Твердость металлов и неметаллов

Обновлено: 07.01.2025

В этом посте будет обсуждаться твердость, физическое свойство материи.

Твердость – это способность материала противостоять воздействующим на него физическим явлениям. Наблюдать и измерять твердость вещества можно, связывая ее только с физическим изменением, но не затрагивая химический состав вещества или химически изменяя материал.

Изучить различные подробные факты о твердости, физическом свойстве.

Как твердость является физическим свойством?

Чтобы считаться физическим свойством, которому твердость действительно соответствует, должны быть выполнены некоторые требования.

Основным критерием для отнесения ее к физическим свойствам является то, что твердость не связана с изменением химического состава вещества. А химическая реакция нет необходимости наблюдать и измерять твердость материала, поскольку она не имеет отношения к химическим связям, присутствующим в веществе.

Ниже приведено объяснение того, что означает твердость.

Является ли изменение твердости физическим свойством?

Без сомнения, твердость как-то связана с физической природой и ее изменениями, связанными с материей. Для детальное объяснение из этого, во-первых, давайте рассмотрим, что вы подразумеваете под твердостью материала,

Твердость — это мера тенденции материала сопротивляться некоторым физическим явлениям, таким как царапание, придание формы, истирание, вдавливание и т. д. Физическое свойство идентифицируется или наблюдается только тогда, когда физическое изменение вещества связано с физическими аспектами.

Некоторые другие факты о твердости

Есть некоторые жизненно важные факты, которые нам нужно знать о твердости.

Теперь мы подробно обсудим другие аспекты, по которым жесткость классифицируется.

Твердость – это качественное физическое свойство вещества.

поскольку твердость — это физическое свойство материи, которое можно наблюдать с помощью органов чувств, подобно физическому состоянию, цвету, запаху и т. д. Твердость можно даже считать качественным свойством, являющимся признаком материи. В то время как количественные являются мерами значений и счетов.

Твердость – это внутреннее физическое свойство вещества

Твердость не зависит от количества присутствующего вещества материала или размера образца. Следовательно, мы можем указать твердость как внутреннее свойство, которое может определяться другими факторами.

Некоторые из применений знания твердости вещества

Для оценки других свойств материала

Оценка свойств материалов, а именно прочности, эластичности, износостойкости и др.

Твердость: отличает металлы от неметаллов

Как правило, мы можем наблюдать, что металлы являются сложными, а неметаллы - нет. Таким образом, когда вы пытаетесь разрезать неметаллы, такие как сера и уголь, их легко разрезать, в то время как металлы не могут быть легко разрезаны ножом; это различает металлы и неметаллы на основе твердости. Конечно, алмаз можно считать исключением, так как это самый сложный из известных материалов, хотя он и неметалл.

Назовите основные различия между химическими и физическими свойствами вещества?

Мы можем различать физические и химические свойства многими способами. Основные различия между химическими и физическими свойствами указаны ниже;

Часто задаваемые вопросы| Часто задаваемые вопросы

Что вы понимаете под твердостью материала?

Твердость можно рассматривать как одно из наиболее недостаточно определенных свойств материала.

  • Царапины
  • Истирание
  • вдавливание
  • Шейпинг
  • Деформация пластика.

Имеет ли твердость материала зависит от его цвета?

  • Цвет деревянного бруска не влияет на его твердость, так как это эстетическое свойство, тогда как твердость является физической.
  • Точно так же цвет камня не имеет ничего общего с его твердостью. Твердость считается физическим свойством, а цвет — нет.

твердость это физическое свойство

Вудлог из Pixabay

Назовите разные типы жесткости?

Свойство твердости в основном основано на его пластичности и гибкости. Другими факторами, влияющими на твердость, являются деформация, прочность, ударная вязкость объекта, вязкость материала и т. д.

  • Твердость от царапин
  • Твердость вдавливания
  • Жесткость отскока

Как мы можем классифицировать вещества, которые видим вокруг?

У окружающих нас веществ наблюдаются определенные характеристики и свойства, которые помогают их классифицировать и идентифицировать.

Различные вещества можно дифференцировать по их химическим и физическим характеристикам. При изучении материалов эти аспекты имеют первостепенное значение.

Является ли твердость свойством химического или физического аспекта материи?

Твердость является одной из основных и выдающихся характеристик материи, которую необходимо учитывать.

  • Цвет
  • Плотность
  • Текстура
  • запах
  • Внешний вид и др.

Как можно измерить твердость материала по шкале Мооса?

Шкала Мооса является важным инструментом, специально используемым для измерения твердости любого материала.

Твердость измеряется по шкале. Процедура измерения твердости заключается в том, чтобы сначала найти самый твердый материал; затем следует проверить данный материал, твердость которого необходимо найти. Это можно проверить, поцарапав его, или это делается с использованием самого мягкого материала, который может прямо поцарапать материал.

Как размер частиц и жесткость может быть связана?

Твердость и размер частиц материала имеют зависимость Холла-Петча.

Экспериментально установлена ​​зависимость твердости от размера частиц: по мере того как мы продолжаем уменьшать размер частиц, твердость материала увеличивается; это связано с тем, что материалы имеют тенденцию поглощать более значительные количества энергии из-за упругих и пластических деформаций; это объясняет, почему хрупкие материалы имеют меньшую прочность.

Последние посты

Гидроксид калия или едкий калий является неорганическим компонентом. Его молярная масса составляет 56.11 г/моль. Давайте резюмируем структуру КОН Льюиса и все факты в деталях. КОН представляет собой простой гидроксид щелочного металла.

Слово «еще» в основном служит в значении «до сих пор» или «тем не менее» в предложении. Проверим употребление слова «пока» в значении «союз». Слово "пока" можно обозначить как "координационное.

О НАС

Мы являемся группой профессионалов отрасли из различных областей образования, таких как наука, инженерия, английская литература, и создаем универсальное образовательное решение, основанное на знаниях.

Металлы и неметаллы: сравнительная характеристика


Все химические элементы условно можно разделить на неметаллы и металлы. Знаете ли вы, по каким признакам они отличаются? Как определить их положение в таблице химических элементов? На эти и другие вопросы вы найдете ответы в нашей статье.

Положение неметаллов и металлов: таблица Менделеева

По внешним признакам и физическим свойствам не всегда можно выяснить, к какой группе относится химический элемент. Свойства металлов и неметаллов можно определить по расположению в периодической таблице.

Для этого нужно зрительно провести диагональ от бора до астата, от 5 до 85 номера. В правом верхнем углу будут преимущественно находиться неметаллы. Их в таблице меньшинство, всего 22 элемента. Металлы находятся в правой части периодической таблицы наверху - в основном в I, II и III группах.

положение металлов и неметаллов в таблице Менделеева

Энергетический уровень

Отличия неметаллов и металлов первоначально обусловлены строением их атомов. Начнем с количества электронов на внешнем энергетическом уровне. У атомов металлов оно варьирует от одного до трех. Как правило, они обладают большим радиусом, поэтому атомы металлов достаточно легко отдают наружные электроны, так как имеют сильные восстановительные свойства.

У неметаллов число электронов на внешнем уровне больше. Это объясняет их окислительную активность. Неметаллы присоединяют недостающие электроны, полностью заполняя энергетический уровень. Самые сильные окислительные свойства проявляют неметаллы второго и третьего периода VI-VII групп.

Заполненный энергетический уровень содержит 8 электронов. Самой большой окислительной способностью обладают галогены с валентностью I. Среди них лидирует фтор, так как у этого элемента нет свободных орбиталей.

пузырьки кислорода в воде

Строение металлов и неметаллов: кристаллические решетки

Физические свойства веществ определяются порядком расположения элементарных частиц. Если условно соединить их воображаемыми линиями, то получится структура, которая называется кристаллической решеткой. В ее узлах могут находиться разные структуры: атомы, молекулы или заряженные частицы - ионы.

У некоторых неметаллов формируется атомная кристаллическая решетка, частицы которой соединены ковалентными связями. Вещества с таким строением твердые и нелетучие. К примеру, фосфор, кремний и графит.

В молекулярной кристаллической решетке связь между элементарными частицами слабее. Обычно подобные неметаллы находятся в жидком или газообразном агрегатном состоянии, но в некоторых случаях - это твердые легкоплавкие неметаллы.

В любом образце металла часть атомов теряет наружные электроны. При этом они превращаются в положительно заряженные частицы - катионы. Последние снова соединяются с электронами, образуя нейтрально заряженные частицы - в металлической решетке одновременно находятся катионы, электроны и атомы.

графит - видоизменение углерода

Физические свойства

Начнем с агрегатного состояния. Традиционно принято считать, что все металлы - твердые вещества. Исключением является только ртуть, тягучая жидкость серебристого цвета. Ее пары являются контаминантом - токсичным веществом, вызывающим отравление организма.

Еще одна характерная черта - металлический блеск, который объясняется тем, что поверхность металла отражает световые лучи. Еще одна важная особенность - электро- и теплопроводность. Это свойство обусловлено наличием в металлических решетках свободных электронов, которые в электрическом поле начинают двигаться направленно. Лучше всех проводит тепло и ток ртуть, наименьшими показателями обладает серебро.

Металлическая связь обусловливает ковкость и пластичность. По этим показателям лидирует золото, из которого можно раскатать лист толщиной в человеческий волос.

Чаще всего физические свойства металлов и неметаллов противоположны. Так, последние характеризуются невысокими показателями электро- и теплопроводности, отсутствием металлического блеска. При обычных условиях неметаллы находятся в газообразном или жидком состоянии, а твердые всегда хрупкие и легкоплавкие, что объясняется молекулярным строением неметаллов. Алмаз, красный фосфор и кремний - тугоплавкие и нелетучие, это вещества с немолекулярным строением.

алмаз - типичный представитель неметаллов

Что такое полуметаллы

В периодической таблице между металлами и неметаллами находится ряд химических элементов, которые занимают промежуточное положение. Их называют полуметаллами. Атомы полуметаллов связаны ковалентной химической связью.

Эти вещества совмещают признаки металлов и неметаллов. К примеру, сурьма является кристаллическим веществом серебристо-белого цвета и вступает в реакцию с кислотами, образуя соли - типичные металлические свойства. С другой стороны, сурьма - очень хрупкое вещество, которое не поддается ковке, а измельчить его можно даже вручную.

Итак, типичные неметаллы и металлы обладают противоположными свойствами, но деление это достаточно условно, поскольку ряд веществ сочетает в себе и те и другие признаки.

Металлы и неметаллы

Наш мир наполняют различные простые вещества – металлы или неметаллы. При существовании 120 химических элементов, Вселенную наполняют более 400 простых веществ. Этот парадокс связан с понятием аллотропии – явлением образования одним химическим элементом двух и более простых веществ. Например, атом кислорода может формировать молекулярный кислород О2 и озон О3.

План урока:

Физические свойства металлов

Металлы – химические элементы, атомы которых в процессе реакции стремятся отдавать электроны. Они обладают металлической кристаллической решеткой и общими физическими свойствами. На данный момент известно более 87 металлов.

Для металлов характерен ряд свойств:

  • твердость (кроме ртути, которая представляет собой жидкость);
  • металлический блеск;
  • проводимость электрического тока и тепла;
  • пластичность.

Металлы при ударах не разрушаются, а меняют форму. С этой особенностью связано то, что из них производят проволоку, металлические листы и др. Развитие бронзового и железного века связано с производством товаров из металлов.

Физические свойства неметаллов

Неметаллы – химические элементы, атомы которых стремятся принять чужие электроны. Для них характерны атомные и молекулярные кристаллические решетки. Для атомов неметаллов не характерны общие физические свойства. На данный момент существует 22 неметалла.

Для неметаллов характерен ряд свойств:

  • хрупкость (неметаллы нельзя ковать);
  • отсутствие блеска;
  • непроводимость электрического тока и тепла.

Расположение металлов и неметаллов в периодической таблице Д.И. Менделеева

Определить, является простое вещество металлом или неметаллом, можно с помощью периодической таблицы Менделеева. Металлы располагаются ниже диагонали «водород-бор- кремний-мышьяк-теллур-астат», а неметаллы выше.

Красные ячейки – неметаллы, синие – металлы

Элементы, расположенные вблизи диагонали, обладают смешанными свойствами: проявляют как металлические, так и неметаллические свойства. Они называются полуметаллами.

Красные ячейки – полуметаллы

Полуметаллы имеют ковалентную кристаллическую решетку при наличии металлической проводимости (электропроводности). Валентных электронов у них либо недостаточно для образования полноценной ковалентной связи, либо они не удерживаются достаточно прочно из-за больших размеров атома. Поэтому связь в ковалентных кристаллах этих элементов имеет частично металлический характер.

Закономерности в таблице Д.И. Менделеева

Каждый атом состоит из протонов, нейтронов и электронов. Протоны и нейтроны находятся в ядре, который несет положительный заряд. Вокруг ядра движутся отрицательно заряженные электроны. Атомный номер указывает на количество протонов.

Чем больше заряд ядра, тем сильнее к нему притягиваются электроны. Т.о., атому сложнее отдавать электроны. Поэтому в периоде слева направо, с увеличением порядкового номера металлические свойства ослабевают, а неметаллические – усиливаются.

Неметаллы стремятся принять электроны от других атомов. Период в таблице указывает на количество электронных уровней. По мере увеличения числа орбиталей электроны отдаляются от ядра и атому сложнее удерживать электроны на последних уровнях. Т.о., в группе сверху вниз количество орбиталей возрастает, поэтому металлические свойства усиливаются, а неметаллические – уменьшаются.

Способы получения металлов

Большую часть металлов получают из оксидов при нагревании.

Металлы, имеющие на внешнем уровне один-два электрона, получают с помощью электролиза расплавов.

Химические свойства металлов

Все металлы проявляют восстановительные свойства. Легкость в отдачи внешнего электрона применяется в фотоэлементах. Степень активности определяется рядом активности. У самых активных на внешнем уровне располагается по одному электрону.

Общие химические свойства металлов выражаются в реакциях со следующими соединениями.

Активные металлы реагируют с галогенами и кислородом. С азотом взаимодействуют только литий, кальций и магний. Большинство металлов при взаимодействии с кислородом образуют оксиды, а наиболее активные металлы – пероксиды (N2O2).

2 Ca + MnO2 → 2 CaO + Mn(нагревание)

Водород в кислотах вытесняют только те металлы, которые в ряду напряжений стоят до водорода.

Более активные металлы вытесняют из соединений менее активные.

  • Химические свойства щелочных и щелочно-земельных металлов (реакции с водой)

2 Na + 2 H2O → 2 NaOH + H2

Способы получения неметаллов

Неметаллы синтезируют из природных соединений с помощью электролиза.

2 KCl → 2 K + Cl2

Также неметаллы получают в результате окислительно-восстановительных реакций.

SiO2 + 2 Mg → 2 MgO + Si

Химические свойства неметаллов

Неметаллы проявляют окислительные свойства. Самый активный неметалл – фтор. Он бурно реагирует со всеми веществами, а некоторые реакции сопровождаются горением и взрывом. В атмосфере фтора горят даже вода и платина. Фтор окисляет кислород и образует фторид кислорода OF2.

Неметаллы вступают в реакции со следующими веществами.

3 F + 2 Al → 2 AlF3 (нагревание)

S + Fe →FeS (нагревание)

Меньшей активностью обладают такие неметаллы как бор, графит, алмаз. Они могут проявлять восстановительные свойства.

2 C + MnO2 → Mn + 2 CO

Коррозия металла

Коррозия – это процесс разрушения металлов или металлических конструкций под действием кислорода, воды и вредных примесей. Не все металлы подвергаются коррозии. Их стойкость зависит от ряда факторов.

  • На благородных металлах не образуется коррозия.
  • На поверхности алюминия, титана, цинке, хрома и никеля есть оксидная пленка, которая предотвращает процессы коррозии.

Различают несколько видов коррозии – химическую и электрохимическую.

Химическая коррозия

Химическая коррозия сопровождается химическими реакциями. Она образуется под действием газов.

Электрохимическая коррозия

Электрохимическая коррозия – процесс разрушения металлов или металлических конструкций, который сопровождается электрохимическими реакциями. В большинстве металлов находятся примеси. В процессе коррозии электродами могут служить не только металлы, но и его примеси.

Например, в железе могут находиться примеси олова. В этом случае на аноде электроны переносятся от олова к железу и металлы растворяются, т.е. железо подвергаются коррозии. На катоде восстанавливается водород из воды или растворенного кислорода. Электрохимическая коррозия может сопровождаться следующими процессами.

Анод: Fe 2+ - 2e → Fe 0

Катод: 2H + + 2e → H2

Способы защиты от коррозии

В промышленности популярны различные методы защиты металлов от коррозии.

Покрытия защищают поверхности от действия окислителей. Ими служат различные вещества:

  • покрытие менее активным металлом (железо покрывают оловом);
  • краски, лаки, смазки.
  • Создание специальных сплавов

Физические свойства сплавов и чистых металлов отличаются. Поэтому для повышения стойкости в сплав необходимо добавить дополнительные металлы.

Биологическая роль металлов и неметаллов

В организмах содержится множество различных металлов и неметаллов. Различных химических элементов в организме может не хватать, поэтому приходится потреблять их извне.Химические элементы можно разделить на две большие группы – макроэлементы и микроэлементы.

К макроэлементам относятся вещества, содержание которых в организме превышает 0,005 %. Эта группа включает водород, углерод, кислород, азот, натрий, магний, фосфор, сера, хлор, калий, кальций.Микроэлементы – элементы, содержание которых не превышает 0,005%. К ним относятся железо, медь, селен, йод, хром, цинк, фтор, марганец, кобальт, молибден, кремний, бром, ванадий, бор. Каждый макро- и микроэлемент в организме выполняет определенную функцию.

Применение металлов и неметаллов

В синтезе химических препаратов и лекарств применяются чистые металлы и неметаллы. В органической химии металлы используются в качестве катализаторов, а также при получении металлорганических соединений. Неметаллы служат исходным сырьем для получения чистых кислот и других химических соединений.

Металлы и неметаллы

Все металлы, кроме ртути, в обычных условиях твердые вещества, характеризующиеся «металлическим» блеском, хорошей тепло- и электропроводимостью, пластичностью. Типичными металлами являются щелочные (литий, натрий, калий, рубидий, цезий) и щелочноземельные (кальций, стронций, барий, магний) металлы.

Неметаллы в обычных условиях находятся в твердом (фосфор, сера, селен, углерод и др.), жидком (бром) и газообразном (кислород, водород, азот и др.) состояниях. Твердые неметаллы отличаются хрупкостью и, как правило, обладают плохой тепло- и электропроводимостью.

Типичными неметаллами являются галогены (фтор, хлор, бром, иод), сера, селен, теллур, азот, фосфор, углерод.

Резкой границы между металлами и неметаллами не существует. Некоторые элементы одновременно совмещают свойства металлов и неметаллов, причем и те и другие свойства у них выражены недостаточно резко. Например, цинк, бериллий, алюминий, хром, олово, свинец в кислой среде проявляют свойства металлов, а в щелочной — неметаллов.

Все наиболее распространенные металлы и неметаллы как твердые, так и жидкие и газообразные, входят в ассортимент химических реактивов. Большинство металлов поступает в продажу в виде порошка, небольших слитков или кусков. Для облегчения работы с ними некоторые металлы переплавляют и выпускают в виде палочек (висмут, кадмий, олово, свинец), гранул (кадмий,, свинец, цинк), губки (олово), пыли (цинк, алюминий), листа или ленты (золото, медь), проволоки (алюминий, железо), стружки (железо) и т. п.

Некоторые металлы и неметаллы чрезвычайно легко окисляются на воздухе и поэтому их хранят в определенных условиях. Так, натрий и калий хранят под слоем керосина или другого углеводорода, а белый фосфор — под слоем воды.

Применение. Чистые металлы и неметаллы используют в неорганическом и органическом синтезе для получения химических реактивов и препаратов. Окислением некоторых металлов получают непосредственно окислы этих металлов реактивной чистоты, а растворением их в кислотах — соответствующие соли.

В органическом синтезе металлы находят применение в качестве катализаторов (алюминий, медь, никель, палладий, платина, серебро и др.), при получении металлоорганических соединений и т. д.

Белый фосфор, сера и другие неметаллы служат исходным сырьем для получения чистых кислот и других химических соединений. Бром, хлор, иод используются в органическом синтезе для получения галогенорганических производных, а также для получения некоторых галогенсодержащих кислот и их солей.

Металлы и неметаллы играют известную роль и в аналитической химии. Большая группа металлов — алюминий, железо, цинк, магний, олово, никель — применяются в качестве восстановителей. Натрий используют для определения хлора в органических веществах, при восстановлении и гидрировании многих органических соединений, для глубокой осушки органических жидкостей, для приготовления амальгам и т. д. Бром служит окислителем при аналитических определениях марганца, никеля, хрома, висмута, железа, цианидов, роданидов, мочевины, муравьиной кислоты.

Чистые элементы, такие, как сера, свинец, алюминий, кобальт, медь, никель, олово, палладий, сурьма, цинк, характеризующиеся четкой температурой плавления, используются в термометрии для калибровки термометров и пирометров.

Читайте также: