нет. Если есть - то возникает эхо-сигнал (впрочем, он может быть и ложным либо возникнуть вследствие структурных помех, но речь не об этом). Способ привлекателен тем, что подходит для объектов с односторонним доступом, может проводиться даже без снятия усиления, но требует зачистку поверхности, а в контактном варианте - ещё и нанесения контактной жидкости (хотя есть щелевой и иммерсионный способы акустического контакта);
- эхо-зеркальный. Излучатель и приёмник разделены и расположены по одну сторону от исследуемого объекта. Волны излучаются под углом и, отражаясь от дефектов, фиксируются приёмником. «Тандем» как метод ультразвукового контроля особенно эффективен для выявления вертикальных дефектов, перпендикулярных сканируемой поверхности. Чаще всего к таковым относятся трещины и непровары в корневой зоне сварного шва;
- зеркальной-теневой. Аналогичен обычному теневому, но отличается от него тем, что излучатель и приёмник располагаются по одну сторону сварного соединения. Признаком дефекта также является уменьшение амплитуды прошедшего сигнала;
- дельта-метод. Данный вид ультразвукового контроля применяется редко – когда к качеству сварных соединений предъявляются особо жёсткие требования. Технология предполагает трудоёмкую, очень тонкую настройку дефектоскопа. Расшифровка результатов требует от специалиста особой подготовки. При всех недостатках у этого метода есть очень важное преимущество – повышенная чувствительность к вертикально-ориентированным трещинам, не всегда доступным для выявления стандартным эхо-методом. Дельта-метод основан на регистрации дифрагированных волн, переизлучённых "блестящими точками" - краями несплошности;
- велосиметрический. Основан на том, чтобы зафиксировать и проанализировать изменение скорости колебаний в дефектной зоне. Обычно применяется для композиционных материалов;
- ревербационно-сквозной. Также используется для ультразвукового контроля композитных, полимерных и многослойных материалов. Излучатель и приёмник располагаются по одну сторону объекта, на небольшой дистанции друг от друга. Волны посылаются в материал и после многократных отражений «добираются» до приёмника. Стабильные отражённые сигналы свидетельствуют об отсутствии дефекта. В противном случае наблюдается изменение амплитуды и спектра принятых сигналов.
Заканчивая этот блок, нельзя не сказать и об ультразвуковой толщинометрии (УЗТ). Измерение толщины металла – один из ключевых способов коррозионного мониторинга. По результатам УЗТ можно судить об остаточном ресурсе конструкции (механизма, оборудования и пр.).
Как и в ультразвуковом контроле, принцип построен на использовании импульсов, которые излучает преобразователь. Прибор измеряет скорость, за которую они проходят через стенку. Если конкретнее, то известно 3 основных режима:
1) однократного эхо-сигнала. Измеряется время, которое проходит между начальным импульсом возбуждения и первым эхо-сигналом. Значение корректируется с учётом толщины протектора ПЭП, компенсации степени изнашивания и слоя контактной среды;
2) однократного эхо-сигнала линии задержки. Измеряется время от конца линии задержки до первого донного эхо-сигнала;
Дефектоскопы и другое оборудование для ультразвукового метода контроля
Современные дефектоскопы хороши не только своей портативностью, удобством применения в полевых условиях и на большой высоте. Гораздо важнее – обширный набор функций и многообразие индивидуальных пользовательских настроек. В зависимости от модификации УЗК-дефектоскоп может отображать на своём дисплее А-, В-, С-, D-, S-, L-сканы (последние два - в дефектоскопах на фазированных решётках), вплоть до построения 3D-моделей профиля изделий.
- фазированных решётках (ФР). Имеются в виду особые датчики (кристаллы), на поверхности которых с определённым шагом расположены 16, 32, 64 или 128 элементов. Каждый из них излучает волны с определённой задержкой. Корректируя этот «сдвиг по фазе», можно получить фронт волны с определённым углом. В этом и заключается принцип секторного сканирования. Оператору не нужно водить датчиком по поверхности – он и без этого «видит» все дефекты, расположенные в заданной зоне. По сравнению с одноэлементными ПЭП фазированные решётки могут генерировать пучок волн точно в зоне дефекта. В режиме реального времени на экране многоканального дефектоскопа выстраиваются наглядные А-сканы, на основе которых формируются детализированные, информативные отчёты. Мёртвая зона минимальна. Производительность ультразвукового контроля с ФР примерно в 3–4 раза выше, чем у традиционного УЗК;
- дифракционно-временном методе (Time of Flight Diffraction, сокращённо – TOFD). Суть технологии – регистрация поперечных и продольных (боковых) волн, дифрагированных на краях несплошностей. Метод предполагает использование двух наклонных датчиков для излучения и приёма волн, расположенные по обе стороны сварного шва. «Натыкаясь» на дефект, волны изменяют своё направление и время прохода. Последний показатель в режиме TOFD считается ключевым. Дифракционно-временной метод эффективно выявляет точечные дефекты, выходящие на поверхность трещины, вогнутость, непровары в корне, расслоения, питтинговую коррозию и пр. Точность измерений достигает ±1 мм. Повторяемость результатов приближается к 100%. По своей информативности и достоверности линейное сканирование – полноценная замена радиографическому методу, особенно для дефектоскопии низколегированных и нелегированных углеродистых сталей.
- совмещённые, раздельные и раздельно-совмещённые;
- прямые, наклонные, комбинированные и с переменным углом ввода;
- хордовые, фокусирующие и нефокусирующие;
- притёртые и непритёртые;
- контактные, иммерсионные, бесконтактные, щелевые и т.д.
Помимо этого, в УЗК активно применяются различные призмы, координатные устройства и сканеры. Для настройки и калибровки не обойтись без стандартных образцов (СОП, СО) и настроечных мер. Для улучшения акустического контакта на поверхность объекта предварительно наносят контактную жидкость/гель.
Для проведения УЗТ требуется толщиномер. Такой прибор технически проще, компактнее, дешевле классического дефектоскопа.
Обучение и аттестация специалистов по ультразвуковому методу контроля
- введение в классификацию видов и методов неразрушающего контроля;
- физические основы – теория колебаний, типы упругих волн, их свойства, критические углы ввода, дифракция, интерференция, закон Снеллиуса;
- блок по ультразвуковым колебаниям (что собой представляет акустическое поле, в чём разница между прямым и обратным пьезоэффектом, устройство ПЭП, мёртвая и ближняя зона, дальняя зона, реверберационно-шумовая характеристика преобразователя, резерв усиления);
- методы УЗК;
- технология проведения акустической дефектоскопии прямыми и наклонными совмещёнными и раздельно-совмещёнными ПЭП;
- приборы и дополнительные принадлежности для УЗК.
По завершении обучения необходимо сдать квалификационный экзамен, состоящий из теоретической и практической части.
Разумеется, в каждом учебном центре есть своя библиотека методической и образовательной литературы. Дополнительно к этому можно почитать «классику» учебников по УЗК – труды И.Н. Ермолова, В.Г. Щербинского, В.В. Клюева, А.Х. Вопилкина и др. Посмотреть информацию об изданиях можно в специальном разделе «Библиофонд» онлайн-библиотеки «Архиус».
Для тех, кто открыт для новых знаний и обмена опытом, на форуме «Дефектоскопист.ру» предусмотрен свой раздел. Начать рекомендуем с веток «Изучение УЗ-контроля» и «Обучение УЗК».
Ультразвуковой контроль толщины металла
ГОСТ Р ИСО 16810-2016
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
Non-destructive testing. Ultrasonic testing. General principles
Дата введения 2017-09-01
1 ПОДГОТОВЛЕН Техническим комитетом по стандартизации ТК 357 "Стальные и чугунные трубы и баллоны", Негосударственным образовательным учреждением дополнительного профессионального образования "Научно-учебный центр "Контроль и диагностика" ("НУЦ "Контроль и диагностика") и Открытым акционерным обществом "Российский научно-исследовательский институт трубной промышленности" (ОАО "РосНИТИ") на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 357 "Стальные и чугунные трубы и баллоны"
4 Настоящий стандарт идентичен международному стандарту ИСО 16810:2012* "Неразрушающий контроль. Ультразвуковой контроль. Общие принципы" (ISO 16810:2012 "Non-destructive testing - Ultrasonic testing - General principles", IDT).
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении ДА
5 ВВЕДЕН ВПЕРВЫЕ
Введение
Настоящий стандарт идентичен международному стандарту ИСО 16810:2012, который был подготовлен Техническим комитетом ISO/TC135 "Неразрушающий контроль", подкомитетом SC3 "Ультразвуковой контроль".
ИСО 16810:2012 основан на стандарте ЕН 583-1:1998 "Неразрушающий контроль. Ультразвуковой контроль. Часть 1. Основные положения" (EN 583-1:1998 Non-destructive testing - Ultrasonic examination - Part 1: General principles).
Настоящий стандарт взаимосвязан со следующими стандартами:
ИСО 16811 Неразрушающий контроль. Ультразвуковой контроль. Регулировка чувствительности и диапазона развертки (ISO 16811:2012 Non-destructive testing - Ultrasonic testing - Sensitivity and range setting);
ИСО 16823 Неразрушающее испытание. Ультразвуковой контроль. Техника передачи звукового сигнала (ISO 16823:2012 Non-destructive testing - Ultrasonic testing - Transmission technique);
ИСО 16826 Неразрушающее испытание. Ультразвуковой контроль. Обнаружение несплошностей, перпендикулярных к поверхности (ISO 16826:2012 Non-destructive testing - Ultrasonic testing - Examination for discontinuities perpendicular to the surface);
ИСО 16827 Неразрушающий контроль. Ультразвуковой контроль. Определение характеристик и размера несплошностей (ISO 16827:2012 Non-destructive testing - Ultrasonic testing - Characterization and sizing of discontinuities);
ИСО 16828 Неразрушающий контроль. Ультразвуковой контроль. Техника с применением дифракции в зависимости от времени пролета в качестве метода обнаружения и определения размера несплошностей (ISO 16828:2012 Non-destructive testing - Ultrasonic testing - Time-of-flight diffraction technique as a method for detection and sizing of discontinuities).
1 Область применения
Настоящий стандарт определяет общие положения, необходимые для проведения ультразвукового контроля промышленной продукции, в которой возможно распространение ультразвука. Конкретные условия применения и проведения ультразвукового контроля, зависящие от типа контролируемого изделия, описываются в документации, включающей в себя:
- стандарты на продукцию;
- спецификации на продукцию;
Требования настоящего стандарта должны применяться, если в перечисленной выше документации не указаны другие требования.
Настоящий стандарт не определяет:
- объем контроля и схемы сканирования;
2 Нормативные ссылки
Для применения настоящего стандарта необходимы следующие стандарты*. Для датированных ссылок используют только указанное издание стандарта, для недатированных ссылок - последнее издание ссылочного стандарта, включая все его изменения:
* Таблицу соответствия национальных стандартов международным см. по ссылке. - Примечание изготовителя базы данных.
ISO 9712 Non-destructive testing - Qualification and certification of NDT personnel (Неразрушающий контроль. Квалификация и аттестация персонала)
ISO 7963 Non-destructive testing - Ultrasonic testing - Specification for calibration block No. 2 (Неразрушающий контроль. Ультразвуковой контроль. Технические условия для эталонного образца N 2)
ISO 16811 Non-destructive testing - Ultrasonic testing - Sensitivity and range setting (Неразрушающий контроль. Ультразвуковой контроль. Регулировка чувствительности и диапазона развертки)
ISO 16823 Non-destructive testing - Ultrasonic testing - Transmission technique (Неразрушающее испытание. Ультразвуковой контроль. Техника передачи звукового сигнала)
ISO 2400 Non-destructive testing - Ultrasonic testing - Specification for calibration block No. 1 (Неразрушающий контроль. Ультразвуковой контроль. Технические условия на блок для калибровки N 1)
3 Квалификация и сертификация персонала
Контроль должен проводиться только подготовленными операторами, квалифицированными в соответствии с ИСО 9712.
Требования к квалификации и сертификации установлены в стандартах на продукцию и (или) в других документах.
4 Информация, предоставляемая перед контролем
Перед проведением контроля должна быть предоставлена следующая необходимая информация:
- квалификация и сертификация персонала;
- окружающие условия и состояние объекта контроля;
- требования к письменной процедуре контроля;
- дополнительные требования к подготовке поверхности сканирования;
- чувствительность контроля и способ настройки чувствительности;
- требуемые уровни оценки и регистрации;
- участки контроля, включая схемы сканирования;
- требования к протоколу контроля.
5 Основы проведения ультразвукового контроля
5.1 Область применения
Ультразвуковой контроль основан на распространении ультразвуковых волн через объект контроля и регистрации сигнала прошедшей волны (теневой метод) либо сигнала, отраженного или рассеянного от любой поверхности или дефекта (эхо-импульсный метод).
При контроле указанными методами может использоваться совмещенный преобразователь, который выполняет функции как излучателя, так и приемника; раздельно-совмещенный преобразователь; раздельные преобразователи, работающие один на излучение, другой на прием. При контроле в обоих методах могут использоваться промежуточные отражения от одной или нескольких поверхностей объекта контроля. Контроль может быть выполнен ручным способом или с использованием полуавтоматического или автоматического оборудования, при этом может использоваться контактный, щелевой, иммерсионный или другие способы контакта в зависимости от конкретных условий контроля.
5.2 Типы волн и направление распространения звука
Чаще всего используются продольные и поперечные волны, они распространяются перпендикулярно, либо под углом к поверхности контролируемого изделия. Также по согласованию могут быть использованы другие типы волн, например волны Лэмба или волны Рэлея.
Выбор типа волны и направление ее распространения зависит от целей контроля и должен учитывать свойства отражения от плоскостных отражателей. За исключением случая, когда используется волна Лэмба, направление распространения волны при использовании эхо-импульсного метода и совмещенного преобразователя, по возможности, должно быть перпендикулярно к плоскости отражателя.
5.3 Теневой метод
Метод основан на измерении ослабления сигнала после прохождения ультразвуковой волны через объект контроля.
ГОСТ Р ИСО 16809-2015
Non-destructive testing. Ultrasonic testing. Thickness measurement
Дата введения 2016-03-01
Предисловие
1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт оптико-физических измерений" (ФГУП "ВНИИОФИ") на основе собственного перевода на русский язык англоязычной версии международного стандарта, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом по стандартизации N 371 "Неразрушающий контроль"
4 Настоящий стандарт идентичен международному стандарту ИСО 16809:2012* "Контроль неразрушающий. Ультразвуковое измерение толщины" (ISO 16809:2012 "Non-destructive testing. Ultrasonic thickness measurement", IDT).
Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для привидения в соответствие с ГОСТ Р 1.5-2012 (пункт 3.5).
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные и межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА
6 ПЕРЕИЗДАНИЕ. Апрель 2019 г.
Стандарт ISO 16809:2012 Non-destructive testing - Ultrasonic thickness measurement был подготовлен Европейским комитетом по стандартизации (CEN) как EN 14127:2011 и принят подкомитетом SC 3 "Ультразвуковой контроль", технического комитета ISO/TC 135 "Неразрушающий контроль".
Настоящий стандарт устанавливает принципы ультразвукового измерения толщины металлических и неметаллических материалов на основе измерения времени прохождения ультразвуковых импульсов.
В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных - последнее издание (включая все изменения).
ISO 5577, Non-destructive testing - Ultrasonic inspection - Vocabulary (Контроль неразрушающий. Ультразвуковой контроль. Словарь)
ISO 16811, Non-destructive testing - Ultrasonic testing - Sensitivity and range setting (Контроль не-разрушающий. Ультразвуковой контроль. Регулировка чувствительности и диапазона развертки)
EN 1330-4, Non-destructive testing. Terminology. Terms used in ultrasonic testing (Контроль неразрушающий. Терминология. Часть 4. Термины, используемые в ультразвуковом контроле)
3 Термины и определения
В настоящем стандарте применены термины по ИСО 5577 и ЕН 1330-4.
4 Режимы измерения
Толщину детали или конструкции определяют путем измерения времени, необходимого для того, чтобы короткий ультразвуковой импульс, излучаемый преобразователем, прошел через толщину материала один, два или несколько раз.
Толщину материала вычисляют путем умножения известной скорости звука в материале на время прохождения и деления на количество прохождений импульса через стенку материала.
Этот принцип можно осуществить путем применения одного из следующих режимов (рисунок 1):
Режим 1: измерение времени прохождения от начального импульса возбуждения до первого эхо-сигнала, минус коррекция нуля для учета толщины протектора преобразователя, компенсации износа и слоя контактной среды (режим однократного эхо-сигнала).
Режим 2: измерение времени прохождения от конца линии задержки до первого донного эхо-сигнала (режим однократного эхо-сигнала линии задержки).
Режим 3: измерение времени прохождения между донными эхо-сигналами (многократные эхо-сигналы).
Режим 4: измерение времени прохождения импульса от излучателя до приемника в контакте с донной поверхностью (теневой метод).
А - передающий/принимающий преобразователь; А - передающий преобразователь; А - принимающий преобразователь; А - раздельно-совмещенный преобразователь; В - испытуемый объект; С - время прохождения акустического пути; D - отметка импульса передачи; Е-Е - донные эхо-сигналы; F - эхо-сигнал от границы раздела; G - задержка; Н - принятый импульс
Рисунок 1 - Режимы измерения
5 Общие требования
5.1 Приборы
Измерение толщины можно выполнить с помощью приборов следующих типов:
a) ультразвуковые толщиномеры с цифровым дисплеем, на котором отображается измеренное значение;
b) ультразвуковые толщиномеры с цифровым дисплеем, на котором отображается измеренное значение, и разверткой типа А (дисплей аналоговых сигналов);
c) приборы, предназначенные для обнаружения несплошностей с разверткой типа А. Прибор этого типа может содержать также цифровой дисплей для отображения значений толщины.
Выбор прибора ультразвукового измерения - согласно 6.4.
5.2 Преобразователи
При ультразвуковом контроле используют преобразователи следующих типов, как правило, это преобразователи продольных волн:
- двухэлементные преобразователи (раздельно-совмещенные);
- одноэлементные преобразователи (совмещенные).
Выбор преобразователя - согласно 6.3.
5.3 Контактная среда
Необходимо обеспечить акустический контакт между преобразователем(ями) и материалом, обычно такой контакт осуществляется с помощью жидкости или геля.
Контактная среда не должна оказывать неблагоприятного влияния на испытуемый объект, оборудование и не должна представлять опасности для оператора.
Информация о контактной среде, используемой в особых условиях измерения - согласно 6.6.
Необходимо выбрать такую контактную среду, которая подходит к состоянию поверхности и неровностям поверхности, чтобы обеспечить достаточный акустический контакт.
5.4 Настроечные образцы
Ультразвуковой толщиномер калибруют на одном или нескольких настроечных образцах, представляющих измеряемый объект, т.е. с сопоставимыми размерами, материалом и конструкцией. Толщина настроечных образцов должна охватывать диапазон измеряемой толщины. Должна быть известна толщина настроечных образцов или скорость распространения звука в них.
5.5 Испытуемые объекты
Измеряемый объект должен обеспечить прохождение ультразвуковых волн через объект, а также иметь свободный доступ к каждому отдельному измеряемому участку. На поверхности измеряемого участка не должно быть грязи, смазки, ворсинок, окалины, сварочного флюса и брызг металла, масла или другого постороннего вещества, которое может мешать измерению.
Если на поверхности есть покрытие, оно должно хорошо прилипать к материалу. В противном случае его необходимо удалить.
При выполнении измерения через покрытие необходимо знать его толщину и скорость распространения звука в нем, если только не используется режим 3.
5.6 Квалификация персонала
Оператор, выполняющий ультразвуковое измерение толщины в соответствии с настоящим стандартом, должен обладать базовыми знаниями в физике ультразвука, хорошим пониманием и подготовкой в области ультразвуковых измерений толщины. Кроме того, оператор должен иметь сведения об изделии (например, марку стали и т.д.).
Ультразвуковое измерение толщины должен выполнять квалифицированный персонал. Для подтверждения квалификации рекомендуется сертифицировать персонал в соответствии с ИСО 9712 или эквивалентным стандартом.
6 Применение метода
6.1 Подготовка поверхности
Применение режима эхо-импульсов означает, что ультразвуковой импульс должен пройти поверхность контакта между контролируемым объектом и преобразователем не менее двух раз: входя в объект и выходя из него.
Поэтому следует предпочесть чистый и ровный участок контакта размером не менее двукратного диаметра преобразователя. Плохой контакт приведет к потере энергии, искажению сигнала и акустического пути.
Для обеспечения ввода звука необходимо очистить поверхность и удалить отслаивающиеся покрытия с помощью щетки или шлифовки.
Нанесенные слои, такие как лакокрасочное покрытие, электролитическое покрытие, эмаль, могут оставаться на объекте, но лишь несколько типов измерительных приборов способны исключить эти слои из измерения.
Часто необходимо выполнять измерения толщины на корродированных поверхностях, например на резервуарах и трубопроводах. Для повышения точности измерения необходимо шлифовать контактную поверхность на участке размером не менее двух диаметров преобразователя. На этом участке не должно быть продуктов коррозии.
Следует принять меры предосторожности, чтобы не уменьшить толщину объекта ниже минимально допустимого значения (при этом шероховатость поверхности должна быть не хуже 40 мкм).
6.2 Метод
6.2.1 Общие положения
Задачу ультразвукового измерения толщины можно разделить на две области применения:
- измерение в процессе производства;
- измерения остаточной толщины стенки в процессе эксплуатации.
Каждая из этих областей применения характеризуется своими особыми условиями, требующими специальных методов измерения:
a) в зависимости от толщины материала, следует использовать частоты от 100 кГц при прохождении через материалы с сильным затуханием до 50 МГц для тонких металлических листов;
b) в случае использования раздельно-совмещенных преобразователей необходимо компенсировать время задержки в призме;
c) на объектах с криволинейной поверхностью диаметр участка контакта преобразователя должен быть значительно меньше диаметра испытуемого объекта;
d) точность измерения толщины зависит от того, насколько точно можно измерить время прохождения ультразвукового импульса, в зависимости от режима измерения времени (переход через нуль, между фронтами, между пиками), в зависимости от выбранного режима (с многократными эхо-сигналами, режим 3, точность выше, чем в режимах 1 и 2), в зависимости от частот, которые можно использовать (более высокие частоты обеспечивают более высокую точность, чем более низкие частоты, поскольку обеспечивают более точное измерение времени).
ГОСТ Р ИСО 17640-2016
НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ СВАРНЫХ СОЕДИНЕНИЙ
Ультразвуковой контроль. Технология, уровни контроля и оценки
Non-destructive testing of weld. Ultrasonic testing. Techniques, testing and assessment levels
Дата введения 2016-11-01
4 Настоящий стандарт идентичен международному стандарту ИСО 17640:2010* "Неразрушающий контроль сварных швов. Ультразвуковой контроль. Методы, уровни контроля и оценка" (ISO 17640:2010 "Non-destructive testing of welds - Ultrasonic testing - Techniques, testing levels, and assessment", IDT).
Международный стандарт разработан Техническим комитетом ISO/TC44 "Сварка и смежные процессы". Подкомитетом SC5 "Диагностика и контроль сварных швов".
Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2012 (пункт 3.5).
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДА
6 ПЕРЕИЗДАНИЕ. Апрель 2020 г.
Настоящий стандарт определяет технологию ручного ультразвукового контроля сварных соединений, полученных сваркой плавлением, в металлических материалах толщиной не менее 8 мм, с низким коэффициентом затухания ультразвука (главным образом по причине рассеивания) при температуре объекта контроля от 0°С до 60°С. Настоящий стандарт предназначен главным образом для контроля сварных соединений с полным проплавлением, где основной металл и металл шва являются ферритными.
Указанные в настоящем стандарте значения, зависящие от материала, приведены для сталей, скорость звука в которых равна (5920±50) м/с для продольных волн и (3255±30) м/с - для поперечных волн.
Настоящий стандарт определяет четыре уровня контроля, каждый из которых соответствует различной вероятности обнаружения дефектов. Рекомендации по выбору параметров для уровней контроля А, В и С приведены в приложении А.
Уровень контроля D, применяемый в особых случаях, должен соответствовать общим требованиям настоящего стандарта. Уровень контроля D применяется только в случае, когда это указано в спецификации на продукцию.
Он включает в себя контроль металлов, не относящихся к ферритным сталям, контроль сварных соединений с неполным проплавлением, контроль с применением автоматизированного оборудования, и контроль при температурах, не входящих в диапазон от 0°С до 60°С.
Настоящий стандарт может быть использован для оценки дефектов в целях приемки одним из двух способов:
a) оценка, основанная на протяженности и амплитуде сигнала от дефекта;
b) оценка, основанная на определении характеристик и размеров дефекта посредствам перемещения преобразователя.
Применяемый способ должен быть согласован.
В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для недатированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных - последнее издание (включая все изменения).
ISO 5817, Welding - Fusion-welded joints in steel, nickel, titanium and their alloys (beam welding excluded) - Quality levels for imperfections [Сварка. Сварные швы при сварке плавлением стали, никеля, титана и их сплавов (лучевая сварка исключена). Уровни качества в зависимости от дефектов]
ISO 9712, Non-destructive testing - Qualification and certification of personnel (Неразрушающий контроль. Квалификация и аттестация персонала)
ISO 11666:2010, Non-destructive testing of welds - Ultrasonic testing - Acceptance levels (Неразрушающий контроль сварных соединений. Ультразвуковой контроль. Уровни приемки)
Заменен на ISO 11666:2018.
ISO 17635, Non-destructive testing of welds - General rules for metallic materials (Контроль неразрушающий сварных соединений. Общие правила для металлических материалов)
ISO 23279, Non-destructive testing of welds - Ultrasonic testing - Characterization of indications in welds (Неразрушающий контроль сварных швов. Ультразвуковая дефектоскопия. Снятие характеристик индикаций в сварных соединениях)
EN 473, Non-destructive testing - Qualification and certification of NDT personnel - General principles (Неразрушающий контроль. Аттестация и выдача свидетельств персоналу, занимающемуся НК. Основные принципы)
Заменен на EN ISO 9712:2012.
EN 583-1, Non-destructive testing - Ultrasonic examination - Part 1: General principles (Неразрушающий контроль. Ультразвуковой контроль. Часть 1. Основные положения)
Заменен на EN ISO 16810:2014.
EN 583-2, Non-destructive testing - Ultrasonic examination - Part 2: Sensitivity and range setting (Неразрушающие испытания. Ультразвуковой контроль. Часть 2. Чувствительность и диапазон установки)
Заменен на EN ISO 16811:2014.
EN 583-4, Non-destructive testing - Ultrasonic examination - Part 4: Examination for discontinuities perpendicular to the surface (Неразрушающий контроль. Ультразвуковой контроль. Часть 4. Контроль прерывностей, перпендикулярных к поверхности)
Заменен на EN ISO 16826:2014.
EN 1330-4, Non-destructive testing - Terminology - Part 4: Terms used in ultrasonic testing (Неразрушающий контроль. Терминология. Часть 4. Термины, применяемые при ультразвуковом контроле)
Заменен на EN ISO 5577:2017.
EN 12668 (all parts). Non-destructive testing - Characterization and verification of ultrasonic examination equipment (Контроль неразрушающий. Определение характеристик и проверка оборудования для ультразвукового контроля)
Ультразвуковой толщиномер: назначение, принцип работы, типы, параметры подбора
Принцип их работы основывается на том, чтобы измерять время, за которое короткий ультразвуковой импульс от преобразователя проходит через толщину материала. Узнав время, электронный блок производит математическую операцию: перемножает его на известную скорость распространения УЗК в материале и делит на количество прохождений импульса через стенку (1, 2 либо несколько раз), вычитая время пробега в плоскопараллельной задержке (протекторе ПЭП, слое контактной жидкости). В зависимости от модификации ультразвуковой толщиномер может реализовать другие способы измерений и обработки данных. Как бы то ни было, в результате расчётов на дисплей выводится фактическое значение толщины в мм (или в дюймах). Точность результатов может достигать 0.1, 0.01 или даже 0.001 мм. Справедливости ради стоит отметить, что для большинства промышленных задач на ОПО дискретность показаний 0.001 мм является избыточной - 0.1 мм вполне достаточно. Тем не менее, благодаря современным цифровым технологиям многие приборы вполне могут демонстрировать повышенную дискретность показаний.
Как и в случае с дефектоскопом, под ультразвуковым толщиномером чаще всего понимается электронный блок с подключённым при помощи кабеля и разъёмного соединения преобразователем. Хотя, конечно, встречаются модели (к примеру, электромагнитно-акустический толщиномер KROPUS AIR), у которых датчик встроен в корпус. Как правило, это сверхкомпактные модели для экспресс-контроля. В остальных случаях речь именно о выносных преобразователях (П111, П112 и др.). Сами же приборы в обязательном порядке имеют дисплей, клавиатуру, автономное питание от встроенного аккумулятора. У некоторых устройств также предусмотрена беспроводная связь по Bluetooth, WLAN или даже Wi-Fi. Ещё один важный элемент, о котором нельзя не сказать, – это специальные чехлы, которые обеспечивают комфортное закрепление прибора на поясе, на руке, груди и пр. Но подробнее об этом чуть позже.
Типы ультразвуковых толщиномеров
- для ручного и автоматизированного контроля. В первом случае речь идёт о портативных приборах, во втором – о стационарных промышленных системах. Переносные устройства могут применяться как в полевых, так и в цеховых условиях. Толщиномеры автоматизированного контроля рассчитаны на пошаговое или сплошное сканирование, чаще всего – при поточном производстве. Например, при изготовлении труб, листового проката, лент и прочей металлопродукции. Ручные измерения предполагают активное участие оператора. При автоматизированном подходе человеческий фактор сведён к минимуму – все показания передаются на единый диспетчерский пункт;
- ультразвуковые толщиномеры общего назначения и специализированные приборы. Первые могут использоваться на самых разных объектах, вторые же «заточены» под конкретные, узкопрофильные задачи;
- для контроля объектов с шероховатостью поверхностью менее 40 мкм (Rz) или, наоборот, более 40 мкм. Такая градация содержится в ГОСТ 28702-90. В зависимости от того, к какой из этих двух категорий относится прибор, он допускается или не допускается к обследованию корродированных, эродированных, грубо обработанных поверхностей;
- по диапазону измерений. Одно дело – ультразвуковой толщиномер для нефте- и газопроводов, сосудов в нефтехимической промышленности. Другое – для производства листового проката в металлургии. Третье – приборы для атомной промышленности с большим количеством толстостенных объектов. Тут, конечно, многое зависит от того, какой выбран преобразователь. Многое, но не всё, так как сам электронный блок изначально может быть спроектирован под конкретный диапазон. Правда, у большинства современных моделей достаточно широкий диапазон, что позволяет справляться практически с любыми типовыми задачами контроля. У толщиномера "Булат 3", например, 0,5–300 мм (если взять ПЭП с линией задержки, то минимальный порог уменьшается до 0,25 мм), УДТ-40 – от 0 до 400 мм, УТ-111 – от 0,6 до 500 мм, UDT-RF – от 0,7 до 300 мм. И так далее;
- по способу отображения результатов. Самый простой вариант – числовое значение. У наиболее продвинутых ультразвуковых толщиномеров дополнительно предусмотрена поддержка А- и Б-сканов. Последний вариант, пожалуй, самый наглядный, поскольку позволяет увидеть поперечный профиль объекта. Расшифровка результатов, особенно при сплошном сканировании, становится проще. Преимущество А-сканов в том, что позволяют проводить контроль, избегая неточностей, связанных с имеющимися неоднородностями в материале и наличием покрытий. Другой вопрос – стоимость таких устройств и целесообразность этих затрат, учитывая, что далеко не во всех методиках требуются такие инструменты;
- по дискретности (точности) показаний. Чаще всего она указывается в абсолютных значениях – 0.1, 0.01, 0.001 – и может выбираться пользователем в зависимости от методики. Другое дело – погрешность измерений. Её обычно указывают в виде формулы, где в качестве переменного значения фигурирует фактическая толщина. То есть в зависимости от диапазона контроля погрешность может варьироваться;
- по типу доступных преобразователей. Одни ультразвуковые толщиномеры могут работать только с одноэлементными совмещёнными, другие – ещё и с двухэлементными раздельно-совмещёнными датчиками.
Ещё один важный параметр – это режим/метод измерений. В ГОСТ Р ИСО 16809-2015 описано четыре основных режима:
1) режим однократного эхо-сигнала. Заключается в том, чтобы измерять время прохождения от начального импульса возбуждения до первого эхо-сигнала, за вычетом коррекции нуля для учёта толщины протектора ПЭП, компенсации его износа и слоя контактной среды;
2) режим однократного эхо-сигнала линии задержки. Ультразвуковой толщиномер измеряет время прохождения от конца линии задержки до первого донного эхо-сигнала;
3) режим многократных эхо-сигналов. Состоит в том, чтобы измерять время прохождения между донными эхо-сигналами;
4) теневой метод. Заключается в том, чтобы измерять время прохождения импульса от излучателя до приёмника при контакте с донной поверхностью.
Выбор между ними зависит от затухания и толщины исследуемых материалов.
Что касается марок ультразвуковых толщиномеров, то на российском рынке широко представлена продукция отечественных и импортных производителей. В их числе – НПЦ «Кропус», НПК «ЛУЧ», Olympus, НПГ «Алтек», «Константа», GE (Krautkramer), Karl Deutsch, «Физприбор» и многие другие. Так, среди популярных моделей – УДТ-40, "Булат 3", УДТ-08, УДТ-20, "Булат 1М", DM5E, UDT-RF и пр. Что касается систем для автоматизированного контроля, то зачастую они проектируются индивидуально под конкретные условия производства.
Поверка ультразвуковых толщиномеров
Как и многие другие средства для неразрушающего контроля, ультразвуковые толщиномеры по сути своей – это средства измерения. Как и другие типы СИ, они подлежат регистрации в Государственном реестре и нуждаются в регулярном подтверждении своих метрологических характеристик. Эксплуатация прибора разрешена лишь при наличии соответствующего свидетельства о первичной и/или периодической поверке. Для этого ультразвуковой толщиномер нужно время от времени отправлять в аккредитованный метрологический центр. В соответствии с ГОСТ Р 8.862-2013 процедура поверки состоит из четырёх основных этапов:
1) внешнего осмотра. Включает проверку маркировки электронного блока и датчиков, отсутствия механических повреждений, целостности клейма, состояния разъёмов, кабелей и так далее;
2) опробования. Предполагает проведение серии измерений на эталонных мерах толщины, которые подбираются в зависимости от рабочего диапазона. Процедура направлена на то, чтобы убедиться, что ультразвуковой толщиномер можно настроить на нормированные значения скорости УЗК;
3) определения основной абсолютной погрешности. Причём – для всех диапазонов заявленных измерений и для всех работоспособных преобразователей, которые идут в комплекте с прибором;
Помимо мер толщины из стали либо алюминия, дополнительно используются меры радиуса кривизны, шероховатости, диаметра искусственного отражателя, не-параллельности рабочей и отражающей поверхностей. По завершении поверки оформляется протокол. Если ультразвуковой толщиномер успешно прошёл все процедуры, выдаётся свидетельство, в котором перечисляются номера преобразователей, использованных при измерениях (не исключая те, что были забракованы). На электронный блок наносят клеймо – для защиты от несанкционированного доступа внутрь прибора.
Если же он не прошёл поверку, то все клейма гасят, а вместо свидетельства на руки выдают извещение о непригодности. Дальше – либо ремонт, либо утилизация.
Выполнение ручных измерений при помощи ультразвукового толщиномера
- подготовку. Для начала – нужно собраться на объект: зарядить аккумуляторы, взять необходимые ПЭП, кабели, контактную жидкость (гель). Сам прибор – подключить к нему нужный датчик, откалибровать его на юстировочной пластине (у многих приборов она встроена в электронный блок), проверить на настроечном образце. Особое внимание уделяется зачистке поверхности ОК – от грязи, ржавчины, шелушащейся краски и иных отслаивающихся покрытий. Участок под контроль должен минимум в 2 раза превышать по площади диаметр преобразователя. Тщательная очистка является необходимым условием для стабильного контакта, защиты от искажений сигнала и потери энергии. Режим (точечные замеры либо непрерывное сканирование), способ (см. выше) и порядок измерений (количество и расположение контрольных точек) прописывается в технологической карте – в зависимости от площади контроля, габаритов ОК, толщины стенки, затухания материала, шероховатости поверхности, радиуса кривизны, марки сплава и прочих факторов;
- собственно, проведение измерений при помощи ультразвукового толщиномера. Результаты сохраняются в памяти прибора, плюс оператор может вносить значения с привязкой к конкретным точкам на рабочем чертеже (эскизе);
- оформление результатов. В протоколе должны быть указаны ФИО специалиста УЗТ, сведения о его квалификации, тип и серийный номер прибора, сведения о настройках, методе измерений. Должна содержаться информация об объекте, состоянии поверхности, контактной среде, допусках. Результаты измерений оформляются в виде таблицы и/или диаграммы. Попутно могут содержаться отметки о начальной толщине, её фактическом или процентном уменьшении. Протокол также снабжается чертежами и эскизами для обозначения несплошностей, замечаний по визуальному осмотру и так далее. Как и положено в неразрушающем контроле, специалист УЗТ ставит свою подпись под протоколом и несёт ответственность за достоверность результатов.
Как выбрать ультразвуковой толщиномер для ручных измерений
Начнём с главного – с документации на контроль. В каждой методике, инструкции, карте есть требования к аппаратуре. Кроме того, предпочтение стоит отдавать тем приборам, которые внесены в Госреестр средств измерений и к которым прилагается копия свидетельства об утверждении типа СИ. Это особенно важно, если лаборатория хочет выполнять подряды в рамках технического диагностирования, освидетельствования и экспертизы промышленной безопасности. Кроме того, есть реестры ОАО «РЖД», «Газпрома», «Транснефти», в которых тоже может быть информация о допущенных к эксплуатации средствах толщинометрии.
- доступные способы измерения. Так, для определения толщины стенки под лакокрасочным покрытием может потребоваться режим измерений между двумя максимальными сигналами в стробах. Для наибольшей точности результатов в некоторых моделях доступны измерения по переходу через «ноль», измерение времени между сигналами «эхо-эхо». Как уже отмечалось выше, цифровые микропроцессорные технологии вкупе с возможностями современного софта позволяют приборостроителям выпускать всё более совершенные ультразвуковые толщиномеры, с более «ветвистым» функционалом, с лёгким переключением между режимами и мощным интерфейсом по визуализации процесса измерений;
- шероховатость и температура поверхности объекта контроля. В ряде случаев может задержка – для создания дополнительного теплового барьера. Для измерений при температуре ниже -20 градусов могут и вовсе потребоваться специализированные преобразователи. Для грязных, корродированных, плохо зачищенных и окрашенных поверхностей наиболее эффективными могут оказаться ЭМА-преобразователи. С электромагнитно-акустическими датчиками работают, к примеру, ультразвуковые толщиномеры УДТ-40 и А1270;
- площадь контроля. Или – требования к производительности. Чем крупнее объекты контроля, тем разумнее выбирать прибор с поддержкой А- и Б-сканов;
- доступные для измерения материалы. Одни приборы могут работать только по стали, другие подходят для толщинометрии объектов из чугуна, пластика, полиэтилена, керамики, алюминиевых и других сплавов;
- наличие цветовой и/или звуковой автоматической сигнализации брака (либо виброотклика) – при получении показаний (недопустимых утонений), которые не укладываются в заданный пользователем диапазон. Оператор может ввести пороговые значения (минимум и максимум), которые будут, по сути, являться браковочным уровнем. Кроме того, в некоторых приборах есть такая удобная опция, как вычисление в % остаточной толщины – по сравнению с предварительно указанным исходным значением;
- удобство подключения разных преобразователей. В одних ультразвуковых толщиномерах предусмотрена автоматическая калибровка «нуля», коррекция V-образности и другие полезные опции, благодаря которым можно быстро сменять ПЭП без лишней мороки;
- объём внутренней памяти, возможность группировать, перезаписывать данные;
- ёмкость и скорость подзарядки аккумулятора;
- размер дисплея. Цветной экран – стал нормой для современных моделей. Но если к визуализации результатов нет особых требований, то можно обойтись более бюджетным вариантом. У большинства сверхкомпактных и миниатюрных приборов со встроенным датчиком дисплей тоже монохромный. Вполне адекватный вариант для точечных измерений;
- удобство и прочность чехла, кейса, ремней для закрепления на руках, на груди, поясе. Чем эргономичнее эти аксессуары, тем больше удовольствия от работы.
Где купить ультразвуковой толщиномер
Вы можете обратиться к проверенным производителям и официальным дистрибьюторам – партнёрам форума «Дефектоскопист.ру».
Читайте также: