Твердость металлов и сплавов таблица

Обновлено: 04.01.2025

Данный метод заключается во вдавливании шарика, который изготавливается из стали или твёрдого сплава, в испытуемый объект с некоторой силой направленной перпендикулярно, и последующего измерения полученного диаметра отпечатка.

Твердость по Бринеллю имеет своё символьное обозначение:

НВ – наносится в случае использования стального шарика;

HBW – в данном случае применяется шарик из твёрдого сплава.

Перед буквенным обозначением указывается цифровое значение твёрдости, а после него диаметр шарика, значение силы воздействия и время выдержки, если она отлична от 10 до 15 секунд.

250 НВ 5/750 – твердость по Бринеллю 250 , использовался пяти миллиметровый стальной шарик, сила воздействия составляла 750 кгс ( 7355 Н ). Продолжительность выдержки не указана, это означает, что она находится в пределах от 10 до 15 секунд;

575 HBW 2,5/187,5/30 – твердость по Бринеллю 575 , используется твердосплавный шарик с диаметром 2,5 мм , приложенная сила равна 187,5 кгс ( 1839 Н ) а выдержка составляет 30 секунд.

При силе 3000 кгс ( 29420 Н ) приложенной твердосплавным или стальным десятимиллиметровым шариком к поверхности образца или изделия с выдержкой от десяти до пятнадцати секунд указывают только твёрдость и символы.

Пример: 190 НВ , 600 HBW .

Метод Виккерса

Данным методом твёрдость измеряется по средствам вдавливания алмазного наконечника с геометрической формой правильной четырехгранной пирамиды в испытуемый объект и последующим замером диагоналей получившегося отпечатка после его выведения.

Твердость по Виккерсу обозначают цифрами в зависимости от величины твердости и буквами HV .

450 HV – твердость по Виккерсу соответствует значению 450 , приложенная сила 30 кгс и время затраченное на выдержку 10 – 15 секунд.

220 HV 10 / 40 – твердость по Виккерсу ровна значению 220 , сила ровна 98,07 Н ( 10 кгс ), выдержка 40 секунд.

Общего точного перевода чисел твердости, измеренных алмазной пирамидой (по Виккерсу), на числа твердости по другим шкалам или на прочность при растяжении не существует. Поэтому следует избегать таких переводов, за исключением частных случаев, когда благодаря сравнительным испытаниям имеются основания для перевода.

Метод Роквелла

Данный метод основан на внедрение в поверхность тела алмазного конусного или стального сферического наконечника под действием двух последовательных сил с последующим определением глубины проникновения наконечника. Причём замер производится после отключения основной силы.

Обозначение твёрдости по Роквеллу наносится символами, HR перед которыми указывается цифровое значение твердости, а после символ принадлежности к определённой шкале.

Пример: 24,8 HRC – твердость по Роквеллу 24,8 единиц по шкале С .

Для унификации измерений был введён специальный эталон для шкал твердости Роквелла и Супер-Роквелла ( ГОСТ 8.064 – 94 ), которые приведены в таблице ниже.

В последующих таблицах приводятся приближенные соотношения между значениями твердости, выявленные различными методами.

Твердость металлов

Машиностроительные детали и механизмы, а также инструменты, предназначенные для их обработки, обладают набором механических характеристик. Немалую роль среди характеристик играет твердость. Твердость металлов наглядно показывает:

  • износостойкость металла;
  • возможность обработки резанием, шлифованием;
  • сопротивляемость местному давлению;
  • способность резать другой материал и прочие.

Твердость металлов

На практике доказано, что большинство механических свойств металлов напрямую зависят от их твердости.

Понятие твердости

Твердость материала – это стойкость к разрушению при внедрении во внешний слой более твердого материала. Другими словами, способность к сопротивлению деформирующим усилиям (упругой или пластической деформации).

Определение твердости металлов производится посредством внедрения в образец твердого тела, именуемого индентором. Роль индентора выполняет: металлически шарик высокой твердости; алмазный конус или пирамида.

После воздействия индентора на поверхности испытуемого образца или детали остается отпечаток, по размеру которого определяется твердость. На практике используются кинематические, динамические, статические способы измерения твердости.

В основе кинематического метода лежит составление диаграммы на основе постоянно регистрирующихся показаний, которые изменяются по мере вдавливания инструмента в образец. Здесь прослеживается кинематика всего процесса, а не только конечного результата.

Динамический метод заключается в следующем. Измерительный инструмент воздействует на деталь. Обратная реакция позволяет рассчитать затраченную кинетическую энергию. Данный метод позволяет проводить испытание на твердость не только поверхности, но и некоторого объема металла.

Статические методы – это неразрушающие способы, позволяющие определить свойства металлов. Методы основаны на плавном вдавливании и последующей выдержке в течение некоторого времени. Параметры регламентируются методиками и стандартами.

Прилагаемая нагрузка может прилагаться:

  • вдавливанием;
  • царапанием;
  • резанием;
  • отскоком.

Машиностроительные предприятия на данный момент для определения твердости материалов используют методы Бринелля, Роквелла, Виккерса, а также метод микротвердости.

На основе проводимых испытаний составляется таблица, в которой указываются материалы, прилагаемые нагрузки и полученные результаты.

Единицы измерения твердости

Каждый способов измерения сопротивления металла к пластической деформации имеет свою методику его проведения, а также единицы измерения.

Измерение твердости мягких металлов производится методом Бринелля. Данному способу подвергаются цветные металлы (медь, алюминий, магний, свинец, олово) и сплавы на их основе, чугуны (за исключением белого) и отожженные стали.

Твердость по Бринеллю определяется вдавливанием закаленного, отполированного шарика из шарикоподшипниковой стали ШХ15. Окружность шарика зависит от испытуемого материала. Для твердых материалов – все виды сталей и чугунов – 10 мм, для более мягких – 1 – 2 — 2,5 — 5 мм. Необходимая нагрузка, прилагаемая к шарику:

  • сплавы железа – 30 кгс/мм2;
  • медь и никель – 10 кгс/мм2;
  • алюминий и магний – 5 кгс/мм2.

Единица измерения твердости – это числовое значение и следующий за ними числовой индекс HB. Например, 200 НВ.

Твердость по Роквеллу определяется посредством разницы приложенных нагрузок к детали. Вначале прикладывается предварительная нагрузка, а затем общая, при которой происходит внедрение индентора в образец и выдержка.

В испытуемый образец внедряется пирамида (конус) из алмаза или шарик из карбида вольфрама (каленой стали). После снятия нагрузки производится замер глубины отпечатка.

Единица измерения твердости – это условные единицы. Принято считать, что единица — это величина осевого перемещения конуса, равная 2 мкм. Обозначение твердости маркируется тремя буквами HR (А, В, С) и числовым значением. Третья буква в маркировке обозначает шкалу.

Методика отображает тип индентора и прилагаемую к нему нагрузку.

Тип шкалыИнструментПрилагаемая нагрузка, кгс
АКонус из алмаза, угол вершины которого 120°50-60
ВШарик 1/16 дюйма90-100
СКонус из алмаза, угол вершины которого 120°140-150

В основном, используются шкалы измерения А и С. Например, твердость стали HRC 26…32, HRB 25…29, HRA 70…75.

Измерению твердости по Виккерсу подвергаются изделия небольшой толщины или детали, имеющие тонкий, твердый поверхностный слой. В качестве клинка используется правильная четырехгранная пирамида угол при вершине, которой составляет 136°. Отображение значений твердости выглядит следующим образом: 220 HV.

Измерение твердости по методу Шора производится путем замера высоты отскока упавшего бойка. Обозначается цифрами и буквами, например, 90 HSD.

К определению микротвердости прибегают, когда необходимо получить значения мелких деталей, тонкого покрытия или отдельной структуры сплава. Измерение производят путем измерения отпечатка наконечника определенной формы. Обозначение значения выглядит следующим образом:

0,196 — нагрузка на наконечник, Н;

2800 – численное значение твердости, Н/мм 2 .

Твердость основных металлов и сплавов

Измерение значения твердости проводится на готовых деталях, отправляющихся на сборку. Контроль производится на соответствие чертежу и технологическому процессу. На все основные материалы уже составлены таблицы значений твердости как в исходном состоянии, так и после термической обработки.

Цветные металлы

Твердость меди по Бринеллю составляет 35 НВ, значения латуни равны 42-60 НВ единиц в зависимости от ее марки. У алюминия твердость находится в диапазоне 15-20 НВ, а у дюралюминия уже 70НВ.

Черные металлы

Твердость по Роквеллу чугуна СЧ20 HRC 22, что соответствует 220 НВ. Сталь: инструментальная – 640-700 НВ, нержавеющая – 250НВ.

Для перевода из одной системы измерения в другую пользуются таблицами. Значения в них не являются истинными, потому что выведены империческим путем. Не полный объем представлен в таблице.

HBHVHRCHRAHSD
2282402060.736
2602752462.540
280295296544
32034034.567.549
360380397054
41544044.57361
4504804774.564
480520507668
500540527773
535580547878

Значения твердости, даже если они производятся одним и тем же методом, зависят от прилагаемой нагрузки. Чем меньше нагрузка, тем выше показания.

Методы измерения твердости

Все методы определения твердости металлов используют механическое воздействие на испытуемый образец – вдавливание индентора. Но при этом не происходит разрушение образца.

Метод определения твердости по Бринеллю был первым, стандартизованным в материаловедении. Принцип испытания образцов описан выше. На него действует ГОСТ 9012. Но можно вычислить значение по формуле, если точно измерить отпечаток на образце:

HB=2P/(πD*√(D 2 -d 2 ),

  • где
    Р – прикладываемая нагрузка, кгс;
  • D – окружность шарика, мм;
  • d – окружность отпечатка, мм.
    Шарик подбирается относительно толщины образца. Нагрузку высчитывают предварительно из принятых норм для соответствующих материалов:
    сплавы из железа — 30D 2 ;
    медь и ее сплавы — 10D 2 ;
    баббиты, свинцовые бронзы — 2,5D 2 .

Условное изображение принципа испытания

Условное изображение принципа испытания

Схематически метод исследования по Роквеллу изображается следующим образом согласно ГОСТ 9013.

Метод измерения твердости по Роквеллу

Метод измерения твердости по Роквеллу

Итоговая приложенная нагрузка равна сумме первоначальной и необходимой для испытания. Индикатор прибора показывает разницу глубины проникновения между первоначальной нагрузкой и испытуемой h –h0.

Метод Виккерса регламентирован ГОСТом 2999. Схематически он изображается следующим образом.

Метод Виккерса

Математическая формула для расчета:
HV=0.189*P/d 2 МПа
HV=1,854*P/d 2 кгс/мм 2
Прикладываемая нагрузка варьируется от 9,8 Н (1 кгс) до 980 Н (100 кгс). Значения определяются по таблицам относительно измеренного отпечатка d.

Метод Шора

Метод считается эмпирическим и имеет большой разброс показаний. Но прибор имеет простую конструкцию и его можно использовать при измерении крупногабаритных и криволинейных деталей.

Измерить твердость по Моосу металлов и сплавов можно царапанием. Моос в свое время предложил делать царапины более твердым минералом по поверхности предмета. Он разложил известные минералы по твердости на 10 позиций. Первую занимает тальк, а последнюю алмаз.

После измерения по одной методике перевод в другую систему весьма условен. Четкие значения существуют только в соотношении твердости по Бринеллю и Роквеллу, так как машиностроительные предприятия их широко применяют. Зависимость можно проследить при изменении диаметра шарика.

d, ммHBHRAHRCHRB
2,371285,166,4
2,560181,159,3
3,041572,643,8
3,530266,732,5
4,022961,82298,2
5,014377,4
5,213172,4

Как видно из таблицы, увеличение диаметра шарика значительно снижает показания прибора. Поэтому на машиностроительных предприятиях предпочитают пользоваться измерительными приборами с однотипным размером индентора.

Методы измерения твердости металлов

Существует довольно большое количество различных механических характеристик металла, которые учитываются при производстве различных деталей. Многие из них зависят от химического состава материала, другие от особенностей эксплуатации. Измерение твердости металла проводится чаще других испытаний, так как это качество во многом определяет особенности эксплуатации материала. Рассмотрим особенности определения твердости подробнее.

Измерение твердости

Твердость – свойство материалов, характеризующее способность проникновения одного, более твердого, тела в другое. Также эта характеристика определяет устойчивость к пластической деформации или разрушению поверхностных слоев при оказании сильного давления.

Измеряется показатель в самых различных единицах в зависимости от применяемого метода.

Все методы определения твердости материалов можно разделить на несколько основных групп:

  1. Статические. Подобные методы характеризуются тем, что нагрузка постепенно возрастает. Время выдержки может быть разным — все зависит от особенностей применяемого метода.
  2. Динамические характеризуются тем, что нагрузка на образец подается с определенной кинетической энергией. При этом показатель твердости является менее точным, так как при динамической нагрузке возникает определенная отдача из-за упругости материала. Результаты подобных испытаний зачастую называют твердостью материалов при ударе.
  3. Кинетические основаны на непрерывной регистрации показателей во время проведения испытаний, что позволяет получить не только конечный, но и промежуточный результат. Для этого применяется специальное оборудование.

Измерение твердости инструмента

Измерение твердости инструмента

Кроме этого, классификация методов определения твердости проводится по принципу приложенной нагрузки. Выделяют следующие способы испытания образца:

  1. Вдавливание является на сегодняшний день наиболее распространенным способом определения рассматриваемого показателя.
  2. При отскоке проводится замер того, как высоко боек отлетит от поверхности испытуемого образца. В данном случае просчет твердости проводится по показателю сопротивления упругой деформации. Методы подобного типа довольно часто применяются для контроля качества прокатных валиков и изделий с большими размерами.
  3. Методы, основанные на царапании и резании, сегодня применяются крайне редко. Были они разработаны два столетия назад.

Как правило, в твердомерах есть деталь, которая оказывает воздействие на испытываемую заготовку. Примером можно назвать стальные шарики различного диаметра и алмазные наконечники с формой пирамиды. Некоторые из применяемых на сегодняшний день методов рассмотрим подробнее.

Измерение твердости по Бринеллю

Чаще всего проводится измерение твердости по Бринеллю. Этот метод регламентирован ГОСТ 9012. К особенностям испытания металлов и сплавов подобным методом можно отнести следующие моменты:

  1. В качестве тела, которое будет оказывать воздействие на испытуемый образец, используется стальной шарик.
  2. Для тестирования применяется шарик с определенным диаметром, который изготавливается из закаленной стали. К нему прилагается постоянно нарастающая нагрузка.
  3. Главным условие применения этого метода тестирования металлов и сплавов является то, что шарик должен изготавливается из более твердого материала, чем испытуемый образец.
  4. После завершения теста проводится измерение полученного отпечатка на поверхности.
  5. Данный способ позволяет получить данные, которые указываются в HB. Именно это обозначение сегодня встречается чаще других в различной справочной документации.
  6. Для удобства применения данного способа были созданы специальные таблицы, которые основаны на зависимости диаметрального размера шарика, твердости и полученного отпечатка.

Измерение по методу Бринеллю

Измерение по методу Бринеллю

Стоит учитывать, что по Бринеллю не рекомендуется тестировать стали и сплавы, твердость которых превышает значение 450HB. Цветные металлы должны обладать показателем ниже 200 HB.

Измерение твердости по Виккерсу

Также выделяют метод измерения твердости по Виккерсу, который регламентирован ГОСТ 2999. Получил он распространение при определении твердости деталей и заготовок, который имеют небольшую толщину. Кроме этого, он может применяться для измерения твердости деталей, имеющих поверхностный твердый слой.

К особенностям этого способа тестирования образца можно отнести нижеприведенные моменты:

  1. Применяется так называемый алмазный наконечник, который имеет форму пирамиды с четырьмя гранями и равными сторонами.
  2. Выбирается определенное время выдержки.
  3. После того, как снимается нагрузка, проводится измерение размеров диагоналей получившегося отпечатка и вычисляется среднее арифметическое значение.
  4. Величина прилагаемой нагрузки регламентирована, может выбираться в зависимости от типа тестируемого материала.
  5. Полученные результаты в ходе проведения исследований обозначаются HV.

В некоторых случаях после полученного значения указывается время выдержки и величина прилагаемой нагрузки, что позволяет с большей точностью определить значение твердости.

Измерение твердости по Роквеллу

Данный метод регламентируется ГОСТ 9013. Для его проведения используется специальный прибор для измерения твердости, который позволяет создать две последовательные нагрузки, прилагаемые к поверхности образца. К особенностям проведения подобного теста можно отнести:

  1. Сначала оказывается предварительная нагрузка, после чего добавляется вторая.
  2. После выдержки под общей нагрузкой в течении 3-5 секунд вторая снимается, проводится замер глубины отпечатка, затем снимается предварительная нагрузка.
  3. Измерение полученных данных проводится в условных единицах, которые равны осевому смещению индикатора на 0,002.
  4. Определяется число твердости по Роквеллу по специальной шкале прибора.
  5. Форма применяемого индикатора может существенно отличаться. Именно поэтому было введено несколько типов измерительных шкал, которые соответствуют определенной форме индикатора.
  6. Для обозначения полученной величины могут применяться обозначения HIRA, HRC, HRB. Они соответствуют форме применяемого индикатора и шкалы обозначения.

Принцип измерения твердости по Роквеллу

Принцип измерения твердости по Роквеллу

В качестве индикатора могут использоваться стальной шарик и два алмазных конуса различного размера. Этот метод измерения твердости закаленных деталей проводится только при применении алмазного конуса меньшего размера, предварительная оказываемая нагрузка составляет 10 кгс, основная 50 кгс. За счет предварительной нагрузки исключается вероятность того, что из-за упругости материала полученные значения будут менее точными. Кроме этого, предварительная нагрузка позволяет проводить измерение твердости металлов и сплавов, которые прошли предварительную термическую обработку.

Измерение твердости по Шору

Метод определения твердости по Шору применяется для тестирования прокатных валиков на момент их изготовления. Кроме этого, проверка рассматриваемого показателя может проводиться при эксплуатации валиков на прокатных станках, так как из-за оказываемого воздействия структура металла может изменяться, ухудшая эксплуатационные качества. Регламентирован метод Шора ГОСТ 23273.

Шкала твердости по Шору

Шкала твердости по Шору

Рассматривая измерение твердости по Шору, следует отметить следующие моменты:

  1. В отличие от предыдущих способов, рассматриваемый основан на свободном падении алмазного индикатора на тестируемую поверхность с определенной высоты. Для тестирования применяется специальное оборудование, которое позволяет фиксировать точно высоту отскока.
  2. Масса применяемого бойка с алмазным наконечником составляет 36 грамм. Этот показатель важен, так как учитывается при проводимых расчетах.
  3. Твердость определяется по высоте отскока, измерение проводится в условных единицах. Падение образца на поверхность происходит с образованием небольшого углубления, а упругость приводит к обратному отскоку. Этот метод хорош тем, что позволяет проводить тестирование образцов, которые прошли предварительную термическую обработку. При постепенном вдавливании возникающая нагрузка может стать причиной деформирования используемого наконечника или шарика. В этом случае вероятность их деформации весьма мала.
  4. За 100 единиц твердости в этом случае принято считать высоту отскока 13,6 мм с возможностью небольшого отклонения в большую или меньшую сторону. Этот показатель можно получить при тестировании углеродистой стали, прошедшей процесс закалки. В качестве обозначения применяется аббревиатура HSD.

Сегодня этот способ измерения твердости применяется довольно редко из-за высокой погрешности и сложности замера высоты отскока байка от тестируемой поверхности.

Как ранее было отмечено, существует довольно большое количество методов измерения рассматриваемого показателя. Однако из-за сложности проведения тестов и большой погрешности многие уже не применяются.

В некоторых случаях проводится тестирование на микротвердость. Для измерения этого показателя прилагается статическая нагрузка к телу с формой пирамиды, и оно входит в испытуемые образец. Время выдержки может варьироваться в большом диапазоне. Показатель вычисляется примерно так же, как при методе Виккерса.

Соотношение значений твердости

При выборе метода измерения твердости поверхности следует учитывать, что между полученными данными нет никакой связи. Другими словами, выполнить точный перевод одной единицы измерения в другую нельзя. Применяемые таблицы зависимости не имеют физического смысла, так как они эмпирические. Отсутствие зависимости также можно связать с тем, что при тестировании применяется разная нагрузка, различные формы наконечников.

Существующие таблицы следует применять с большой осторожностью, так как они дают только приблизительные результаты. В некоторых случаях рассматриваемый перевод может оказаться весьма точным, что связано с близкими физико-механическими свойствами испытуемых металлов.

В заключение отметим, что значение твердости связано со многими другими механическими свойствами, к примеру, прочностью, упругостью и пластичностью. Поэтому для определения основных свойств металла довольно часто проводят измерение именно твердости. Однако прямой зависимости между всеми механическими свойствами металлов и сплавов нет, что следует учитывать при проведении измерений.

Таблица соответствия шкал твердости / Hardness equivalent table

Хотя низкоуглеродистая сталь является относительно мягкой, с помощью процесса, которые называется цементацией, ее можно сделать значительно тверже. Этот процесс термической обработки буквально заставляет сталь поглощать углерод из твердой, жидкой или газообразной среды богатой углеродом. Обычно углерод поглощается только поверхностным слоем стали. Это дает очень твердый поверхностный слой детали, что полезно, например, для износостойкости. Сердцевина детали остается малоуглеродистой и поэтому пластичной и вязкой. Это весьма благоприятно для надежности и стойкости к хрупкому разрушению для детали в целом

Определение твердости металлов и сплавов

МЕТОД БРИНЕЛЛЯ
Метод измерения твердости металлов по Бринеллю регламентирует ГОСТ 9012-59 (ИСО 6506-81. ИСО 410-82) (в редакции 1990 г.).

Сущность метода заключается во вдавливании шарика (стального или из твердого сплава) в образец (изделие) под действием силы, приложенной перпендикулярно поверхности образца в течение определенного времени, и измерении диаметра отпечатка после снятия силы.

Твердость по Бринеллю обозначают символом НВ или HBW.

НВ — при применении стального шарика (для металлов и сплавов твердостью менее 450 единиц); HBW — при применении шарика из твердого сплава (для металлов и сплавов твердостью более 450 единиц).

Символу НВ (HBW) предшествует числовое значение твердости из трех значащих цифр, а после символа указывают диаметр шарика, значение приложенной силы (в кгс). продолжительность выдержки, если она отличается от 10 до 15 с.

250 НВ 5/750

— твердость по Бринеллю 250, определенная при применении стального шарика диаметром 5 мм при силе 750 кгс (7355 Н) и продолжительности выдержки от 10 до 15 с.

575 HBW 2,5/187,5/30

— твердость по Бринеллю 575, определенная при применении шарика из твердого сплава диаметром 2,5 мм при силе 187,5 кгс (1839 Н) и продолжительности выдержки 30 с.

При определении твердости стальным шариком или шариком из твердого сплава диаметром 10 мм при силе 3000 кгс (29420 Н) и продолжительности выдержки от 10 до 15 с твердость по Бринеллю обозначают только числовым значением твердости и символом НВ или HBW.

Пример обозначения: 185 НВ, 600 HBW.
МЕТОД ВИККЕРСА
Метод измерения твердости черных и цветных металлов и сплавов при нагрузках от 9,807 Н (1 кгс) до 980,7 Н (100 кгс) по Виккерсу регламентирует ГОСТ 2999 — 75* (в редакции 1987 г.).

Измерение твердости основано на вдавливании алмазного наконечника в форме правильной четырехгранной пирамиды в образец (изделие) под действием силы, приложенной в течение определенного времени, и измерении диагоналей отпечатка, оставшихся на поверхности образца после снятия нагрузки.

Твердость по Виккерсу при условиях испытания — силовое воздействие 294.2 Н (30 кгс) и время выдержки под нагрузкой 10 … 15 с. обозначают цифрами, характеризующими величину твердости, и буквами HV.

Пример обозначения: 500 HV

— твердость по Виккерсу, полученная при силе 30 кгс и времени выдержки 10 … 15 с.

При других условиях испытания после букв HV указывают нагрузку и время выдержки.

Пример обозначения: 220 HV 10/40

— твердость по Виккерсу, полученная при силе 98,07 Н (10 кгс) и времени выдержки 40 с.

Общего точного перевода чисел твердости, измеренных алмазной пирамидой (по Виккерсу), на числа твердости по другим шкалам или на прочность при растяжении не существует. Поэтому следует избегать таких переводов, за исключением частных случаев, когда благодаря сравнительным испытаниям имеются основания для перевода.
МЕТОД РОКВЕЛЛА
Метод измерения твердости металлов и сплавов по Роквеллу регламентирует ГОСТ 9013 — 59* (в редакции 1989 г.).

Сущность метода заключается во внедрении в поверхность образца (или изделия) алмазного конусного (шкалы А. С. D) или стального сферического наконечника (шкалы В. Е. F. G. Н. К) под действием последовательно прилагаемых предварительной и основной сил и в определении глубины внедрения наконечника после снятия основной силы.

Твердость по Роквеллу обозначают символом HR с указанием шкалы твердости, которому предшествует числовое значение твердости из трех значащих цифр.

Пример обозначения: 61,5 HRC

— твердость по Роквеллу 61,5 единиц по шкале С.
СРАВНЕНИЕ ЧИСЕЛ ТВЕРДОСТИ МЕТАЛЛОВ И СПЛАВОВ ПО РАЗЛИЧНЫМ ШКАЛАМСРАВНИТЕЛЬНАЯ ТАБЛИЦА ТВЕРДОСТИ по DIN 50150
С целью обеспечения единства измерений введен государственный специальный эталон для воспроизведения шкал твердости Роквелла и Супер-Роквелла и передачи их при помощи образцовых средств измерений (рабочих эталонов) рабочим средствам измерений, применяемым в стране (ГОСТ 8.064 — 94).
ДИАПАЗОНЫ ШКАЛ ТВЕРДОСТИ по РОКВЕЛЛУ и СУПЕР-РОКВЕЛЛУ, ВОСПРОИЗВОДИМЫХ ЭТАЛОНОМ по ГОСТ 8.064-94

ШкалыДиапазоны измерений
Роквелла A B C70 — 93 HRA 25 — 100 HRB 20 — 67 HRC
Супер-Роквелла N 15 N 30 N 45 T 15 T 30 T 4570 — 94 HRN 15 40 — 86 HRN 30 20 — 78 HRN 45 62 — 93 HRT 15 15 — 82 HRT 30 10 — 72 HRT 45

Твердая цементация стали

При твердой цементации детали укладывают в ящик с карбюрозатором. Карбюрозатор – это науглераживающее вещество, обычно древесный уголь с различными добавками. При температуре 900-950 º кислород воздуха соединяется с углеродом древесного угля с образованием окиси углерода. При соприкосновении с железом оксиь углерода разлагается на углекислый газ и атомарный углерод, который и поглощается поверхностью детали. Твердая цементация применяется в мелкосерийном и единичном производстве, например, в сельских кузницах.

Закалка и отпуск высокоуглеродистой стали

Высокоуглеродистые стали обычно обладают высокой твердостью уже как бы сами по себе. Однако процесс закалки может сделать их значительно тверже, хотя при этом они становятся более хрупкими. Поэтому закалку почти всегда совмещают с отпуском. В результате отпуска твердость стали снижается, а пластичность повышается.

После отжига, нормализации или отпуска углеродистая сталь состоит из феррита, свободного и пластинчатого, и включений карбидов (цементита). Феррит обладает низкой прочностью и высокой пластичностью. Цементит же имеет очень высокую твердость (около 800 НВ) и практически нулевую пластичность. При малом количестве цементитных включений пластическая деформация развивается относительно легко и твердость стали поэтому невысока.

Измерение твердости («hardness testing»)

Измерение твердости металлов – твердометрия («hardness testing») или дюрометрический анализ является основным неразрушающим методом оценки прочностных характеристик при экспертизе металлов. Если давать каноническое определение, то твердость – это способность материала сопротивляться пластической деформации. Твердометрия крайне широко используется в металловедческой экспертизе, благодаря скорости и простоте проведения исследования. Зачастую не нужна даже пробоподготовка, а твердость измеряют на готовом изделии.

Теперь о том, как же проводится измерение твердости. Определенной формы индентор (о формах которого поговорим ниже) вдавливается в исследуемы материал с заданной нагрузкой в течении регламентированного периода времени (5-15 с.). После снятия нагрузки в материале остается след от индентора – вмятина, площадь которой определяют. Отношение вдавливающей нагрузки к площади полученного отпечатка и является значением твердости, измеряется в кгс/мм2.

Методов твердости существует множество, все они отличаются только типом индентора, а принцип везде один и тот же. В экспертизе металлов основными видами измерения твердости являются:

Читайте также: