Твердость по виккерсу таблица металлов

Обновлено: 07.01.2025

Стандарт распространяется на метод измерения твердости металлов и сплавов по шкалам Виккерса, а также тонких поверхностных слоев и покрытий при испытательных нагрузках и длин диагоналей отпечатков.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО
ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬ НЫЙ
СТАНДАРТ
РОССИЙСКОЙ
ФЕДЕРАЦИИ

ГОСТ Р ИСО
6507-1-2007

Металлы и сплавы

ИЗМЕРЕНИЕ ТВЕРДОСТИ ПО ВИККЕРСУ

Метод измерения

ISO 6507-1:2005
Metallic materials - Vickers hardness test -
Part 1: Test method
(IDT)

Стандартинформ

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 ПОДГОТОВЛЕН Всероссийским научно-исследовательским институтом физико-технических и радиотехнических измерений Федерального агентства по техническому регулированию и метрологии на основе собственного аутентичного перевода стандарта, указанного в пункте 4

2 ВНЕСЕН Управлением метрологии Федерального агентства по техническому регулированию и метрологии

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2007 г. № 336-ст

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2004 (подраздел 3.5)

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении Е

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок - в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Металлы и сплавы

ИЗМЕРЕНИЕ ТВЕРДОСТИ ПО ВИККЕРСУ

Метод измерения

Metals and alloys. Vickers hardness test. Part 1. Test method

Дата введения - 2008 - 08-01

1 Область применения

Настоящий стандарт распространяется на метод измерения твердости металлов и сплавов по шкалам Виккерса, а также тонких поверхностных слоев и покрытий при испытательных нагрузках от 0,09807 до 980,7 Н и длин диагоналей отпечатков от 0,020 до 1,400 мм.

В зависимости от величины нагрузки при измерении твердости по шкалам Виккерса различают три диапазона. Зависимость применяемых групп шкал Виккерса от величины нагрузки приведена в таблице 1.

Обозначение диапазонов шкал твердости

Твердость по шкале Виккерса

От 1,961 до 49,03

От HV 0,2 до HV 5

Твердость по шкале Виккерса с малой нагрузкой

От 0,09807 до 1,961

От HV 0,01 до HV 0,2

Примечание 1 - Для отпечатков с длиной диагонали менее 0,02 мм имеет место значительный рост неопределенности результата измерений.

Примечание 2 - Обычно уменьшение нагрузки при измерениях приводит к росту размаха результатов измерений. Это в большей степени проявляется при измерениях твердости с малой нагрузкой и микротвердости, при которых возрастает роль принципиальных ограничений на точность измерения длины диагоналей отпечатка. При измерениях микротвердости маловероятно, что погрешность определения средней длины диагоналей отпечатка будет меньше чем ±0,001 мм (см. [2] - [5]).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие международные стандарты:

ИСО 6507-2:2005 Материалы металлические. Определение твердости по Виккерсу. Часть 2. Поверка и калибровка испытательных машин

ИСО 6507-3:2005 Материалы металлические. Определение твердости по Виккерсу. Часть 3. Калибровка контрольных образцов

ИСО 6507-4:2005 Материалы металлические. Определение твердости по Виккерсу. Часть 4. Таблицы определения твердости

3 Метод измерения

3.1 При измерении твердости и микротвердости по Виккерсу алмазный наконечник в форме правильной четырехгранной пирамиды с углом а между противоположными гранями при вершине вдавливается в поверхность испытуемого образца под действием нагрузки (статической силы) F . Схема приложения нагрузки приведена на рисунке 1. Нагрузку прикладывают перпендикулярно к поверхности испытуемого образца. После снятия нагрузки измеряют длины диагоналей отпечатка d1 и d2.

Рисунок 1 - Схема приложения нагрузки

Твердость по Виккерсу пропорциональна частному от деления нагрузки на площадь боковой поверхности отпечатка. Площадь боковой поверхности рассчитывают по длинам диагоналей, допуская, что отпечаток имеет форму правильной пирамиды, имеющей в основании квадрат, и с углом при вершине, совпадающим с углом при вершине у наконечника.

4 Определения и обозначения

4.1 На рисунке 1 и в таблице 2 приводятся основные определения и обозначения, используемые при измерении твердости по шкалам Виккерса.

Угол между противоположными гранями на вершине пирамидального наконечника (136°)

Нагрузка (статическая сила), используемая при измерении, Н

Среднеарифметическое значение двух длин диагоналей d 1 и d 2 (рисунок 1 ), мм

Примечани е - Константа = где gn = ускорение свободного падения 9,80665.

Число твердости по Виккерсу HV определяют по формуле

где k = 0,1891 - постоянная;

F - нагрузка, используемая при измерении, Н;

d - среднеарифметическое значение длин диагоналей d1 и d2, мм.

4.2 Обозначения чисел твердости Виккерса - HV.

Примечани е - Первоначально нагрузка выражалась в килограммах силы (кгс). В настоящее время испытательную нагрузку принято выражать в ньютонах, однако принятые ранее обозначения шкал твердости Виккерса не меняются. Например, в документах вместо 30 кгс надо использовать 294,2 Н.

5 Твердомеры

5.1 Твердомеры должны обеспечивать предписанные нагрузки или нагрузки из требуемого диапазона по ИСО 6507-2.

5.2 Пирамидальный наконечник в форме правильной четырехгранной пирамиды должен удовлетворять требованиям ИСО 6507-2.

5.3 Измерительное устройство - в соответствии с ИСО 6507-2.

Примечани е - Процедура, которую можно использовать для периодического контроля твердомера, изложена в приложении D.

6 Требования к объектам измерений

6.1 Измерения должны проводиться на плоской, гладкой, свободной от посторонних веществ и включений поверхности. Поверхность после окончательной обработки должна обеспечивать точное измерение длины диагоналей отпечатков.

6.2 При подготовке поверхности образца следует исключить, по возможности, изменение его твердости от нагрева или охлаждения.

Отпечатки микротвердости Виккерса имеют небольшую глубину, поэтому подготовку поверхности следует проводить с особой осторожностью. Рекомендуется использовать полировку или электрополировку в зависимости от свойств материала.

6.3 Толщина испытуемого образца или покрытия должна быть в 1,5 раза больше средней длины диагоналей отпечатка (приложение А). Не допускается видимая деформация обратной поверхности испытуемых образцов.

6.4 Для образцов с криволинейной поверхностью в приложении В приведены таблицы поправочных коэффициентов.

6.5 На опорной поверхности образца не должно быть видимых повреждений. Образец во время измерения твердости не должен прогибаться или пружинить. Образец должен лежать на подставке устойчиво, чтобы избежать его смещения при измерении твердости.

7 Измерение твердости

7.2 Рекомендуется использовать испытательные нагрузки по таблице 3.

Номинальное значение нагрузки F , Н

Обозначение шкалы твердости

Номинальное значение нагрузки F , H

Примечани е - При необходимости могут использоваться и другие нагрузки, например HV 2,5 (24,52 Н), и нагрузки больше 980,7 Н.

7.3 Испытуемый образец должен размещаться на жесткой опоре. Поверхность опоры должна быть ровной и без следов смазки. Испытуемый образец должен неподвижно лежать на опоре, его перемещение во время измерения недопустимо.

7.4 Во время испытания приводят наконечник в контакт с поверхностью испытуемого образца и увеличивают нагрузку в направлении, перпендикулярном к поверхности, без рывков или вибрации, пока прикладываемая нагрузка не достигнет определенной величины.

Время от начала приложения нагрузки до достижения номинального значения нагрузки должно быть не меньше 2 и не больше 8 с.

Для измерений по Виккерсу с малой нагрузкой и микротвердости это время не должно превышать 10 с.

Для измерений по Виккерсу с малой нагрузкой и микротвердости скорость внедрения наконечника в образец не должна превышать 0,2 мм/с.

Примечание - Для измерения микротвердости наконечник должен входить в контакт с образцом при скорости от 15 до 70 мкм/с.

Время выдержки под нагрузкой должно быть от 10 до 15 с. Для некоторых материалов предусмотрено более длительное время выдержки под нагрузкой, допуск для времени выдержки в таких случаях должен быть ±2 с.

7.5 Во время цикла измерения, включающего приложение нагрузки, выдержку под нагрузкой и снятие нагрузки, твердомер должен быть защищен от вибрационных воздействий.

7.6 Расстояние между центром отпечатка и краем образца должно быть не менее 2,5 средних длин диагоналей отпечатка для стали, меди и сплавов меди и не менее трех средних длин диагоналей отпечатка для легких металлов, свинца, олова и их сплавов.

Расстояние между центрами двух смежных отпечатков должно быть не менее трех средних длин диагоналей отпечатка для стали, меди и сплавов меди и не менее шести средних длин диагоналей отпечатка для легких металлов, свинца, олова и их сплавов. Если два смежных отпечатка отличаются по размерам, расстояние должно определяться по средней длине диагонали большего отпечатка.

7.7 Измеряют длины двух диагоналей. Среднеарифметическое значение двух измерений должно быть использовано для вычисления твердости по Виккерсу. Для плоских поверхностей разность между длинами диагоналей не должна превышать 5 % длины меньшей из них. Если разность больше, это должно фиксироваться в протоколе измерений.

Примечани е - Увеличение микроскопа должно быть таким, чтобы длина диагонали отпечатка составляла не менее 25 % и не более 75 % ширины рабочего поля.

7.8 При измерении твердости на криволинейных поверхностях необходимо применять таблицы приложения В. В приложении В приведены таблицы для определения чисел твердости по Виккерсу в зависимости от испытательной нагрузки и средней длины диагоналей отпечатка.

8 Оценка неопределенности результатов измерений

Полную оценку неопределенности результатов измерений твердости следует проводить в соответствии с требованиями руководства [6].

Для оценки неопределенности результатов измерений существуют два подхода:

- один подход основывается на оценке неопределенности всех возможных источников, возникающих во время калибровки системы приложения нагрузки, измерительной системы твердомера, параметров алмазной пирамиды. Процедура оценки изложена в [7];

- другой подход основывается на оценке неопределенности с использованием эталонной меры твердости [7] - [10]. Руководство по определению содержится в приложении D.

Примечани е - Не всегда можно оценить вклад от разных источников в неопределенность измерений. В этом случае оценку неопределенности по типу А можно выполнить с помощью статистического анализа нескольких отпечатков по эталонной мере твердости. Когда неопределенности, оцененные по типу А и В, складываются, вклады различных источников не учитывают дважды (см. [6], пояснение 4).

Методы оценки неопределенности приводятся в приложении D.

9 Отчет об измерениях

Отчет об измерениях должен содержать следующую информацию:

a) ссылку на настоящий стандарт;

b) все атрибуты, необходимые для идентификации эталонной меры твердости;

c) полученные результаты;

d) все операции, не предусмотренные в настоящем стандарте;

e) подробности измерений или обстоятельства, которые могли повлиять на результат;

f) температуру, при которой проводят измерения, если она вне диапазона, указанного в 7.1.

Примечание 1 - Сравнение чисел твердости HV возможно только для измерений с одной и той же нагрузкой.

Примечание 2 - Не существует метода точного перевода чисел твердости из одной шкалы Виккерса в другую. Следовательно, такого перевода следует избегать, если нет надежной базы для перевода, полученной сравнительными измерениями.

Примечание 3 - Следует заметить, что для анизатропных материалов, полученных холодным прокатом, возможна значительная разница между длинами двух диагоналей отпечатка. В этом случае, по возможности, внедрение наконечника должно быть проведено так, чтобы диагонали составляли около 45° с направлением проката. Технические условия на продукцию должны содержать ограничения на разницу между длиной диагоналей.

Приложение А
(обязательное)

Минимальная толщина объектов измерений в зависимости от их твердости и величины
нагрузки

Ось X - толщина испытуемого образца, мм; ось Y - твердость HV

Рисунок А.1 - Минимальная толщина испытуемых образцов в зависимости от испытательной нагрузки
и твердости (для шкал от HV 0,2 до HV 100)

1 - число твердости HV ; 2 - минимальная толщина образца t , мм; 3 - длина диагонали отпечатка d , мм;
4 - обозначение шкалы твердости HV ; 5 - испытательная нагрузка F , Н

Рисунок А.2 - Номограмма для определения характеристик измерения твердости по Виккерсу по минимальной
толщине образцов (для шкал от HV 0,01 до HV 100)

Приложение В
(обязательное)

Таблица поправочных коэффициентов для измерения на криволинейных поверхностях

В.1 Сферические поверхности

В таблицах В.1 и В.2 даны поправочные коэффициенты, когда измерения твердости выполняют на сферических поверхностях.

Поправочные коэффициенты приводят для отношения средней длины диагоналей отпечатка к диаметру D сферического образца, на котором выполняют измерения.

Пример:

Диаметр сферического образца D = 10 мм.

Нагрузка F = 98,07 Н.

Средняя длина диагоналей отпечатка d = 0,150 мм.

Твердость по Виккерсу =

Поправочный коэффициент получаем из таблицы В.1 интерполяцией = 0,983.

Твердость сферического образца - 824×0,983 = 810 H V 10.

Твердость по виккерсу таблица металлов

ГОСТ 2999-75
(СТ СЭВ 470-77)

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Метод измерения твердости по Виккерсу

Metals and alloys. Vickers hardness test by diamond pyramid

Дата введения 1976-07-01*
______________________________
* Ограничение срока действия снято
по протоколу N 5-94 Межгосударственного Совета
по стандартизации, метрологии и сертификации
(ИУС N 2, 1993 год). - Примечание изготовителя базы данных.

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ постановлением Государственного комитета стандартов Совета Министров СССР от 28 июля 1975 г. № 1956

Проверен в 1985 г. постановлением Госстандарта от 27.09.85 N 3118 срок действия продлен до 01.07.93

ПЕРЕИЗДАНИЕ (декабрь 1986 г.) с Изменениями N 1, 2, утвержденными в мае 1979 г., сентябре 1985 г. (ИУС 7-79, 12-85).

Настоящий стандарт устанавливает метод измерения твердости по Виккерсу черных и цветных металлов и сплавов при нагрузках от 9,807 Н (1 кгс) до 980,7 Н (100 кгс).

Измерение твердости основано на вдавливании алмазного наконечника в форме правильной четырехгранной пирамиды в образец (изделие) под действием нагрузки , приложенной в течение определенного времени, и измерении диагоналей отпечатка , , оставшихся на поверхности образца после снятия нагрузки.

Стандарт полностью соответствует СТ СЭВ 470-77 (справочное приложение 2).

(Измененная редакция, Изм. N 1, 2).


1. МЕТОДЫ ОТБОРА ОБРАЗЦОВ

1.1. При изготовлении образца и при подготовке его поверхности необходимо принимать меры, предотвращающие возможность изменения свойств металла из-за нагрева или наклепа.

1.2. Минимальная толщина образца должна быть для стальных изделий больше диагонали отпечатка в 1,2 раза; для изделий из цветных металлов - в 1,5 раза.

Примечание. Минимальная толщина образца (изделия) для цветных металлов определяется по номограмме, приведенной в рекомендуемом приложении 3.

(Измененная редакция, Изм. № 1).

1.3. При измерении твердости на криволинейных поверхностях радиус кривизны должен быть не менее 5 мм.

Примечание. Для определения твердости на образцах с радиусом кривизны менее 5 мм применяют поправочные коэффициенты, используемые для цилиндрических и сферических поверхностей, в зависимости от значения отношения

(Измененная редакция, Изм. № 1).

2.1. Прибор для измерения твердости должен соответствовать требованиям ГОСТ 23677-79 и настоящего стандарта.

Алмазный наконечник должен соответствовать требованиям ГОСТ 9377-81.

2.3. Образцовые меры твердости должны соответствовать требованиям ГОСТ 9031-75.


3. ПОДГОТОВКА К ИСПЫТАНИЮ

3.1. Перед измерением твердости производят осмотр образцов (изделий).

3.2. Поверхность испытуемого образца должна иметь шероховатость не более 0,16 мкм по ГОСТ 2789-73 и быть свободной от окисной пленки и посторонних веществ.

3.3. При измерении твердости должна быть обеспечена перпендикулярность приложения действующего усилия к испытуемой поверхности.

3.4. Опорная поверхность столика должна быть чистой. Образец должен лежать на подставке жестко и устойчиво.

3.5. При измерении твердости алмазной пирамидой применяются следующие нагрузки: 9,807 (1); 19,61 (2); 24,52 (2,5); 29,42 (3); 49,03 (5); 98,07 (10); 196,1 (20); 294,2 (30); 490,3 (50); 980,7 (100) Н (кгс).

Для получения более точного результата измерения твердости нагрузка должна быть возможно больше, причем на обратной стороне образца не должно быть заметно следов деформации.

Примечание. Для определения твердости черных металлов и сплавов применяют нагрузки от 49,03 Н (5 кгс) до 980,7 Н (100 кгс); для меди и ее сплавов - от 24,52 Н (2,5 кгс) до 490,3 Н (50 кгс); для алюминиевых сплавов - от 9,807 Н (1 кгс) до 980,7 Н (100 кгс).

(Измененная редакция, Изм. № 1, 2).


4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

4.1. При измерении твердости должны быть соблюдены следующие условия:

а) плавное возрастание нагрузки до необходимого значения;

б) поддержание постоянства приложенной нагрузки в течение установленного времени.

4.2. Продолжительность выдержки под нагрузкой должна составлять 10-15 с.

4.3. При наличии в стандартах или технических условиях на металлопродукцию особых указаний допускается проводить испытания с более продолжительным временем выдержки под нагрузкой. В этом случае допуск на выдержку должен быть ±2 с.

4.4. Расстояние между центром отпечатка и краем образца или краем соседнего отпечатка должно быть не менее 2,5 длины диагонали отпечатка.

4.5. При неизвестной толщине испытуемого слоя следует произвести несколько измерений при различных нагрузках. Если при этом твердость будет изменяться, то следует уменьшить нагрузки до тех пор, пока при двух смежных нагрузках твердость будет близка по своим значениям или совпадает.

4.6. Испытание проводят при температуре °C.

При разногласиях в измерении твердости испытания должны проводиться при температурах (20±2)°С в умеренном климате и при (27±2)°С в тропическом климате.

(Введен дополнительно, Изм. № 1).

4.7. Количество отпечатков при определении твердости указывают в нормативно-технической документации на металлопродукцию.

(Введен дополнительно, Изм. № 1).

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Твердость по Виккерсу () вычисляют по формуле

где - нагрузка, Н.

где - нагрузка, кгс;

- угол между противоположными гранями пирамиды при вершине, равный 136°;

- среднее арифметическое значение длин обеих диагоналей отпечатка после снятия нагрузки, мм.

(Измененная редакция, Изм. № 2).

5.2. Для определения твердости по Виккерсу берут среднее арифметическое значение длин обеих диагоналей (см. чертеж). Разность диагоналей одного отпечатка не должна превышать 2% от меньшей из них.

Для анизотропных материалов получаемая разность длин двух диагоналей одного отпечатка может не укладываться в указанный допуск. Допуск на эту разность должен быть указан в стандартах или технических условиях на металлопродукцию.

5.3. Измерение диагоналей длиной до 0,2 мм включительно должно производиться с погрешностью не более ±0,001 мм, и для диагоналей длиной более 0,2 мм - с погрешностью не более ±0,5%.

5.4. Твердость по Виккерсу при условиях испытания =294,2 Н (30 кгс) и времени выдержки под нагрузкой 10-15 с - обозначается цифрами, характеризующими величину твердости, и буквами . При других условиях испытания после букв указывается нагрузка и время выдержки.

Примеры обозначения: 500 - твердость по Виккерсу, полученная при нагрузке =30 кгс и времени выдержки 10-15 с;

220 10/40 - твердость по Виккерсу, полученная при нагрузке 98,07 (10 кгс) и времени выдержки 40 с.

5.5. Твердость по Виккерсу, вычисленная по указанной формуле, в зависимости от длины диагонали отпечатка при стандартных значениях их нагрузки , приведена в приложении.

Металлы и сплавы. Измерение твердости по Виккерсу. Часть 1. Метод измерения

Сравнительная таблица твердости. Перевод твердости по БРИНЕЛЛЮ, РОКВЕЛЛУ, ВИККЕРСУ и ШОРУ.



Благодаря данной таблице Вы с легкостью сможете перевести значения из величин например hb в другие, к примеру hrc. Твердостью называют свойство материала сопротивляться проникновению в него другого тела.

Способы определения твердости:

Способ БРИНЕЛЛЯ — испытание твердости с помощью стального шарика, методом вдавливания в испытываемую поверхность. Стальные шарики бывают диаметрами 2,5; 5 или 10 мм. Числом твердости по Бринеллю (HB) называют отношение нагрузки к площади поверхности отпечатка.

Способ Роквелла — испытание твердости с помощью алмазного конуса с углом 120* или стального закаленного шарика, методом вдавливания в испытываемую поверхность.

Способ Виккерса — испытание твердости с помощью алмазного наконечника в форме правильной четырехгранной пирамиды с углом между гранями 136*, методом вдавливания в испытываемую поверхность.Число твердости по Виккерсу это отношение нагрузки к площади поверхности отпечатка.

Способ Шора — определение твердости по высоте отскакивания бойка падающего на поверхность испытываемого тела с определенной высоты.

РоквеллБринелльВиккерсШорНа разрыв
HRAHRCHB (3000H)Диаметр отпечатка, ммHVHSDН/мм²
89727822.201220
86.5701076101
86697442.25100499
85.56894297
85677132.3089495
84.56685492
84656832.3582091
83.56478988
83636522.4076387
82.56273985
81.5616272.4571583
8160695812206
80.5596002.50675802137
80582.55655782069
79.557578636762000
79562.60617751944
78.555555598741889
78542.65580721834
77.553532562711772
77525122.70545691689
76.5514952.75528681648
7650513671607
75.5494772.80498661565
74.5484602.85485641524
74474482.89471631496
73.5464372.92458621462
73454262.96446601420
72.5444153.00435581379
71.5423933.08413561317
70.5403723.16393541255
383523.25373511193
363323.34353491138
343133.44334471076
322973.53317441014
302833.6130142965
282703.6928541917
262603.7627139869
242503.8325737834
222403.9124635793
202303.992363475







Общие требования к испытаниям

  • Вне зависимости от величины прилагаемого усилия или затрачиваемой энергии, значение твердости для однородного тела при постоянной температуре должно быть материальной константой.
  • Поверхность объекта должна быть подготовлена в соответствии с методикой измерения.
  • Образец должен быть надежно зафиксирован, чтобы исключить смещение относительно оси приложения нагрузки со стороны прибора.
  • Твердость должна иметь совершенно определенный и ясный физический смысл, правильную размерность, характеризующую сопротивление материала пластической деформации.

Чем выше твердость образца, тем более высокая нагрузка нужна при его исследовании. Чем точнее метод, тем выше требования к подготовке поверхности контролируемого экземпляра. Вообще, чем тщательнее будет подготовлен образец для испытаний, тем меньше будет погрешность результата при использовании и стационарного, и портативного твердомера.

Сравнение шкал твёрдости

Простота метода Роквелла (главным образом, отсутствие необходимости измерять диаметр отпечатка) привела к его широкому применению в промышленности для проверки твёрдости. Также не требуется высокая чистота измеряемой поверхности (например, методы Бринелля и Виккерса включают замер отпечатка с помощью микроскопа и требуют полировки поверхности).
К недостатку метода Роквелла относится меньшая точность по сравнению с методами Бринелля и Виккерса.

Существует корреляция между значениями твёрдости, измеренной разными методами (например, см. рисунок — перевод единиц твёрдости HRB в твёрдость по методу Бринелля для алюминиевых сплавов). Зависимость носит нелинейный характер. Существуют нормативные документы, где приведено сравнение значений твёрдости, измеренной разными методами (например, ASTM E-140).

Технические характеристики

Значения чисел твёрдости мер и размах этих значений приведены в таблице 1.

Таблица 1 — Метрологические характеристики мер

Шкалы твердостиНагрузка, HЗначение твёрдости меры, HRРазмах значений чисел твёрдости, HR, не более
1 разряд2 разряд
Шкала Роквелла
ША588,4От 20 до 860,40,6
hrb, hrbw980,7От 20 до 1000,51,2
НЯС147125±50,51,1
45±100,40,8
65±50,30,5
Шкалы твердостиНагрузка, HЗначение твёрдости меры, KRРазмах значений чисел твёрдости, KR, не более
1 разряд2 разряд
Шкала Супер-Роквелла
rnj5N147,1От 70 до 940,40,6
HR30N294,2От 76 до 860,40,6
От 40 до 760,61,1
HR45N441,3От 20 до 770,61,1
ШЛ5Т147,1От 83 до 930,71,2
От 67 до 831,21,8
Ш30Т294,2От 70 до 820,71,2
От 29 до 701,21,8
Щ.45Т441,3От 50 до 720,71,2
От 10 до 501,21,8

Технические характеристики мер приведены в таблице 2.

Таблица 2 — Технические характеристики мер

Наименование характеристикиЗначение
характеристики
Шероховатость Rа, мкм, не более:
— рабочих поверхностей мер МТР-МЕТ0,32
— рабочих поверхностей мер МТСР-МЕТ0,16
— опорных поверхностей0,5
Рабочие условия эксплуатации:
— температура окружающего воздуха, °Сот +18 до +28
— относительная влажность окружающего воздуха, не более, %80
Габаритные размеры мер прямоугольной формы, мм:
— длина60±1
— ширина40±1
— высота, не менее6
Габаритные размеры мер круглой формы, мм:
— диаметр, мм65±1
— высота, мм, не менее6
Масса, кг, не более0,3

Как проводятся испытания металлов на твердость

Твердость – способность металлов сопротивляться другому, более твердому телу. Эта характеристика является очень важной, тесно связанной с такими основными свойствами, как износостойкость, сопротивление и другие.

Методы определения твердости металлов

Для определения величины твердости применяются различные методы: по диаметру отпечатка, отскоку, глубине вдавливания и другие. Выбор метода зависит от условий испытания, требований к сохранности образца.

Метод Бринелля

Этот метод позволяет определить твердость металла по диаметру оставленного отпечатка, который оставляется специальным шариком. Величина твердости определяется соотношением усилия к площади отпечатка (учитывается площадь части сфера, а не круга отпечатка). Размерность определяется, как HB, где Н – твердость, В – Бринелль (используемый метод).

Для оценки используется специальный пресс и шарик из шарикоподшипниковой закаленной стали, вдавливаемый в поверхность металла. Диаметр оставленной лунки определяется при помощи специальной лупы, значение твердости указывается в таблицах. Порядок исследования включает в себя такие этапы:

  • образец (деталь) размещается на предметном столике, поднимается к стальному шарику при помощи штурвала;
  • после включения мотора пресс вдавливает шарик в металл;
  • проводится оценка отпечатка, сравнение с табличными данными.
Метод Роквелла

Этот метод используется для определения величины твердости по глубине вдавливания конуса. Для исследования применяется алмазный конус, вдавливаемый при постоянной нагрузке, равной 10 кг, далее – при полной нагрузке в 60 кг или 150 кг.

Порядок оценки включает в себя следующие этапы:

  • образец располагается на специальном столике;
  • алмазный конус крепится в оправе над образцом;
  • при помощи штурвала образец поднимается к конусу под указанным давлением;
  • ручка освобождает груз, образец опускается;
  • специальный индикатор определяет глубину вдавливания, т есть значение твердости для испытуемого металла.
Метод динамического вдавливания

Метод динамического вдавливания может производится при помощи испытаний двух типов – по Виккерсу и Шору. В первом случае величина определяется по оставленной площади отпечатка. При испытаниях по Шору твердость испытуемого металла определяется по глубине проникновения индентора. Этот метод может использоваться для мягких материалов (вариант А) и для твердых (вариант D).

При испытаниях для массивных конструкций и деталей используются специальные переносные приборы, для остальных случаев применяются стационарные установки. Порядок оценки очень простой:

  • осуществляется закладка эталонного образца или его размещение в контрольной области;
  • удар молотком по прибору провоцирует нанесение отпечатка на исследуемую область (для этого используется специальный шарик);
  • проводится сопоставление лунки на образце или детали с табличными значениями.
Метод упругой отдачи (отскока)

Для оценки по методу Шора используется склероскоп, сам метод применим в тех случаях, когда нельзя применять другие способы из-за опасения повредить поверхность готового изделия.

Твердость оценивается в условных единицах HSx, которые будут пропорциональны значению высоты отскока бойка. Порядок испытаний очень простой, с постоянной высоты на поверхность металла падает боек и отскакивает. Величина отскока показывает значение твердости, которая будет тем больше, чем выше отскочит боек.

Метод отличается высокой производительностью, он часто используется для оценки одних и тех же металлов с одинаковыми свойствами упругости.

Испытания на твердость широко используются в различных сферах промышленности. Они отличаются производительностью, простотой измерений и не влекут за собой разрушения готового изделия. Кроме того, оценка твердости дает возможность одновременно определить и другие показатели для металлов, например, предел прочности или временного сопротивления.

Как устроена шкала твердости по Роквеллу?

Разработано 11 шкал для определения твердости (A…H, K, N, T), которые предназначены для работы в различных комбинациях «интендор – нагрузка». Например, шкалы В, F и G используют для измерения шарик Ø 1,588 с нагрузкой по шкалам В, F — 60 кгс и по шкале G — 150 кгс. Для шкал Е, Н и К применяется шарик Ø 3,175 мм с разными нагрузками.

Распространены такие шкалы:

  • А — с конусом и полным усилием на измерительной головке 60 кгс (10 кгс — предварительная нагрузка плюс 50 кгс — основная).
  • В — с шариком Ø 1,588 и полным усилием на измерительной головке 100 кгс.
  • С — с конусом и полным усилием на измерительной головке 150 кгс.

Предварительная нагрузка, которая позволяет выбрать зазоры твердомера и разрушить окисную пленку на образце, одинакова для измерений с использованием любых шкал.

В качестве индикатора используют устройство часового типа, которое позволяет регистрировать перемещение индентора на 0,002 мм с учетом перемещения рычагов. Максимальное перемещение измерительной головки при рабочей нагрузке — 0,2 мм. На индикаторе расположены шкала, содержащая 100 делений для каждого способа измерения (например, ТК 2 или NOVOTEST ТС-Р).

Диапазоны измерений для шкал (материалы):

  • HRA — 20…88 ед. (коррозионностойкие и жаропрочные стали)
  • HRB — 20…100 ед. (сплавы меди, ковкий чугун, низкоуглеродистые стали)
  • HRC — 20…70 ед. (высокоуглеродистые стали после термической обработки)

Шкалы А и С объединены, шкала В выделена цветом или вынесена отдельно.

Почему важно измерять показатель?

Твердость металлов — это показатель, который означает устойчивость стали к механическому воздействию других более твердых материалов. Оцениваются показатели в единицах твердости, на основе которых делается вывод о состоянии материала.

Твердость металлов важно учитывать в большинстве видов работы с ними. Например, когда на производстве изготавливаются объемные конструкции с большим весом, где применяются несколько типов металлов, важно знать, что они будут оптимально взаимодействовать и успешно выдерживать большую нагрузку.

Особо важно учитывать показатель твердости металла в следующих сферах:

  • Кораблестроительство;
  • Изготовление автомобилей;
  • Сборка самолетов;
  • Изготовление строительных материалов на основе металла и расходников.

В любой из этих областей устойчивость к механическому воздействию определяет безопасность человека, возможность выполнить поставленную задачу и эксплуатационный срок.

Для определения твердости в металл вдавливается индентор — тело, изготовленное из твердого сплава или алмаза, которое обладает наилучшим показателем сопротивления к механическим воздействиям. Чем большую силу вдавливания выдерживает металл, тем его твердость больше.

Определение твердости металлов и сплавов

Данный метод заключается во вдавливании шарика, который изготавливается из стали или твёрдого сплава, в испытуемый объект с некоторой силой направленной перпендикулярно, и последующего измерения полученного диаметра отпечатка.

Твердость по Бринеллю имеет своё символьное обозначение:

НВ – наносится в случае использования стального шарика;

HBW – в данном случае применяется шарик из твёрдого сплава.

Перед буквенным обозначением указывается цифровое значение твёрдости, а после него диаметр шарика, значение силы воздействия и время выдержки, если она отлична от 10 до 15 секунд.

250 НВ 5/750 – твердость по Бринеллю 250 , использовался пяти миллиметровый стальной шарик, сила воздействия составляла 750 кгс ( 7355 Н ). Продолжительность выдержки не указана, это означает, что она находится в пределах от 10 до 15 секунд;

575 HBW 2,5/187,5/30 – твердость по Бринеллю 575 , используется твердосплавный шарик с диаметром 2,5 мм , приложенная сила равна 187,5 кгс ( 1839 Н ) а выдержка составляет 30 секунд.

При силе 3000 кгс ( 29420 Н ) приложенной твердосплавным или стальным десятимиллиметровым шариком к поверхности образца или изделия с выдержкой от десяти до пятнадцати секунд указывают только твёрдость и символы.

Пример: 190 НВ , 600 HBW .

Метод Виккерса

Данным методом твёрдость измеряется по средствам вдавливания алмазного наконечника с геометрической формой правильной четырехгранной пирамиды в испытуемый объект и последующим замером диагоналей получившегося отпечатка после его выведения.

Твердость по Виккерсу обозначают цифрами в зависимости от величины твердости и буквами HV .

450 HV – твердость по Виккерсу соответствует значению 450 , приложенная сила 30 кгс и время затраченное на выдержку 10 – 15 секунд.

220 HV 10 / 40 – твердость по Виккерсу ровна значению 220 , сила ровна 98,07 Н ( 10 кгс ), выдержка 40 секунд.

Общего точного перевода чисел твердости, измеренных алмазной пирамидой (по Виккерсу), на числа твердости по другим шкалам или на прочность при растяжении не существует. Поэтому следует избегать таких переводов, за исключением частных случаев, когда благодаря сравнительным испытаниям имеются основания для перевода.

Метод Роквелла

Данный метод основан на внедрение в поверхность тела алмазного конусного или стального сферического наконечника под действием двух последовательных сил с последующим определением глубины проникновения наконечника. Причём замер производится после отключения основной силы.

Обозначение твёрдости по Роквеллу наносится символами, HR перед которыми указывается цифровое значение твердости, а после символ принадлежности к определённой шкале.

Пример: 24,8 HRC – твердость по Роквеллу 24,8 единиц по шкале С .

Для унификации измерений был введён специальный эталон для шкал твердости Роквелла и Супер-Роквелла ( ГОСТ 8.064 – 94 ), которые приведены в таблице ниже.

В последующих таблицах приводятся приближенные соотношения между значениями твердости, выявленные различными методами.

Читайте также: