Thermal grizzly жидкий металл

Обновлено: 07.01.2025

Широкий ассортимент продукции Thermal Grizzly обеспечивает вас различными решениями для управления температурой электронных компонентов. Все наши продукты являются RoHs- и CE-совместимыми.

Наша продукция поставляется в специальном закрывающемся пакете, который защищает товар, а также обеспечивает возможность повторного использования после длительного хранения .

В дозировках более 1,5 мл наша термопаста поставляется с аппликатором , накручивающимся на шприц. Это позволяет легко наносить термопасту на теплорассеиватели и радиаторы.

Thermal Grizzly — самые актуальные и удобные в использовании оверклокерские продукты!

Область применения Conductonaut Kryonaut Hydronaut Aeronaut Carbonaut Minus Pad
Теплопроводность ******* ***** **** *** **** ***
Экстремальный оверклокинг * ***** **** * ** *
Оверклокинг ***** ***** ***** ** *** ***
Водяное охлаждение ***** ***** ***** ***** **** *****
Воздушное охлаждение ***** ***** ***** ***** ***** *****
Чувствительные к
силикону области
***** *****


Наш термоинтерфейс Conductonaut создан на основе жидкометаллических сплавов и предназначен для случаев, когда требуется наивысшая эффективность. Conductonaut рекомендован опытным пользователям, которые ищут максимально эффективный продукт с самой лучшей теплопроводностью при работе в температурном диапазоне выше 8 °C.

  • Сверхвысокая теплопроводность
  • Повышенное содержание индия
  • Удобное нанесение с помощью синтетической иглы


Thermal Grizzly Carbonaut могут использоваться как прекрасная альтернатива термопастам среднего уровня. Они имеют эксклюзивное преимущество - многоразовость, очень эластичную и адаптируемую поверхность и высокую теплопроводность. Даже малейшая неровность может быть очень хорошо компенсирована.

  • Максимальная теплопроводность
  • Постоянная высокая производительность
  • Многоразовая
  • Не высыхает
  • Гибкая и простая в использованиии


Kryonaut Extreme основан на нашей хорошо известной пасте Kryonaut. Для Kryonaut Extreme максимальная теплопроводность была достигнута благодаря наименьшему размеру частиц, более тонкой минимальной высоте слоя и улучшенному применению при низких температурах.

  • предназначен для разгона
  • 14,2 Вт / м * К теплопроводность
  • не лечить
  • долговечность


Термопаста Kryonaut разработана специально для самых требовательных систем и готова оправдать даже самые высокие ожидания оверклокерского сообщества. Kryonaut также настоятельно рекомендуется как топовый продукт для критически важных систем охлаждения в промышленности.


Благодаря своей превосходной теплопроводности Hydronaut может быть использован для оверклокинга, но создан он был специально для систем охлаждения с большой площадью теплосъёмной поверхности - например, систем водяного охлаждения. Кроме того, Hydronaut отличает превосходное соотношение цены и производительности.


Термопаста Aeronaut - идеальный, высокоэффективный продукт для неискушённых пользователей. Отличная защита охлаждаемой поверхности и хорошая теплопроводность делают Aeronaut идеальным выбором для пользователей, которые хотят оптимизировать свою систему охлаждения или ищут более
эффективную альтернативу термопасте, идущей в комплекте с их оборудованием.


The thermal pad is silicone based with modelling clay like consistency. This allows a perfect surface shaping with maximum possible compression. The minus pad extreme is electrically insulating.
Due to the consistency only one-time use is recommended. The thermal conductivity was improved by about 260 % over the minus pad 8 which allows best cooling for tough cooling operations such as voltage regulators and memory ICs.

Высокоэффективные термопрокладки Thermal Grizzly серии Minus Pad имеют очень эластичную и гибкую поверхность с высокой теплопроводностью, благодаря чему легко заполняют даже малейшие зазоры между компонентами и улучшают тепелоотведение. Доступно несколько вариантов, различающихся по размеру и толщине.

Intel 12th Gen CPU Contact Frame by der8auer

Контактная рамка процессора 12-го поколения от der8auer предоставляется компанией Thermal Grizzly как вспомогательное средство для сборки материнских плат Intel с разъемом LGA1700. Контактная рамка заменяет штатную ILM материнской платы, тем самым улучшая эффективность охлаждения процессорных кулеров благодаря оптимизированному контактному давлению.

Контактная рамка была разработана в сотрудничестве с Романом Хартунгом под ником «der8auer» и производится в Берлине – 100% Сделано в Германии. Роман Хартунг – инженер-мехатроник, настоящий энтузиаст в сфере аппаратного обеспечения и создатель контента в области аппаратного обеспечения ПК. К тому же он довольно известный оверклокер, который уже разработал множество продуктов для разгона аппаратного обеспечения ПК.

Lapping Tool for Intel 12th Gen CPU by der8auer

12th Gen Lapping-Tool (Инструмент для шлифовки 12-го поколения) специально разработан для Intel 12th Gen Contact Frame (Контактной рамки Intel 12-го поколения) и упрощает процесс шлифовки процессора. С помощью прилагаемых винтов процессор просто устанавливается на Lapping-Tool (Инструмент для шлифовки) вместе с Contact Frame (Контактной рамкой). Это имитирует фактическое конечное положение процессора в гнезде на материнской плате..


TG Shield это высокотемпературное конформное покрытие для защиты компонентов от коротких замыканий жидкого металла.


TG Remove это наноочиститель на основе ацетона, обеспечивающий наилучшие результаты очистки термопасты. Кроме того, TG Remove обладает обезжиривающим эффектом, который помогает подготовить поверхность к новому нанесению. E. г. на процессорах.

ПРОДУКТЫ THERMAL GRIZZLY ДОСТУПНЫ В СЛЕДУЮЩИХ МАГАЗИНАХ:

Жидкий металл для охлаждения ноутбуков — польза или вред?

Я всегда с болью в душе наблюдал за температурами центрального процессора в игровых ноутбуках, которые достигали 100 градусов по Цельсию, а повышенный нагрев в итоге приводил к снижению тактовой частоты (некоторые до сих пор называют это троттлингом, хотя на самом деле это понятие умерло вместе с выходом архитектуры Core у Intel и появлением интеллектуальных систем управления частотой процессора Turbo Boost).

Тренд на компактность в игровых ноутах ведет к уменьшению габаритов системы охлаждения.

Тренд на компактность в игровых ноутах ведет к уменьшению габаритов системы охлаждения.

Все игровые ноуты горячие? Да!

Почему же производители игровых ноутбуков позволяют нагреваться процессорам практически до 100 градусов по Цельсию?

Во-первых, продукт разрабатывается в несколько этапов и даже несколькими командами. Эти команды взаимодействуют друг с другом, но работая только лишь над определенной частью единого целого, всегда велик риск не увидеть фундаментальные проблемы. Для команды, занимающейся созданием системы охлаждения, задача звучит так - как отвести N-ое количество Ватт тепла от процессора в N-габаритах корпуса, не допустив перегрева (в нашем случае значения в 100+ градусов по Цельсию). Если на выходе система охлаждения сможет держать температуру процессора до 95 градусов по Цельсию, то будет ли задача считаться выполненной? Скорее всего, да. Но удовлетворит ли это пользователя? Скорее всего, нет.

Во-вторых, есть "негласное" соревнование между производителями за звание самого быстрого. При прочих равных ноутбук с процессором, работающим на более высокой частоте, сможет продемонстрировать лучшую производительность. И чаще всего в таком сравнении никто не обратит внимание на то, что эти дополнительные 100-200 МГц частоты прибавили к нагреву процессора дополнительные 5-10 градусов по Цельсию. Получается, что за скорость надо платить повышенным тепловыделением? И да, и нет.

Чем больше тепловых трубок, тем эффективнее отвод тепла

Чем больше тепловых трубок, тем эффективнее отвод тепла

Именно этот вопрос нас беспокоил последние несколько лет в российском представительстве ASUS. Я практически уверен на 100 процентов, что в России и русскоговорящих странах находятся самые требовательные пользователи и в то же время самые технически грамотные. Мы на постсоветском пространстве прекрасно понимаем, что у любого продукта есть ресурс, и чем дольше он работает на пределе, тем выше вероятность его выхода из строя. А для остального мира, это всего лишь будет RMA процедура (где не надо никому доказывать, что ты не сам его сломал) с последующей заменой или возвратом денег и дальнейшим переходом на новое устройство, ведь эта-то "игрушка" уже морально устарела (для сравнения цикл жизни персонального компьютера в России - 7 лет, а в Европе - 4 года).

Как же можно снизить температуры процессора, улучшив эффективность системы охлаждения в ноутбуке?

зафиксировать тепловыделение процессора на пороговом значении, т.е. искусственно ограничить производительность CPU

увеличить габариты корпуса, уместив внутри радиатор большей площади, вернувшись обратно к тяжелым ноутбукам весом от 4-5 кг

использовать жидкостное охлаждение

использовать другой форм-фактор для увеличения эффективности воздушных потоков

использовать более эффективные, чем медь, материалы для радиатора

использовать более эффективный термоинтерфейс для отвода тепла от кристалла процессора к радиатору системы охлаждения

Вариантов для улучшения не так много, но они есть. Давайте поговорим подробнее о каждом. Первые два варианта, однозначно, не подходят. Ни о каком снижении производительности речи быть не может. Ни о каком увеличении габаритов - тоже. Это уже пройденный этап, к которому производители ноутбуков не будут возвращаться.

Эволюция систем охлаждения в ноутбуках ROG

Вариант с системой жидкостного охлаждения инженеры ROG обкатывали, начиная с 2015 года, на двух моделях: GX700 и его преемнике GX800. Использование подключаемой жидкостной системы охлаждения сделало ноутбук самым быстрым на рынке, но абсолютно непригодным для переноски. Полный комплект умещался только лишь в чемодане. Но надо отдать должное: с точки зрения эффективности системы охлаждения и температур не было никаких вопросов. Только такие инновации были слишком дорогими: цена на ноутбук была на уровне полумиллиона рублей.

ROG GX700 с водяным охлаждением

ROG GX700 с водяным охлаждением

Эксперименты с альтернативными форм-факторами привели инженеров Republic of Gamers в 2019 году к созданию ROG Mothership - гибридное решение, сочетающее в себе элементы ноутбука, моноблока и планшета. По мне, это ближе всего к моноблоку, но до конца определиться с форм-фактором я так и не смог. Преимуществом такой конструкции стало то, что материнская плата и вся элементная база была перенесена в вертикальную плоскость, сделав воздушные потоки более эффективными, а само устройство опять стало самым производительным в игровом сегменте портативных компьютеров. Ценник, естественно, опять добирался до полумиллиона рублей.

ROG Mothership

ROG Mothership

Еще одним вариантом развития событий мог стать переход от медных радиаторов к серебряным, что могло бы дать какую-то позитивную динамику в снижении температур центрального процессора, но думаю, что стоимость ноутбука с серебряной системой охлаждения возросла бы непропорционально выгоде, которую могли бы получить пользователи.

Система охлаждения ROG Mothership

Система охлаждения ROG Mothership

Сразу вспоминается собственный опыт: эксперименты по замене термоинтерфейса между крышкой теплораспределителя и кристаллом процессора пришли в бытность процессоров Intel Core i7-3770K, а с приходом Intel Core i7-7700K оверклокеры пошли еще далее и начали эксперименты над самими теплораспределительными крышками. Российские оверклокеры также активно участвовали в погоне за рекордами, и мы даже заказывали теплораспределительную крышку из серебра. Она нам обошлась примерно в 15 000 рублей (чуть дешевле стоимости самого процессора), но ничего дельного с ней у нас так и не получилось. Хотя рекорд разгона Core i7-7700K по частоте до сих пор принадлежит России:

Рекорд разгона Intel Core i7-7700K

Рекорд разгона Intel Core i7-7700K

Получается, что самым разумным и эффективным с точки зрения финансовой целесообразности является использование более эффективных термоинтерфейсов. Для человека, который на собственном опыте проделал путь от КПТ-8, Arctic Silver Ceramique, Gelid GC-Extreme до Thermal Grizzly Kryonaut и k|ngp|n cooling KPX, было очевидно, что термопасты бывают разными и могут оказывать очень сильное влияние на температурные показатели.

Как мы "докатились" до жидкого металла?

Локальные эксперименты в российском офисе ASUS показывали, что замена термопасты с заводской на Thermal Grizzly Kryonaut дает снижение температуры центрального процессора в диапазоне 7-10 градусов по Цельсию. Лично для меня жидкий металл в качестве термоинтерфейса всегда стоял в стороне, поскольку при отрицательных температурах использовать его достаточно сложно. Из-за частых заморозок-разморозок образуется ледяной нарост, который начинает отжимать стакан для жидкого азота от крышки процессора, и в какой-то момент жидкий металл "отклеивается" от основания азотного стакана и перестает передавать ему тепло с теплораспределительной крышки. Если вовремя не обратить внимание на характерный звук и выросшую дельту температур на основании стакана (там будут отрицательные температуры) и ядрах процессора (там будут положительные температуры), то все закончится очень печально. В лучшем случае "умрет" только процессор, а в худшем случае утащит за собой что-то еще. В случае же использования термоинтерфейса жидкого металла в домашнем компьютере или ноутбуке на каждый день тоже есть определенные риски и сложности, с которыми инженерам ROG пришлось бороться под натиском локальных офисов.

Объединившись с другими странами, мы смогли убедить штаб-квартиру начать тестирование жидкого металла в качестве термоинтерфейса в системах охлаждения ноутбуков еще в 2018 году. Правда, нам пришлось столкнуться с рядом бюрократических трудностей. Одним из самых курьезных моментов стал ответ инженеров, что они не могут купить жидкий металл в Тайване. Но я-то прекрасно знал, что у коллег из департамента материнских плат жидкий металл есть в наличии, поэтому мы продолжили воевать "с системой".

Решив проблему "нежелания", мы столкнулись с другой проблемой. Ведь наносить жидкий металл на поверхность кристалла не так уж и просто, а в рамках массового производства это практически невозможно. В итоге жидкий металл дебютировал в 2019 году в ROG Mothership, в выпущенном ограниченным тиражом в 1000 экземпляров.

Если собрать все трудности с жидким металлом вместе, то я бы выделил следующие:

жидкий металл проводит ток

коррозия металлов, контактирующих с термоинтерфейсом

стоит дороже термопасты

На протяжении следующего года инженеры ROG решали вышеперечисленные проблемы.

Жидкий металл наносится специальным станком при помощи силиконовой кисти.

Жидкий металл наносится специальным станком при помощи силиконовой кисти.

Для нанесения жидкого металла в масштабах массового производства был создан специальный станок, который позволял решить, пожалуй, самую главную и сложную задачу - равномерное нанесение термоинтерфейса по поверхности кристалла процессора. В нашем случае используется жидкий металл от Thermal Grizzly, отличающийся от других производителей на рынке пониженной концентрацией олова в составе, что делает его более эффективным. На начальных этапах процесс тестирования жидкого металла был настолько засекречен, что первые партии термоинтерфейса Thermal Grizzly покупались на рынке у нескольких продавцов, а не напрямую у производителя, чтобы не допустить утечек информации.

Важно помнить, что жидкий металл проводит ток, поэтому меры предосторожности очень важны. На первом этапе на заводе используется специальная пластина, которая закрывает собой все вокруг кристалла процессора и принимает на себя излишки жидкого металла. С помощью специальной силиконовой кисти жидкий металл будет распределяться по всей поверхности кристалла. Надо отметить, что даже подбор материала для этой кисти был не таким простым, было испробовано около 30 различных материалов и выбор остановился на силиконе, который не деформирует нанесенный слой.

Добавляем еще немного ЖМ для создания безупречного контакта между кристаллом и радиатором СО

Добавляем еще немного ЖМ для создания безупречного контакта между кристаллом и радиатором СО

На следующем этапе пластина убирается и с помощью своего рода "шприца" на поверхность кристалла добавляется несколько капель жидкого металла, которые должны будут занять все свободное пространство между кристаллом и радиатором системы охлаждения для эффективного теплообмена. После этого устанавливается система охлаждения. В коротком видео можно посмотреть подробности процесса:

Жидкий металл нужно менять через год? Неправда!

Энтузиасты, кто хоть раз сталкивался с жидким металлом, знают о главном недостатке - "его на долго не хватает". Спустя год - максимум полтора, у всех людей, кто заменил термоинтерфейс на жидкий металл в своих десктопах или ноутбуках, начинается одна и та же проблема. Температуры процессора возвращаются к прежним значениям "до перемазки", а на форумах бытует понятие, что жидкий металл "высыхает". На самом деле все не совсем так. В современных системах охлаждения крышка теплораспределителя сделана из меди, которая подвергается коррозии при контакте с жидким металлом. Процесс этот не моментальный, поэтому пользователи замечают это примерно спустя год с момента нанесения. Из-за нарушения герметичности контакта происходит постепенный рост температуры процессора.

Успех

Успех "долголетия" жидкого металла заключается в использовании никелированного основания радиатора

В рамках массового производства и сервисного обслуживания замена термоинтерфейса каждый год просто непозволительная роскошь для производителя, поэтому радиаторы систем охлаждения под ноутбуки с жидким металлом пришлось доработать. Медное основание радиатора заменили на никелированное, и оно коррозии не поддается. При констультации с инженерами Thermal Grizzly инженеры ROG пришли к выводу, что подобное инженерное решение будет иметь "срок годности" более 5 лет.

По итогам внутреннего тестирования инженеры ROG департамента R&D установили:

снижение температур процессора на 13-15 градусов по Цельсию в сбалансированном режиме работы системы охлаждения и незначительный рост частот процессора в Turbo Boost

снижение температур процессора в диапазоне от 7 до 22 грудусов по Цельсию и рост частот процессора на 300-400 МГц в зависимости от приложения

увеличение производительности ноутбука до 10% в режиме Turbo работы системы охлаждения

А что дальше?

На данный момент все игровые ноутбуки Republic of Gamers с процессорами Intel Core 10-го поколения получили "с завода" жидкий металл. Будет ли жидкий металл в ноутбуках с процессорами AMD или на графических чипах NVIDIA? Пока сложно сказать. Штаб-квартира ASUS объясняет свой выбор в пользу Intel тем, что кристалл процессора маленький, а тепло от него распределяется по поверхности равномерно, делая процессоры Intel идеальными кандидатами на операцию "жидкий металл", в которой можно по максимуму раскрыть все прелести от использования подобного термоинтерфейса. Забегая вперед, скажу, что в Intel настолько вдохновились идеей использования жидкого металла в качестве термоинтерфейса, что они стали советовать перейти на жидкий металл и другим производителям игровых ноутбуков. Попытки использовать жидкий металл на платформе AMD также предпринимались инженерами ROG в модели Zephyrus G14, но в итоге в массовое производство это решение не пошло из-за большого количества элементов, расположенных вокруг кристалла, и, как следствие, рисков, связанных с коротким замыканием. Поэтому пока от внедрения жидкого металла в продуктах на базе AMD решили воздержаться, но поиск оптимального решения уже ведется.

Станет ли такое решение нормой для игровых ноутбуков или останется лишь в премиальных моделях ROG, покажет лишь время.

Thermal grizzly жидкий металл

Не так страшен жидкий металл


Наверное многие знают или хотя бы раз слышали о существовании такой «термопасты» как жидкий металл. Если коротко — это термоинтерфейс, теплопроводность которого на порядок выше даже самой лучшей обычной термопасты. Именно так — не в 2, не в 3, а в целых 10 раз выше.

Но почему же его не используют все и везде? У многих жидкий металл ассоциируется со страшной процедурой delidding (скальпирование, снятие верхней крышки процессора). Страх повредить драгоценный процесор, плюс страх перед сложностью нанесения (по сравнению с обычной термопастой). И главное — боязнь, что жидкий металл случайно попадет куда-то не туда и что-нибудь замкнет.

Да, все эти страхи обоснованы. Однако если Вы уверены, что руки растут из правильного места, то глупо хотя бы раз не попробовать воспользоваться магией под названием liquid metal. Ни один кулер никогда не даст вам такого прироста производительности системы охлаждения.

А в некоторых случаях даже в скальпировании нет необходимости. О чем и пойдет речь далее.

Предисловие

Сколько себя помню, меня всегда раздражали «тормоза» компьютеров. Всегда искал способы повысить отзывчивость. Еще на далекой Windows 98 правил реестр для минимальных задержек меню (MenuShowDelay=1 > HKEY_CURRENT_USER\Control Panel\Desktop), один из первых использовал только появившийся Gigabyte I-Ram (4 планки памяти с li-ion аккумулятором) под операционку, а уж про опыт с самыми разными SSD так вообще отдельную статью можно писать.

Ну и конечно же разгон процессора — это само собой разумеется. Нет, без экстрима и даже без водяных установок, но с температурой приходилось бороться. Корпус с огромным 40см вентилятором, различные дополнительные радиаторы, лучшие термопасты (Noctua NT-H1, Gelid GC-Extreme), много чего перепробовано.




Жидкий металл конечно тоже давно не давал покоя. Но сперва решил потренироваться «на кошках».

Подопытный

Суть в том, что эксперименты со скальпированием можно отложить на потом, а опробовать супер-термоинтерфейс уже сейчас. Правда ли жидкий металл так хорош как говорят или привирают. Ведь процессоры ноутбуков в большинстве своем уже «голые». Просто добавь воды жидкого металла.

Есть у меня Lenovo T450s. Уже относительно старенький, но на вполне бодром (по меркам ноутбуков) i7-5600u. Надо ли уточнять что базовая производительность меня совершенно не устраивала. Конечно же были отключены все энергосбережения, только max performance, только хардкор. Пусть и в ущерб времени работы от увеличенной (72Wh) батареи, но процессор почти всегда работает на 3+ Ггц. Ну не люблю я когда медленно, это уже зависимость.

В итоге конечно же за этим ноутом руки всегда в тепле. Нет, до фена ему далеко, но небольшой перегрев чувствуется даже при не на 100% занятом процессоре.

Вот как это выглядит графически:


При 100% нагрузке имеем температуру 95+ градусов и постоянный троттлинг процессора.

Conductonaut

Жидкий металл можно купить от нескольких производителей. Возможно какие-то лучше/хуже или выгодней по цене за грамм. Но задачи не стояло выяснить кто лучший. Было решено попробовать вариант от Thermal Grizzly.

Обычно за подобными эксклюзивными вещами иду всегда закупаться на ebay, amazon и т.п. Но каково же было удивление когда обнаружил то что нужно, да еще и по более низкой цене, в местном сетевом магазине. Хоть и под заказ конечно, но ожидание заняло всего лишь дня 3.


Все полностью локализировано.




В комплекте, помимо самого шприца с волшебным веществом, получаем: металлическую насадку-иглу и подобную пластиковую (даже не знаю зачем она), алкогольные тампоны для протирки, две ватные палочки, инструкция и большое красное предупреждение — «Не использовать с алюминиевыми радиаторами». Хотя слабо представляю кого-то, кто на столько заморочится термоинтерфейсом, но при этом будет использовать менее термопроводные алюминиевые радиаторы.


Добравшись до процессора, очень удивился когда увидел один из кристаллов совершенно без термопасты. Еще более удивила медная пластина радиатора над ним, сделанная более утопленной на примерно 1мм. Таким образом слой термоинтерфейса там должен быть очень уж толстый.

Но погуглив, узнал что на самом деле так и должно быть. Второй кристалл — это PCH (южный + частично серверный мост). И он так понимаю не особо греется и уж тем более не должен дополнительно подогреваться теплом процессора. Поэтому оставил его как есть.


Снял черную защитную наклейку и очистил старую термопасту с процессора и радиатора.

Следующий шаг — защита от короткого замыкания. Не думаю конечно, что жидкий металл будет как вода плескаться по всему окружению. Но минимальную защиту сделать необходимо.

В строительном магазине приобрел балончик жидкой резины.


И с помощью ватной палочки (обычной, не из комплекта Thermal Grizzly) аккуратно закрасил все контакты процессора. Вместо жидкой резины можно много чего другого использовать, но решил испробовать именно ее.


Далее, вернул обратно черную защитную пленку и сверху еще раз прошелся жидкой резиной вокруг самого кристалла процессора.


И наконец самое интересное. Крайне аккуратно выдавил из шприца капельку похожую на ртуть.
Сперва на медную пластину радиатора. Начал растирать ее тампоном, но ничего не получалось вначале. По ощущениям это похоже на лужение меди. По началу припой никак не хочет прилипать, но потом схватывается и очень хорошо и равномерно держится. Повторюсь, не надо сразу много жидкого металла, нужно выдавить крохотную каплю и «залудить» необходимую поверхность. Примерно на глаз прикидывая в каком месте радиатор будет как раз над кристаллом процессора. А дальше при необходимости можно чуть добавить в центр. Но не нужно наносить толстый слой, иначе жидкий металл просто выдавится каплями наружу. И хорошо если попадет на нашу жидкую резину, а не куда-то дальше.

И точно также размазал поверхность CPU. Соединил смазанные части бутерброда и собрал все обратно как было.

Уже хорошо. Но нет, самое интересное оказалось дальше.

Я конечно ожидал улучшения, но без особых иллюзий. Ну максимум на 10-15 градусов улучшения расчитывал. Однако, как говорится, фото заменит тысячу слов:


Средняя температура под полной нагрузкой снизилась с ~95 до ~65 градусов. Это целых 30 градусов разницы. И абсолютно никакого троттлинга.

Спустя несколько дней использования, могу сказать что процессор конечно выделять тепла меньше не стал. Он как жарил так и жарит, но тепло его теперь гораздо быстрей отводится и больше нет и намека на перегрев.

Выводы

Действительно ли есть толк от жидкого металла — есть, еще и какой.

Действительно ли так сложно и страшно его наносить — как по мне так слишком преувеличивают.

В общем, однозначно рекомендую всем.
Буду позже еще экспериментировать с разными другими процессорами и возможно на видеокарте испробую.

Читайте также: