Термическая стабилизация металла это
Термическая обработка алюминиевых сплавов предназначена для корректировки характеристик материала с помощью воздействия высоких температур. Различными способами обработки можно добиться широкого разнообразия структуры и свойств.
Сплавы, которые содержат примеси в размере 15-18%, имеют вид твердого раствора. В качестве дополнительных компонентов применяются медь, магний, цинк, кремний и другие вещества, различное сочетание которых и их процентное соотношение прямо пропорционально влияют на свойства материала.
В обычном состоянии алюминиевые сплавы не отличаются высокой прочностью, при этом довольно пластичны. Наиболее неустойчивые сплавы включают в состав большое количество легирующих компонентов, которые влияют на равновесную структуру.
Для упрочнения алюминиевых сплавов применяется методы термообработки. Путем равномерного нагрева, который регламентируется техническими условиями, получают соответствующую структуру, необходимую для начальной стадии распада твердого раствора.
С помощью термообработки можно получить множество типов структуры материала, которые соответствуют требованиям производства. Термическая обработка позволяет создать структуру, не имеющую аналогов.
Термообработка алюминиевых сплавов
На сегодняшний день разработано множество методов термообработки алюминиевых изделий, среди которых наибольшую популярность обрели три: отжиг, закалка, старение.
Особенности термообработки алюминиевых сплавов
Алюминий и его сплавы требуют особого подхода к термообработке для достижения определенной прочности и структуры материала. Очень часто применяют несколько методов термообработки. Обычно, после закалки следует старение. Но некоторые типы материалов могут подвергаться старению без закалки.
Такая возможность появляется после отливки, когда компоненты, при повышенной скорости охлаждения, могут придать металлу необходимую структуру и прочность. Это происходит во время литья при температуре около 180 градусов. При такой температуре повышается уровень прочности и твердости, а также снижается степень тягучести.
Каждый из методов термообработки имеет некоторые особенности, которые стоит учитывать при обработке алюминиевых изделий.
Отжиг необходим для придания однородной структуры алюминиевому сплаву. С помощью этого метода состав становиться более однородным, активизируется процесс диффузии и выравнивается размер базовых частиц. Также можно добиться снижения напряжения кристаллической решетки. Температура обработки подбирается индивидуально, исходя из особенностей сплава, необходимых конечных характеристик и структуры материала.
Состав и свойства алюминиевых сплавов, упрочняемых термической обработкой
Важным этапом отжига является охлаждение, которые можно проводить несколькими способами. Обычно проводят охлаждения в печи или на открытом воздухе. Также применяется поэтапное комбинированное охлаждение, сначала в печи, а потом на воздухе.
От скорости снижения температуры напрямую зависят характеристики готового материала. Быстрое охлаждение способствует образованию перенасыщенности твердого раствора, а медленное – значительного уровня распада твердого раствора.
Закалка требуется для упрочнения материала путем перенасыщения твердого раствора. Этот метод основан на нагреве изделий температурам и быстром охлаждении. Это способствует полноценному растворению составных элементов в алюминии. Используется для обработки деформируемых алюминиевых сплавов.
Для использования этого способа нужно правильно рассчитать температуру обработки. Чем выше степень, тем меньше времени требуется на закалку. При этом стоит подобрать температуру так, чтобы она превышала значение, необходимое для растворимости компонентов, но была меньше границы расплава металла.
Методом старения достигается увеличение прочности алюминиевого сплава. Причем необязательно подвергать изделия искусственному старению, так как возможен процесс естественного старения.
В зависимости от типа старения изменяется скорость структурных изменений. Поэтому искусственное старение более предпочтительно, так как оно позволяет повысить производительность работ. Подбор температуры и времени обработки зависит от свойств материала и характеристик легирующих компонентов.
Правильное сочетание уровня нагрева и времени выдержки позволяет повысить прочность и пластичность. Такой процесс называется стабилизацией.
Методы отжига алюминиевых листов
Отжиг алюминиевых сплавов не является обязательным к применению. Но в некоторых случаях без этого способа термообработки невозможно достичь желаемых характеристик материала.
Причиной применения отжига может стать особое состояние сплава, которое может выражаться в понижении пластичности материала.
Применение отжига рекомендуется при наблюдении трех типов состояний:
- Свойственное литым изделиям неравновесное состояние связано с разницей температурных режимов. Скорость охлаждения литых изделий значительно превышает рекомендуемую, при которой достигается эффект равновесной кристаллизации.
- Пластическая деформация. Такое состояние может быть вызвано технологическими требованиями к характеристикам и форме готового изделия.
- Неоднородная структура материала, вызванная иными методами термообработки, в том числе закалкой и старением. В таком случае происходит выделение одного из легирующих компонентов в интерметаллидную фазу, сопровождающуюся перенасыщением компонентов.
Вышеуказанные проблемы могут устранятся методом отжига. Нормализация структуры и состояния алюминиевого сплава сопровождается повышением пластичности. В зависимости от типа неравновесного состояния подбираются различные методы отжига.
На сегодняшний день выделяют три режима отжига:
- Гомогенизация. Предназначен для обработки литых слитков. В процессе термической обработки слитков при высоких температурах достигается равномерная структура. Это позволяет упростить процесс проката с уменьшением количества производственных расходов. В некоторых случаях может применяться для повышения качества деформированных изделий. Температура отжига соблюдается в пределах 500 градусов с последующей выдержкой. Охлаждение можно проводить несколькими способами.
- Рекристаллизация. Применяется для восстановления деформированных деталей. При этом требуется предварительная обработка прессом. Температура отжига варьируется в диапазоне от 350 до 500 градусов. Время выдержки не превышает 2-х часов. Скорость и способ охлаждения не имеет особых рамок.
- Гетерогенизация. Дополнительная отжиг после других методов термообработки. Этот метод необходим для разупрочнения алюминиевых сплавов. Данный метод обработки позволяет понизить степень прочность с одновременным повышением уровня пластичности. Отжиг производится примерно при 400 градусах Цельсия. Выдержка обычно составляет 1-2 часа. Этот тип отжига значительно улучшает эксплуатационные характеристики металла и повышают степень сопротивления коррозии.
Закалка алюминиевых отливов
Закалка подходит не для всех типов алюминиевых сплавов. Для успешного структурного изменения, сплав должен содержать такие компоненты как медь, магний, цинк, кремний или литий. Именно эти вещества способны полноценно растворится в составе алюминия, создав структуру, имеющую отличные от алюминия свойства.
Данный тип термообработки проводиться при интенсивном нагреве, позволяющем составным элементам раствориться в сплаве, с дальнейшим интенсивным охлаждением до обычного состояния.
Термические превращения в сплавах 6060, 6063, АД31
При выборе температурного режима следует ориентироваться на количество меди. Также, нужно учитывать свойства литых изделий.
В промышленных условиях температура нагрева под закалку колеблется в диапазоне от 450 до 560 градусов. Выдержка изделий при такой температуре обеспечивает расплавление компонентов в составе. Время выдержи зависит от типа изделия, для деформированных обычно не превышает более часа, а для литых – от нескольких часов до двух суток.
Скорость охлаждения при закалке необходимо подбирать так, чтобы состав алюминиевого сплава не подвергался распаду. На промышленном производстве охлаждение проводят с помощью воды. Однако такой способ не всегда оптимально подходит, так как при охлаждении толстых изделий происходит неравномерное снижение температуры в центре и по краям изделия. Поэтому для крупногабаритных и сложных изделий применяются другие методы охлаждения, которые подбираются индивидуально.
Старение алюминиевых сплавов
Старение проводится для улучшения прочностных характеристик изделия. Этот вид термической обработки заключается в выдержке в условиях обычного температурного режима.
Повышение прочности достигается путем распада твердого раствора, что необходимо после закалки, так как закалка приводит к пресыщенности металла.
Существует два способа старения алюминиевых сплавов: естественное и искусственное.
Естественное старение происходит без предварительного нагрева при обычных температурах. Это может происходить в условиях обычного склада или промышленного помещения, где температура воздуха не превышает 30 градусов.
Естественное старение возможно из-за особого свойства алюминия, которое называется «свежезакаленное состояние». Свойства изделий значительно отличаются сразу после закалки и после некоторого времени пребывания на складе.
Искусственное старение проводится путем нагрева изделий до температуры 200 градусов. Это активирует процесс диффузии, что способствует улучшенному растворению составных элементов. Выдержка составляет от нескольких часов до нескольких суток.
Следует отметить, что искусственно состаренные сплавы можно вернуть к изначальному состоянию. Для этого нужно нагреть изделие до 250 градусов с выдержкой до одной минуты. Выдержка должна проводится в селитряной ванне в строго определенное время, с точностью до нескольких секунд.
Причем подобный возврат можно выполнять несколько раз, без потери прочности материала, но с небольшим изменением свойств. Возврат состаренного металла обычно проводят с целью восстановления пластичности, необходимой для изменения формы изделия.
Любой из типов термообработки широко используется в промышленности. Благодаря чему у производителей есть возможность получения материалов, полностью соответствующих требованиям производства. Причем такая обработка сплавов позволяет значительно улучшить свойства алюминия и получить материал, не имеющий аналогов.
Главное условие при термообработке – соблюдение требований и рекомендаций к температурному режиму обработки и времени выдержки. Малейшие отклонения могут привести к необратимым изменениям свойств материала.
Термическая стабилизация
Под стабилизацией исходной фазы понимают затруднение ее превращения в мартенсит в результате теплового (термическая стабилизация), механического (механическая стабилизация) или любого другого воздействия.
Термическая стабилизация аустенита, которую обычно называют просто стабилизацией, наблюдается при временной остановке охлаждения железного сплава в мартенситном интервале атермического превращения. Если прервать охлаждение при температуре Тп < Мн (но выше Мк) и сделать здесь выдержку, то аустенит стабилизируется.
Стабилизация проявляется в том, что по возобновлении охлаждения превращение начинается не сразу при температуре Тп, а после переохлаждения аустенита (гистерезиса) до некоторой температуры Мн.
При этом мартенсита часто образуется меньше по сравнению с непрерывным охлаждением (мартенситная кривая 2 на рисунке идет ниже кривой 1) и количество остаточного аустенита возрастает. Возобновляющееся при температуре Мн мартенситное превращение может протекать взрывообразно (например, в сплавах Fe — Ni — С).
Мартенситные кривые при разной стабилизации аустенита
Мартенситные кривые при разной стабилизации аустенита:
Т — температура, при которой охлаждение прерывают и проводят выдержку;
1 — кривая непрерывного охлаждения;
2 и 3 — кривые, соответствующие разной выдержке (τ) при температуре Тп, причем τ3 > τ2.
Наиболее простой случай термической обработки, включающей стабилизацию аустенита, можно наблюдать, когда точка Мн находится выше, а Мк — ниже комнатной температуры причем Тп = 2:0 °С.
Так, выдержка углеродистой стали при комнатной температуре после обычной закалки в воде стабилизирует аустенит, затрудняя мартенситное превращение при последующем охлаждении стали в области отрицательных температур и увеличивая количество остаточного аустенита после такой обработки. Поэтому изучение закономерностей термической стабилизации аустенита представляет интерес для технологии обработки стали холодом (смотрите Нагрев и охлаждение при закалке сталей).
Мерой эффекта стабилизации часто служит температурный гистерезис θ = Тп — Мн.
Степень стабилизации аустенита зависит от температуры прерывания охлаждения Тп и выдержки при этой температуре. Если же после прерывания охлаждения сплав был нагрет до некоторой температуры Тс > Тп, то степень стабилизации θ зависит от Тс и времени выдержки при этой температуре.
С понижением т. е. с ростом количества мартенсита, присутствующего при стабилизирующей выдержке, степень стабилизации возрастает. Более сложно влияние времени выдержки. С увеличением времени выдержки при температуре Тп или Тс степень стабилизации может непрерывно возрастать (кривые 2 и 3 на рисунке). При достаточно высоких температурах увеличение времени выдержки сначала приводит к росту, а затем к уменьшению степени стабилизации. Чем выше температура Тс, тем быстрее достигается максимум θ.
На стали с 1,4% С и 5% Ni было обнаружено, что величина θ с увеличением времени выдержки при температуре Тс после прохождения через максимум снижалась и становилась отрицательной. Это означает, что большие выдержки после прерывания охлаждения приводили не к стабилизации (Мн < Тп), а к противоположному эффекту — активированию мартенситного превращения (Мн > Тп).
Термическая стабилизация аустенита — сложный процесс. Вполне возможно, что в разных случаях, например в разных температурных интервалах, действуют разные механизмы стабилизации.
В термическую стабилизацию при температурах ниже точки Мн определенный вклад может внести релаксация упругих напряжений в аустенитной матрице вокруг мартенситных пластин. Эти напряжения, как уже отмечалось, вызывают автокаталитический эффект, свойственный всем мартенситным превращениям.
Уменьшение упругих напряжений вокруг мартенситных кристаллов хорошо объясняет повышение степени стабилизации с увеличением времени выдержки, но не может объяснить снижения θ при больших выдержках.
Для понимания природы стабилизации аустенита весьма важно, что термическая стабилизация наблюдается только в тех сплавах на основе железа, которые содержат, хотя бы и в сравнительно небольшом количестве, элементы внедрения: углерод и азот. Поэтому почти все современные гипотезы механизма термической стабилизации аустенита исходят из предположения о решающей роли сегрегации атомов углерода или азота.
Атомы элементов внедрения во время стабилизирующей выдержки могут сегрегировать в потенциальные участки зарождения в аустените, препятствуя превращению этих участков в зародыши мартенсита. Они могут сегрегировать на межфазную границу матрицы и зародыша, препятствуя его росту.
Весьма убедительна гипотеза, связывающая термическую стабилизацию с деформационным старением — образованием сегрегаций из внедренных атомов на дислокациях в аустените. Так как образование мартенситного кристалла вызывает пластическую деформацию аустенитной матрицы, то упрочнение ее при деформационном старении затрудняет мартенситное превращение.
Развитие деформационного старения аустенита с увеличением времени выдержки при температуре Тс объясняет рост θ. Уменьшение эффекта стабилизации с дальнейшим увеличением времени выдержки легко объяснить перестариванием (смотрите Выбор режима старения), с которым связано падение предела текучести аустенита.
Достижение отрицательных значений 0 можно связать с далеко зашедшим перестариванием, которое, во-первых, сильно разупрочняет аустенит и, во-вторых, может привести к обеднению аустенита углеродом вблизи выделений карбида. Такие обедненные углеродом участки имеют повышенную температуру Мн. С повышением температуры Тс деформационное старение ускоряется и соответственно ускоряется достижение максимума θ.
Рассмотренное в Термодинамике мартенситных превращений, снижение температуры Мн при переходе от чрезвычайно больших скоростей охлаждения выше этой температуры к обычным скоростям закалки в воде также является результатом стабилизации аустенита из-за предполагаемого закрепления дислокаций сегрегациями атомов углерода.
Термическая стабилизация проявляется при мартенситном превращении не только в железных, но и в других сплавах. Так, в сплаве меди с 15% (ат.) Sn, закаленном в воде, при охлаждении в жидком азоте развивается атермическое превращение. Если после закалки в воде сделать выдержку при комнатной температуре, то при последующем охлаждении точка Мн и количество образовавшегося мартенсита оказываются пониженными и в тем большей степени, чем дольше была выдержка.
Четырехдневная выдержка полностью подавляет мартенситное превращение. Одной из причин этой термической стабилизации может быть постепенно развивающаяся при комнатной температуре сегрегация атомов олова в исходной фазе, затрудняющая образование и рост зародышей мартенсита.
Большая Энциклопедия Нефти и Газа
Термическая стабилизация объясняется по-разному, в частности закреплением поверхностей раздела атомами внедрения ( наблюдалось, например, в сплаве In - Те) или образованием атмосферы растворенных атомов вокруг дислокаций в исходной фазе, что приводит к увеличению сопротивления матрицы росту мартенситной пластины и может также сказаться на образовании зародышей. В пользу таких представлений свидетельствует зависимость соответствующих эффектов от времени и температуры. [1]
Термическая стабилизация проявляется при мартенситном превращении не только в железных, но и в других сплавах. [2]
Термическая стабилизация кокса наиболее эффективна в начальный период. Показатели РС и УЭС медленнее изменяются у кокса, полученного при повышенной скорости коксования. [3]
Термическая стабилизация аустенита , которую обычно называют просто стабилизацией, наблюдается при временной остановке охлаждения железного сплава в мартенситном интервале атермиче-ского превращения. Если прервать охлаждение при температуре ГПЛ1П ( но выше Л1К) и сделать здесь выдержку, то аустенит стабилизируется. При этом мартенсита часто образуется меньше по сравнению с непрерывным охлаждением ( мартенситная кривая 2 на рис. 140 идет ниже кривой /) и количество остаточного аустенита возрастает. [4]
Участок термической стабилизации оказывается при этом длиннее, чем рассчитанный без учета теплопроводности вдоль оси. [5]
Для термической стабилизации полиметилметакрилата полимеризацию мономера проводят в присутствии 0 01 - 1 0 % ди-алкилмоносульфида. [6]
Для термоокислительной и термической стабилизации полиамидных волокон широко применяются производные фенолов, аминов ( особенно, диаминов) и другие соединения с подвижным атомом водорода. Большое значение приобрели органические производные меди, смеси солей меди с KI или KI Ь, а в последнее время также производные фталоцианина и соединения с сопряженными двойными связями. [7]
В термическую стабилизацию при температурах ниже точки Мн определенный вклад может внести релаксация упругих напряжений в аустенитной матрице вокруг мартенситных пластин. Эти напряжения, как уже отмечалось, вызывают автокаталитический эффект, свойственный всем мартенситным превращениям. Уменьшение упругих напряжений вокруг мартенситных кристаллов хорошо объясняет повышение степени стабилизации с увеличением времени выдержки, но не может объяснить снижения 6 при больших выдержках. [8]
Устройство для термической стабилизации несложно и состоит ( рис. 2 - 17) из деаэратора /, в который поступает сырая вода, и бака-аккумулятора 2, в котором вода отстаивается. Из бака вода поступает в кварцевый фильтр и затем в сеть. [9]
На участке термической стабилизации температурный градиент убывает гораздо быстрее, нежели температурный напор. [11]
На участках гидродинамической и термической стабилизации происходит формирование профиля скоростей и профиля температур. [13]
Таким образом, термическая стабилизация ПВХ , осуществляемая в результате гетерогенной прививки всего 3 - 5 % цс-1 4-полибута-диена дает не просто аддитивный, а синергический эффект. Это подтверждается следующими данными: 10 % уис-1 4-полибутадиен растворяют в суспензии или растворе ПВХ в хлорбензоле и выделяют смесь полимеров осаждением метанолом. Пленки, спрессованные из смеси полимеров, оказываются темными и содержат несовместимые, по-видимому, гелеобразные или сшитые продукты. [14]
Это соответствует участку термической стабилизации для двигающегося порошка. [15]
Стабилизирующая термообработка должна быть конечной технологической операцией, она проводится по окончании всех технологических процессов, вызывающих наклеп. По ГОСТ 10533 - 63 термическую обработку термобиметалла рекомендуется проводить в вакууме или в защитной атмосфере ( водород, аргон) для предохранения поверхности металла от окисления. [1]
Многие микронапряжения успешно устраняются стабилизирующей термообработкой . [2]
Установлено, что с помощью стабилизирующей термообработки графитопластов и графитов, пропитанных синтетическими смолами, можно значительно улучшить их физико-механические показатели. [3]
Многие виды микронапряжений успешно устраняются применением стабилизирующей термообработки . Кристаллоструктурные дефекты заготовок, полученных методом горячей пластической деформации, устраняют рекристаллизационным отжигом. [4]
Для работы при повышенных температурах применяют подшипники со специальной стабилизирующей термообработкой или изготовленные из теплостойких сталей. [5]
Для работы при повышенных температурах применяют подшипники со специальной стабилизирующей термообработкой или изготовленные из теплостойких сталей. Качество работы подшипников при повышенных температурах зависит также от того, сохраняет ли используемый смазочный материал свои свойства и правильно ли выбраны материалы уплотнений, сепаратора. [7]
Стоимость процесса немногим превышает стоимость литья обычным способом с последующей стабилизирующей термообработкой . [8]
Было найдено, что при исходном содержании SiO порядка 20 % поверхностное сопротивление пленок Cr - SiO ( с применением стабилизирующей термообработки ) воспроизводилось с точностью 2 % от напыления к напылению. [10]
Это показывает необходимость стабилизирующего отжига ( см. гл. Если стабилизирующая термообработка невозможна, то для полного предотвращения склонности к межкристаллитной коррозии, главным образом после перегрева стали, необходимо повысить содержание титана. [11]
На рис. 11 приведены значения ТКС для пленок Cr - SiO, осажденных при 200 С и отожженных в течение 1 ч при 400 С. На практике для большинства применений стабилизирующая термообработка в течение 1 ч при 400 С является обязательной. [12]
Начиная с 1960 - х годов выполнен обширный комплекс исследований, направленных на поиск наилучших материалов для тензорезисторов, работающих в экстремальных условиях. При температурах выше 400 С во всех тензочувствительных сплавах с высоким удельным сопротивлением происходят процессы, которые вызывают изменения удельного сопротивления и температурного коэффициента сопротивления, причем интенсивность этих процессов зависит от температуры и времени. Скорость изменения сопротивления в рабочем интервале температур зависит от температуры и предшествующей механической и термомеханической обработок сплавов и является основным критерием для оценки пригодности того или иного сплава для применения в заданном интервале температур. Тот же критерий положен в основу для выбора оптимального режима стабилизирующей термообработки каждого конкретного сплава. Основное внимание уделено исследованию никель-молибденовых сплавов, а также серии железохромалюминиевых сплавов с содержанием алюминия от 5 до 10 %, разработанных в содружестве с ЦНИИЧермет специально для высокотемпературной тензометрии. [13]
Термическая стабилизация металла это
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
ДЕТАЛИ ПРИБОРОВ ВЫСОКОТОЧНЫЕ МЕТАЛЛИЧЕСКИЕ.
СТАБИЛИЗАЦИЯ РАЗМЕРОВ ТЕРМИЧЕСКОЙ ОБРАБОТКОЙ
Типовые технологические процессы
Metal high precision parts of devices. Dimension stabilization by heat treatment.
Standard technological processes
Постановлением Государственного комитета стандартов Совета Министров СССР от 23 декабря 1977 г. N 3018 срок введения установлен с 01.01.79
Проверен в 1982 г. Постановлением Госстандарта СССР от 28.03.83 N 1410 срок действия продлен до 01.01.89**
** Ограничение срока действия снято по протоколу N 3-93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС N 5-6, 1993 год). - Примечание изготовителя базы данных.
* ПЕРЕИЗДАНИЕ (январь 1988 г.) с Изменением N 1, утвержденным в марте 1983 г. (ИУС 7-83).
ВНЕСЕНА поправка, опубликованная в ИУС N 7, 1990 год
Поправка внесена изготовителем базы данных
Настоящий стандарт распространяется на высокоточные металлические детали приборов с наибольшим размером до 600 мм и рабочей температурой до 100 °С и устанавливает рекомендуемые типовые технологические процессы термической обработки, обеспечивающие стабилизацию размеров деталей приборов.
На основе настоящего стандарта министерства (ведомства) СССР могут разрабатывать отраслевые стандарты, устанавливающие особенности технологических процессов отрасли.
Отраслевые стандарты должны быть согласованы с Госстандартом СССР.
1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
1.1. Для стабилизации размеров деталей должны применяться методы, приведенные в обязательном приложении 1.
1.2. Категория деталей должна определяться согласно данным обязательного приложения 2.
1.3. Высокоточные металлические детали приборов должны изготовляться из материалов с характеристиками размерной стабильности, приведенными в справочном приложении 3.
1.4. В зависимости от специфики производства и особенностей деталей отделочная операция может выполняться после окончательной механической обработки.
Если отделочная операция связана с нагревом выше 100 °С, заключительную операцию термической обработки допускается не проводить.
1.5. Разрыв во времени между операциями охлаждения и нагрева при термоциклической обработке (ТЦО) не регламентируется.
1.6. Если недопустимо окисление поверхностей деталей, стабилизирующую обработку следует проводить в вакууме или защитной среде.
1.7. Для деталей с большим объемом механической обработки стабилизирующую термическую обработку допускается проводить в два приема, при этом суммарная продолжительность операций не должна превышать время, предусмотренное настоящим стандартом.
1.8. Охлаждение с печью должна проводиться со скоростью не более 100 °С/ч.
1.9. Обработка холодом должна проводиться не позже, чем через 2 часа после закалки.
1.10. Для деталей из дисперсионно-твердеющих сплавов, термически обрабатываемых для получения высокой твердости, упрочняющее старение допускается проводить перед окончательной механической обработкой.
1.11. Время выдержки при нагреве для закалки, нормализации и отпуска (когда время не указывается) назначают в зависимости от толщины стенок детали и возможностей производственного оборудования (печи, соляные ванные и т.п.).
1.12. Примеры условных обозначений процессов стабилизации размеров деталей:
стабилизации стального корпуса с постоянством размеров по 3-й категории*, с твердостью, 28 . 34 HRC:
Стабилизировать 3 28 . 34 HRС ГОСТ 17535-77
стабилизации корпуса из алюминиевого сплава состояния Т1, с постоянством размеров по 2-й категории:
Стабилизировать Т1-2 ГОСТ 17535-77
* Категории обрабатываемых деталей указаны в приложении 2.
(Измененная редакция, Изм. N 1).
2. ТИПОВЫЕ ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ ДЛЯ ВЫСОКОТОЧНЫХ ДЕТАЛЕЙ
ИЗ ЛИТЕЙНЫХ СТАЛЕЙ И СПЛАВОВ
2.1. Схемы типовых технологических процессов для высокоточных деталей из литейных сталей и сплавов должны соответствовать указанным в табл.1.
Типовые технологические процессы для высокоточных деталей из литейных сталей и сплавов
Читайте также: