Тепловые свойства металлов и сплавов

Обновлено: 07.01.2025

Металлы и сплавы характеризуются комплексом физических, механических, химических и технологических свойств.

Физические свойства металлов и сплавов – блеск, плотность, температура плавления, теплопроводность, теплоемкость, электропроводность, магнитные свойства, расширяемость при нагревании и фазовых превращениях.

Механические свойства металлов и сплавов – твердость, упругость, прочность, хрупкость, пластичность, вязкость, износостойкость, сопротивление усталости, ползучесть.

Химические свойства металлов и сплавов определяют их способность сопротивляться воздействию окружающей среды. При контакте с окружающей средой металлы и сплавы подвергаются коррозии, растворяются окисляются и снижают свою жаропрочность.

Технологические свойства металлов и сплавов – ковкость, свариваемость, прокаливаемость, склонность к обезуглероживанию, обрабатываемость резанием, жидкотекучесть, закаливаемость. Они характеризуют способность металлов и сплавов обрабатываться различными методами. Кроме того, они позволяют определить, насколько экономически эффективно можно изготовить изделие.

Ковкость – способность металла и сплава обрабатываться путем пластического деформирования.

Свариваемость – способность металла и сплава образовывать неразъемное соединение, свойства которого близки к свойствам основного металла (сплава).

Прокаливаемость – способность металла и сплава закаливаться на определенную глубину.

Склонность к обезуглероживанию металла и сплава – возможность выгорания углерода в поверхностных слоях изделий из сплавов и сталей при нагреве в среде, содержащей кислород и водород.

Обрабатываемость резанием – поведение металла и сплава под воздействием режущего инструмента.

Жидкотекучесть – способность расплавленного металла и сплава заполнять литейную форму.

Закаливаемость – способность металла и сплава к повышению твердости при закалке (нагрев и быстрое охлаждение).

Физические свойства металлов и сплавов важны для самолетостроения, автомобилестроения, медицины, строительства, изготовления космических аппаратов и часто являются основными характеристиками, по которым определяют возможность использования того или иного металла или сплава.

Блеск – способность поверхности металла и сплава направленно отражать световой поток.

Плотность – масса единицы объема металла или сплава. Величину, обратную плотности, называют удельным объемом.

Температура плавления – это температура, при которой металл или сплав целиком переходит в жидкое состояние.

Теплопроводность – количество теплоты, проходящее в секунду через сечение в 1см 2 , когда на расстоянии в 1см изменение температуры составляет в 1 0 С.

Теплоемкость – количество теплоты, необходимой для повышения температуры тела на 1 0 С.

Электрическая проводимость – величина, обратная электрическому сопротивлению. Под удельным электрическим сопротивлением понимают электрическое сопротивление проводника длиной 1 м и площадью поперечного сечения в 10 -6 м 2 при пропускании по нему электрического тока.

К магнитным свойствам металлов и сплавов относятся: начальная магнитная проницаемость, максимальная магнитная проницаемость, коэрцитивная сила, намагниченность насыщения, индукция насыщения, остаточная магнитная индукция, точка Кюри, петля гистерезиса.

При помещении стального образца в магнитное поле возникающая в нем магнитная индукция (b) является функцией напряженности магнитного поля (Нm).


Намагниченность (М) пропорциональна напряженности магнитного поля. Эти величины связаны между собой коэффициентом , который называется магнитной восприимчивостью стали или сплава.


(1)

Между магнитной индукцией и напряженностью магнитного поля существует аналитическая связь


(2)


где - магнитная проницаемость вакуума.

Для ферромагнетиков (сплавов, способных намагничиваться до насыщения в малых магнитных полях) , где- коэффициент магнитной проницаемости.

При намагничивании ферромагнитных материалов (стали, полученные соединением ферромагнетиков с парамагнетиками) намагниченность сначала плавно возрастает, потом резко повышается и постепенно достигает насыщения. При уменьшении напряженности магнитного поля Нm после намагничивания и реверсирования (изменение направления поля) его кривая изменения индукции образует замкнутую петлю. Эта петля называется петлей гистерезиса.

Основными параметрами начальной кривой и петли гистерезиса являются остаточная индукция br, коэрцитивная сила Нс, напряженность насыщающего поля Нн и намагниченность насыщения Мs. По начальной кривой определяется кривая магнитной проницаемости, в которой основными точками являются начальная магнитная проницаемость и максимальная магнитная проницаемость.


Наибольшее значение индукции на петле гистерезиса называется индукцией насыщения .

Ферромагнетики при нагреве до определенной температуры переходят в парамагнитное состояние (в состояние с малой магнитной восприимчивостью). Эта температура называется точкой Кюри. Точка Кюри определяется в основном химическим составом сплава или стали и не зависит от давлений, напряжений и других факторов.

Все характеристики ферромагнитных материалов можно разделить на структурно нечувствительные и структурно чувствительные. К структурно нечувствительным характеристикам относятся точка Кюри, намагниченность насыщения, зависящие от произвольной намагниченности, к структурно чувствительным – магнитная проницаемость, остаточная индукция и коэрцитивная сила.

Структурно нечувствительные характеристики ферромагнитных материалов зависят в основном от химического состава и числа фаз и практически не зависят от кристаллической структуры, размера частиц зерна металла. Следовательно, измерение точки Кюри, намагниченности насыщения и т.д. необходимо для качественного фазового анализа стали и сплава.

Измерение структурно чувствительных характеристик необходимо при изучении структурных изменений в сплавах и сталях при термической или механической обработке.

Магнитная проницаемость, коэрцитивная сила и остаточная индукция изменяются при обработке сплавов и сталей. Расширение при нагревании изделий из сталей и сплавов – изменение размеров и формы зерен, характеризуется температурными коэффициентами объемного расширения и линейного расширения. Расширение при нагревании в интервале температур фазовых превращений сталей и сплавов характеризуется коэффициентом линейного расширения отдельных фаз. Внутренние (фазовые и структурные) превращения в металлах и сплавах характеризуются изменением объема, линейных размеров и коэффициента расширения. При фазовых превращениях в металлах и сплавах происходит выделение или поглощение скрытой теплоты превращения, изменяется теплоемкость изделия. Поэтому при изменении структуры металла или сплава, нагреваемого или охлаждаемого с постоянной скоростью, могут появиться отклонения от нормальной кривизны на кривых изменения температуры по времени. По этим кривым, называемым термическими кривыми, определяют температуру (температурный интервал) превращения.

7.Тепловые свойства металлов. Электрическое сопротивление жидких металлов.

Способность металлов пропускать электрический характеризуется удельной электропроводностью. Однако удобнее пользоваться обратной характеристикой - удельным электрическим сопротивлением, которое принято обозначать греческой буквой р. Единицей удельного электросопротивления системе СИ является 1 Ом*м. В физике обычно пользуется единицей 1 мкОм*см, а в технике - 1 Ом мм 2 /м. трудно показать соотношение 1 мкОмсм = 1 10 -8 Омм, 1Ом*мм 2 /м = 1•10 -6 Ом*м = 1*10 2 мкОм см. Известно, что электросопротивление твердых металлов возрастает с ростом температуры . К моменту достижения температуры плавления электросопротивление большинства металлов увеличивается в 2-10 раз по сравнению со значениями при комнатной температуре. Увеличение элек­тросопротивления отражает те затруднения, которые испы­тывают электроны при движении в кристаллической решетке из-за возрастающей амплитуды тепловых колебаний, атомов, находящихся в узлах решетки. Плавление металла, связанное с разрушением кристаллической решетки, сопровождается существенным увеличением электросопротивления металлов, примерно в 1,2-2,2 раза. Металлы, у которых между атомами в решетке действуют ковалентные связи, при плавлении показывают снижение электросопротивления. Это снижение сравнительно невелико у сурьмы и висмута - в 1,5-3,5 раза, так как у них в решетке довольно сильно выражена металли­ческая связь. У германия и кремния, решетка которых цели­ком удерживается ковалентными силами, это снижение очень значительно - в 15-30 раз. Падение электросопротивления у этих элементов объясняется появлением свободных электро­нов, способных создавать электрический ток. Повышение температуры вызывает у всех жидких металлов возрастание электросопротивления.

Электросопротивление жидких сплавов зависит от их состава. Имеются случаи, когда сопротивление жидких сплавов изменяется в пределах, определяемых значениями этого свойства у чистых компонентов. Часто, особенно если в твердом состоянии в сплавах образуются промежуточные фазы, на изотермах электросопротивления отмечаются экс­тремумы. Для технических расчетов электросопротивление жидких сплавов при небольшом содержании легирующих компонентов можно принимать равным электросопротивлению основы сплава.

Теплота плавления q. Если сравнивать теплоты плавления, выраженные в Дж/г, то бросается в глаза очень большая разница в величинах. У легкоплавких металлов - олова, висмута, цинка - теп­лота плавления составляет несколько десятков джоулей на 1 г; у меди, никеля, железа она измеряется величиной в 200-300 Дж/г; у магния и, алюминия теплота плавления при­ближается к 400 Дж/г. Очень большие теплоты плавлении имеют кремний и бериллий- 1800 и 1590 Дж/г, что в 20-30 раз больше, чем у олова и висмута. Однако, если учесть, что теп­лота плавления отражает энергию, необходимую для разру­шения кристаллической решетки, в узлах которой находятся атомы (у металлов - ионы), то более правильно теплоту плавления относить не к единице массы, а к одинаковому числу атомов. Иначе говоря, надо сравнивать атомные теп­лоты плавления, приходящиеся на один моль металла, эта энергия необходима для разрушения такого объема кристал­лической решетки, в узлах которого находится совершенно одинаковое число атомов - 6,03-10 23 (число Авогадро), Пере­ход к атомной теплоте плавления, выраженной в кДж/моль, дает возможность увидеть, что у типичных металлов, обладающих четко выраженной металлической связью в кристаллической решетке, атомная теплота плавления составляет 4-18 кДж. Это объ­ясняется тем, что температура плавления также отражает энергию межатомных связей кристаллической решетки.

Теплоемкость жидких металлов. По сравнению с теплоемкостью твердого металла при точке плавления эти значения примерно в 1,1-25 раза боль­ше. Какой-либо закономерности не усматривается при срав­нении теплоемкости, выраженной через Дж/г. Переход к атомной теплоемкости позволяет сказать, что у жидких ме­таллов она составляет- 29-40 Дж/моль-К и явно возрастает с увеличением температуры плавления металлов. Причины этого те же, что и в случае атомной теплоты плавления.

Теплоемкость жидких металлов, как и твердых, воз­растает с перегревом. Эту зависимость выражают уравнением второй степени.

Теплопроводность ( ) жидких металлов изучена недо­статочно, и составляет примерно 0,4-0,6 от тепло­проводности твердых металлов вблизи точки плавления.

Теплообмен в жидких металлах осуществляется не только теплопроводностью, по и за счет свободной конвенции, которая определяется зависимостью плотности жидкого ме­талла от температуры, вязкостью металла, его теплопровод­ностью и земным ускорением. Теплообмен в этом случае ха­рактеризуется коэффициентом теплоотдачи а (Вт/м 2 -К) от жидкого металла с температурой tс к стенке tП . Вбли­зи стенки температура снижается от tс к tП Величина tс-tп= называется температурным напором, который и определяет теплообмен. Зависимость между и является критерием Нуссельта:

где - коэффициент теплоотдачи; - теплопроводность жид­кого металла; :L - линейный размер стенки в вертикальном направлении (см. рис.3); С - постоянный множитель, величи­на которого выбирается по справочнику в зависимости от величины критерия.

Теплота образования жидких сплавов измеряется той энергией, которая поглощается или выделяется при взаим­ном растворении двух или более жидких металлов, взятых при одинаковой температуре. В термодинамике принято счи­тать положительной энергию, поглощенную системой, и приписывать ей знак "+". Энергия, выделившаяся из си­стемы, считается отрицательной и обозначается знаком "-". Этот же подход будет соблюдаться и в данном случае. Коли­чество энергии, поглощенное или выделенное при образова­нии сплавов, относят к 1 молю сплава и называют его инте­гральной молярной теплотой смешения или образования.

В двухкомпонентных сплавах указанная величина ( ) обычно меняется по кривой с экстремумом, проходящей естественно, через нуль у чистых компонентов. Эта кривая близка к параболе. Максимум или минимум кривой приходится на сплавы приблизительно эквиатомного соста­ва, то есть при атомной доле каждого из компонентов около 0,5 иди 50% атм. Эта наибольшая по абсолютному значению теплота образования . Теплоты образования жидких сплавов могут иметь в различных системах положительные и отрицательные значе­ния, при этом в последнем случае может достигать очень больших величин, сравнимых и даже превосходящих теплоты плавления металлов.

Необходимо напомнить еще раз, что отрицательный знак теплоты образования свидетельствует о выделении тепла при сплавлении

ЛЕКЦИЯ 4

Все свойства металлов и сплавов принято подразделять на группы: физические, химические, технологические, механические и эксплуатационные.

Физические свойства определяют поведение металлических материалов в тепловых, электромагнитных, радиационных полях. К физическим свойствам относятся плотность, температура плавления, теплоемкость, теплопроводность, электропроводность, магнитные характеристики, термическое расширение.

Химические свойства характеризуют способность материалов вступать в химическое взаимодействие с другими веществами и химическими элементами, а также способность металлов и сплавов сопротивляться воздействию агрессивных сред, в том числе окислению.

Технологические свойства характеризуют способность материалов подвергаться холодной и горячей обработке, в том числе при обработке резанием, ковке, сварке, литье. К технологическим свойствам относятся обрабатываемость резанием, свариваемость, ковкость, литейные свойства (жидкотекучесть – способность жидкого металла заполнять литейную форму; усадка – уменьшение объема металла при переходе из жидкого состояния в твердое; ликвация – химическая неоднородность в отливках; склонность к образованию трещин – вероятность образования литейных трещин и пор в процессе затвердевания в литейной форме).

К механическим свойствам относятся твердость, прочность, пластичность, упругость, вязкость.

Эксплуатационные свойства характеризуют поведение материала в заданных рабочих условиях. К эксплуатационным свойствам относятся жаропрочность, жаростойкость, хладноломкость, усталость, износостойкость.

Для выбора материала и оценки его длительной работоспособности и на-

дежности наиболее важными являются механические и эксплуатационные свойства. Поэтому именно эти группы свойств и методы их определения будут рассмотрены подробно.

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

Многообразие условий службы и обработки материалов определяет необходимость проведения большого числа механических испытаний с целью получения целого комплекса значений механических свойств.

В зависимости от способа нагружения образца различают статические, динамические и циклические испытания.

Рассмотрим основные механические свойства и их количественные характеристики.

ТВЕРДОСТЬ

Твердость - свойство материала сопротивляться воздействию внешних нагрузок при непосредственном соприкосновении.

Все методы измерения твердости имеют одинаковый принцип:

вдавливание в поверхность образца инородного тела (индентора) различной формы, размера с различной нагрузкой.

Различают следующие методы определения твердости:

Метод Бринелля (индентор – стальной шарик);

Метод Роквелла (индентор - алмазный конус или стальной шарик);

Метод Виккерса (индентор - алмазная пирамидка).

Схемы этих методов приведены на рис. 4.1.


Рис. 4.1. Схема определения твердости:

а) - по Бринеллю; 6) - по Роквеллу; в) - по Виккерсу

Метод Бринелля

Испытание по методу Бринелля (рис. 4.1, а) состоит из вдавливания в

испытуемое тело стального шарика диаметром D под действием постоянной нагрузки Р ( Р=1000 кг — для цветных металлов; Р—3000 кг — для черных металлов) и измерении диаметра отпечатка d на поверхности образца. Число твердости по Бринеллю НВ определяется величиной нагрузки Р, деленной на сферическую поверхность отпечатка. Чем меньше диаметр отпечатка, тем выше твердость металла. На практике твердость определяют не по формулам, а по специальным таблицам, исходя из диаметра отпечатка d.

Твердость по Бринеллю обозначается НВ, где Н – твердость, В – метод Бринелля. Твердость по Бринеллю измеряется в МПа.

Метод Роквелла

Измерение твердости по этому методу проходит быстрее и удобнее, чем по методу Бринелля, так как значение твердости выводится на шкалу прибора.

При испытании по методу Роквелла (рис. 4.1, б) индентором служит алмазный конус или для более мягких материалов - стальной шарик. Конус и шарик вдавливаются в металл с различной нагрузкой. На приборе имеются три шкалы. При испытании алмазным конусом и нагрузке Р= 150 кг шкала обозначается С, а твердость обозначается HRC, при испытании алмазным конусом, но с нагрузкой Р = 60кг шкала обозначается A, а твердость - HRA, при испытании стальным шариком с нагрузкой 100кг шкала обозначается В, а твердость - HRB (таблица 4.1).

Основные сведения о сплавах металлов (основы общей технологии металлов)

Все металлы и сплавы металлов обладают определенными свойствами. Свойства металлов и сплавов разделяют на четыре группы: физические, химические, механические и технологические.

Физические свойства. К физическим свойствам металлов и сплавов относятся: плотность, температура плавления, теплопроводность, тепловое расширение, удельная теплоемкость, электропроводность и способность намагничиваться. Физические свойства некоторых металлов приведены в таблице:

Физические свойства металлов

Температура плавления, °С

Коэффициент линейного расширения, α 10 -6

Удельная теплоемкость С, кал/г-град

Удельное электросопротивление при 20°, Ом мм /м

Плотность. Количество вещества, содержащееся в единице объема, называют плотностью. Плотность металла может изменяться в зависимости от способа его производства и характера обработки.

Температура плавления. Температуру, при которой металл полностью переходит из твердого состояния в жидкое, называют температурой плавления. Каждый металл или сплав имеет свою температуру плавления. Знание температуры плавления металлов помогает правильно вести тепловые процессы при термической обработке металлов.

Теплопроводность. Способность тел передавать тепло от более нагретых частиц к менее нагретым называют теплопроводностью. Теплопроводность металла определяется количеством теплоты, которое проходит по металлическому стержню сечением в 1см 2 , длиной 1см в течение 1сек. при разности температур в 1°С.

Тепловое расширение. Нагревание металла до определенной температуры вызывает его расширение.

Величину удлинения металла при нагревании легко определить, если известен коэффициент линейного расширения металла α. Коэффициент объемного расширения металла ß равен Зα.

Удельная теплоемкость. Количество тепла, которое необходимо для повышения температуры 1г вещества на 1°С, называют удельной теплоемкостью. Металлы по сравнению с другими веществами обладают меньшей теплоемкостью, поэтому их нагревают без больших затрат тепла.

Электропроводность. Способность металлов проводить электрический ток называют электропроводностью. Основной величиной, характеризующей электрические свойства металла, является удельное электросопротивление ρ, т. е. сопротивление, которое оказывает току проволока из данного металла длиной 1м и сечением 1мм 2 . Оно определяется в омах. Величину, обратную удельному электросопротивлению, называют электропроводностью.

Большинство металлов обладает высокой электропроводностью, например серебро, медь и алюминий. С повышением температуры электропроводность уменьшается, а с понижением увеличивается.

Магнитные свойства. Магнитные свойства металлов характеризуются следующими величинами: остаточной индукцией, коэрцетивной силой и магнитной проницаемостью.

Остаточной индукцией r) называют магнитную индукцию, сохраняющуюся в образце после его намагничивания и снятия магнитного поля. Остаточную индукцию измеряют в гауссах.

Коэрцетивной силой (Нс) называют напряженность магнитного поля, которая должна быть приложена к образцу, чтобы свести к нулю остаточную индукцию, т. е. размагнитить образец. Коэрцетивную силу измеряют в эрстедах.

Магнитная проницаемость μ характеризует способность металла намагничиваться под определяется по формуле

Железо, никель, кобальт и гадолиний притягиваются к внешнему магнитному полю значительно сильнее, чем остальные металлы, и постоянно сохраняют способность намагничиваться. Эти металлы называются ферромагнитными (от латинского слова феррум - железо), а их магнитные свойства - ферромагнетизмом. При нагреве до температуры 768°С (температура Кюри) ферромагнетизм исчезает, и металл становится немагнитным.

Химические свойства. Химическими свойствами металлов и сплавов металлов называют свойства, определяющие их отношение к химическим воздействиям различных активных сред. Каждый металл или сплав металла обладает определенной способностью сопротивляться воздействию этих сред.

Химические воздействия среды проявляются в различных формах: железо ржавеет, бронза покрывается зеленым слоем окиси, сталь при нагреве в закалочных печах без защитной атмосферы окисляется, превращаясь в окалину, а в серной кислоте растворяется и т. д. Поэтому для практического использования металлов и сплавов необходимо знать их химические свойства. Эти свойства определяют по изменению веса испытуемых образцов за единицу времени на единицу поверхности. Например, сопротивление стали окалинообразованию (жаростойкость) устанавливают по увеличению веса образцов за 1 час на 1 дм поверхности в граммах (привес получается за счет образования окислов).

Механические свойства. Механические свойства определяют работоспособность сплавов металлов при воздействии на них внешних сил. К ним относятся прочность, твердость, упругость, пластичность, ударная вязкость и др.

Для определения механических свойств сплавов металлов их подвергают различным испытаниям.

Испытание на растяжение (разрыв). Это основной способ испытания, применяемый для определения предела пропорциональности σпц, предела текучести σs, предела прочности σb относительного удлинения σ и относительного сужения ψ.

Для испытания на растяжение изготовляют специальные образцы- цилиндрические и плоские. Они могут быть различных размеров, в зависимости от типа разрывной машины, на которой испытывают металл на растяжение.

Разрывная машина работает следующим образом: испытуемый образец закрепляют в зажимах головок и постепенно растягивают с возрастающей силой Р до разрыва.

В начале испытания при небольших нагрузках образец деформируется упруго, удлинение его пропорционально возрастанию нагрузки. Зависимость удлинения образца от приложенной нагрузки называют законом пропорциональности.

Наибольшую нагрузку, которую может выдержать образец без отклонения от закона пропорциональности, называют пределом пропорциональности:

Fо - начальная площадь поперечного сечения образца, мм 2 .

При увеличении нагрузки кривая отклоняется в сторону, т. е. закон пропорциональности нарушается. До точки Рр деформация образца была упругой. Деформация называется упругой, если она полностью исчезает после разгрузки образца. Практически предел упругости для стали принимают равным пределу пропорциональности.

С дальнейшим увеличением нагрузки (выше точки Ре) кривая начинает значительно отклоняться. Наименьшую нагрузку, при которой образец деформируется без заметного увеличения нагрузки, называют пределом текучести:

Fo - начальная площадь поперечного сечения образца, мм 2 . После предела текучести нагрузка увеличивается до точки Ре, где она достигает своего максимума. Делением максимальной нагрузки на площадь поперечного сечения образца определяют предел прочности:

Fo - начальная площадь поперечного сечения образца, мм 2 . В точке Рк образец разрывается. По изменению, образца после разрыва судят о пластичности металла, которая характеризуется относительным удлинением δ и сужением ψ.

Под относительным удлинением понимают отношение приращения длины образца после разрыва к его начальной длине, выраженное в процентах:

Относительным сужением называется отношение уменьшения площади поперечного сечения образца после разрыва к его начальной площади поперечного сечения

где Fo - начальная площадь сечения образца, мм 2 ;

F1 - площадь поперечного сечения образца в месте разрыва (шейка), мм 2 .

Испытание на ползучесть. Ползучесть - это свойство сплавов металлов медленно и непрерывно пластически деформироваться при постоянной нагрузке и высоких температурах. Основной целью испытания на ползучесть является определение предела ползучести - величины напряжения, действующего продолжительное время при определенной температуре.

Для деталей, работающих длительное время при повышенных температурах, учитывают только скорость ползучести при установившемся процессе и задают граничные условия, например1°/о за 1000 час. или 1°/о за 10 000 час.

Испытание на ударную вязкость. Способность металлов, оказывать сопротивление действию ударных нагрузок называют ударной вязкостью. Испытанию на ударную вязкость в основном подвергают конструкционные стали, так как они должны иметь не только высокие показатели статической прочности, но и высокую ударную вязкость.

Для испытания берут образец стандартной формы и размеров. Образец надрезают посередине, чтобы он в процессе испытания переломился в этом месте.

Образец испытывают следующим образом. На опоры маятникового копра кладут испытуемый образец надрезом к станин. Маятник весом G поднимают на высоту h1. При падении с этой высоты маятник острием ножа разрушает образец, после чего поднимается на высоту h2.

По весу маятника и высоте его подъема до и после разрушения образца определяют затраченную работу А.

Зная работу разрушения образца, вычисляем ударную вязкость:

где А - работа, затраченная на разрушение образца, кгсм;

F - площадь поперечного сечения образца в месте надреза,см 2 .

Способ Бринелля. Сущность этого способа заключается в том, что, используя механический пресс, в испытуемый металл под определенной нагрузкой вдавливают стальной закаленный шарик и по диаметру полученного отпечатка определяют твердост.

Способ Роквелла. Для определения твердости по способу Роквелла применяют алмазный конус с углом при вершине 120°, или стальной шарик диаметром 1,58мм. При этом способе измеряют не диаметр отпечатка, а глубину вдавливания алмазного конуса или стального шарика. Твердость указывается стрелкой индикатора сразу после окончания испытания. При испытании закаленных деталей с высокой твердостью применяют алмазный конус и груз в 150 кгс. Твердость в этом случае отсчитывают по шкале С и обозначают HRC. Если при испытании берется стальной шарик и груз в 100 кгс, то твердость отсчитывают по шкале В и обозначают HRB. При испытании очень твердых материалов или тонких изделий используют алмазный конус и груз в 60 кгс. Твердость при этом отсчитывают по шкале А и обозначают HRA.

Детали для определения твердости на приборе Роквелла должны быть хорошо зачищенными и не иметь глубоких рисок. Способ Роквелла позволяет точно и быстро производить испытание металлов.

Способ Викерса. При определении твердости по способу Викерса в качестве наконечника, вдавливаемого в материал, применяют четырехгранную алмазную пирамиду с углом междугранями 136°. Полученный отпечаток измеряют при помощи микроскопа, имеющегося в приборе. Затем по таблице находят число твердости HV. При измерении твердости применяют одну из следующих нагрузок: 5, 10, 20, 30, 50, 100 кгс. Небольшие нагрузки позволяют определять твердость тонких изделий и поверхностных слоев азотируемых и цианируемых деталей. Прибор Викерса обычно используют в лабораториях.

Способ определения микротвердости. Этим способом измеряют твердость очень тонких поверхностных слоев и некоторых структурных составляющих сплавов металлов.

Микротвердость определяют по прибору ПМТ-3, который состоит из механизма для вдавливания алмазной пирамиды под нагрузкой 0,005-0,5 кгс и металлографического микроскопа. В результате испытания определяют длину диагонали полученного отпечатка, после чего по таблице находят значение твердости. В качестве образцов для определения микротвердости применяют микрошлифы с полированной поверхностью.

Способ упругой отдачи. Для определения твердости способом упругой отдачи применяют прибор Шора, работающий следующим образом. На хорошо зачищенную поверхность испытуемой детали с высоты Н падает боек, снабженный алмазным наконечником. Ударившись о поверхность детали, боек поднимается на высоту h. По высоте отскакивания бойка отсчитывают числа твердости. Чем тверже испытуемый металл, тем больше высота отскакивания бойка, и наоборот. Прибор Шора используют в основном для проверки твердости больших коленчатых валов, головок шатуна, цилиндров и других крупных деталей, твердость которых трудно измерять на других приборах. Прибор Шора позволяет проверять шлифованные детали без нарушения качества поверхности, однако получаемые результаты проверки не всегда точны.

Читайте также: