Теория термической обработки металлов

Обновлено: 07.01.2025

Изменение свойств углеродистых сталей Закаленная углеродистая сталь характеризуется не только высокой твердостью, но и очень большой склонностью к хрупкому разрушению. Кроме того, при закалке возникают значительные остаточные напряжения. Поэтому закалку…

По температуре нагрева различают низкий, средний и высокий отпуск. Низкий отпуск на отпущенный мартенсит (120 — 250 °С) широко применяют после закалки инструментов, цементованных и цианированных изделий и после поверхностной…

Явление возврата после старения было открыто на дуралюмине. Если естественно состаренный дуралюмин нагреть до температуры примерно 250 °С, выдержать 20 — 60 с и быстро охладить, то его свойства возвращаются…

Структура закаленной стали метастабильна. При нагревании после закалки вследствие увеличивающейся подвижности атомов создаются условия для процессов, изменяющих структуру стали в направлении к более равновесному состоянию. Характер этих процессов определяется тремя…

Характер структурных изменений при отпуске углеродистых сталей зависит от температуры и продолжительности отпуска и содержания углерода в стали. С повышением содержания углерода в аустените возрастает пересыщенность α-раствора, снижается температура Мн,…

Образование цементита Fe3C со структурой, одинаковой или близкой к структуре цементита отожженной стали, происходит при температурах выше 250 °С, причем наиболее активно в интервале 300 — 400 °С. Цементит Fe3C…

Распад остаточного аустенита играет существенную роль в процессах отпуска высокоуглеродистых сталей, где он находится в значительном количестве (смотрите рисунок Влияние содержания углерода). Распад аустенита активно протекает в интервале температур примерно…

Возврат и рекристаллизация в α-фазе происходят в широком интервале температур отпуска. Развитие этих процессов сдерживается частицами карбидных выделений, закрепляющих отдельные дислокации, дислокационные стенки и высокоугловые границы. Закрепление слабее выражено в…

Рассмотрим практически важный случай сложной роли естественного старения на примере сплавов системы Al — Mg — Si, находящихся на квазибинарном разрезе Al — Mg2Si или недалеко от него (сплавы типа…

С ролью предстарения тесно связан вопрос о роли скорости нагрева при одноступенчатом старении. Обычно на скорость нагрева до температуры старения не обращают внимания. Однако начальные стадии распада при замедленном нагреве…

Выбор температуры и продолжительности старения После предварительной оценки температурного уровня старения по соотношению или по аналогии с другими сплавами на базе того же металла экспериментально отрабатывают режим старения, строя графики,…

В зависимости от режима, структурных изменений и получаемого комплекса свойств искусственное старение можно подразделить на полное, неполное, перестаривание и стабилизирующее старение (соответствующие режимы и свойства приведены в таблице Режимы старения…

Основы теории термической обработки

Свойства сплава зависят от его структуры. Основным способом, позволяющим изменять структуру, а, следовательно, и свойства является термическая обработка.

Основы термической обработки разработал Чернов Д.К.. В дальнейшем они развивались в работах Бочвара А.А., Курдюмова Г.В., Гуляева А.П.

Термической обработкой называют совокупность операций нагрева металла до определенной температуры, выдержки при этой температуре и охлаждения с определенной скоростью. Целью термической обработки является придание металлу необходимых механических и физических свойств в результате изменения внутреннего строения (структуры) металла.

Термической обработке подвергают большинство заготовок (полуфабрикатов) и изделий из стали и цветных сплавов. Именно термическая обработка позволяет изменять структуру металла в нужном направлении и позволяет получать необходимый уровень твердости, прочности, пластичности и других свойств.

Режим термической обработки характеризуют следующие основные параметры: скорость и режим нагрева, максимальная температура нагрева, время выдержки в печи при температуре нагрева, и скорость и режим охлаждения.

Термическая обработка является одним из наиболее распространенных в современной технике способов получения заданных свойств металла. Термическую обработку используют либо в качестве промежуточной операции для улучшения обрабатываемости полуфабриката давлением, резанием и др., либо как окончательную операцию технологического процесса, обеспечивающую заданный уровень физико-механических свойств детали.

Термическая обработка включает в себя нагрев, выдержку и охлаждение металла, выполняемые в определенной последовательности при определенных режимах, с целью изменения внутреннего строения сплава и получения нужных свойств. Обычно ее схематично можно представить в виде графика в осях температура – время, (рис. 18).

Рис.18 Графики различных видов термообработки: отжига (1, 1а), закалки (2, 2а), отпуска (3), нормализации (4)

Термическая обработка подразделяется на собственно термическую, химико-термическую и термомеханическую (или деформационно-термическую).

Собственно термическая обработка заключается только в термическом воздействии на металл или сплав, химико-термическая — в сочетании термического и химического воздействия, термомеханическая — в сочетании термического воздействия и пластической деформации.

Собственно термическая обработка включает следующие основные виды:

-закалку с полиморфным превращением

-закалку без полиморфного превращения

Эти виды термической обработки относятся и к сталям, и к цветным металлам.

Отжиг

Отжиг– термическая обработка, заключающаяся в нагреве металла до определенной температуры, выдержки и охлаждении с отключенной печью (т.е. с минимально возможной скоростью, порядка 50-100 град/час).

Отжиг 1 рода – применяется для любых металлов и сплавов. Его проведение не обусловлено фазовыми превращениями в твердом состоянии. Нагрев, при отжиге первого рода, повышая подвижность атомов, частично или полностью устраняет химическую неоднородность, уменьшает внутренние напряжения. Основное значение имеет температура нагрева и время выдержки. Характерным является медленное охлаждение

Разновидностями отжига первого рода являются:

· отжиг для снятия внутреннего напряжения после ковки, сварки, литья.

Гомогенизационный (диффузионный) отжиг - это термическая обработка, при которой главным процессом является устранение последствий дендритной ликвации (химической неоднородности) в отливках и слитках. Он представляет собой длительную выдержку при высоких температурах, при которых протекают диффузионные процессы, не успевшие завершиться при кристаллизации. Ориентировочная температура для сталей -1100-1300 о С в течение 20-50 ч, для алюминиевых сплавов 420-450 о С.

Рекристаллизационный отжиг - это термическая обработка деформированного металла, при которой главным процессом является рекристаллизация металла. Этот вид отжига устраняет отклонения в структуре от равновесного состояния, возникающие при пластической деформации. При обработке давлением, особенно холодной, металл наклёпывается, его прочность возрастает, а пластичность снижается из-за повышения плотности дислокаций в кристаллитах. При нагреве наклёпанного металла выше некоторой температуры развивается первичная, и затем собирательная рекристаллизация, при которой плотность дислокаций резко снижается. В результате металл разупрочняется и становится пластичнее. Такой отжиг используют для улучшения обрабатываемости давлением и придания металлу необходимого сочетания твёрдости, прочности и пластичности. Как правило, при рекристаллизационном отжиге стремятся получить безтекстурный материал, в котором отсутствует анизотропия свойств. В производстве листов из трансформаторной стали рекристаллизационный отжиг применяют для получения желательной текстуры металла, возникающей при рекристаллизации.

Отжиг для снятия внутренних напряжений - это термическая обработка, при которой главным процессом является полная или частичная релаксация остаточных напряжений при нагреве и охлаждении. Отжиг, уменьшающий напряжения, применяют к изделиям, в которых при обработке давлением, литье, сварке, термообработке и др. технологических процессах возникли недопустимо большие остаточные напряжения, взаимно уравновешивающиеся внутри тела без участия внешних нагрузок. Остаточные напряжения могут вызвать искажение формы и размеров изделия во время его обработки, эксплуатации или хранении на складе. При нагревании изделия предел текучести снижается и, когда он становится меньше остаточных напряжений, происходит быстрая их разрядка путём пластического течения в разных слоях металла.

Отжиг II рода – отжиг металлов и сплавов, испытывающих фазовые превращения в твердом состоянии. Этот вид отжига проводится для сплавов, в которых имеются полиморфные или эвтектоидные превращения, а также переменная растворимость компонентов в твердом состоянии. Отжиг второго рода проводят с целью получения равновесной структуры и подготовки ее к дальнейшей обработке. В результате отжига измельчается зерно, повышаются пластичность и вязкость, снижаются прочность и твердость, улучшается обрабатываемость резанием. Он характеризуется нагревом до температур выше критических и очень медленным охлаждением, как правило, вместе с печью или на воздухе. В последнем случае процесс называется нормализацией. Отжиг 2-го рода применяют чаще всего к стали для общего измельчения структуры, смягчения и улучшения обрабатываемости резанием.

Закалка

Закалка – термообработка, которая проводится для сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении, с целью повышения твердости и прочности путем образования неравновесных структур. Она характеризуется нагревом до температур выше критических и высокими скоростями охлаждения.

Закалка без полиморфного превращения применима к любым сплавам, в которых при нагревании избыточная фаза полностью или частично растворяется в основной фазе. Важнейшие параметры процесса — температура нагрева, время выдержки и скорость охлаждения. Скорость охлаждения должна быть настолько большой, чтобы избыточная фаза не успела выделиться (процесс выделения фазы обеспечивается диффузионным перераспределением компонентов в твёрдом растворе). Это условие выполняется, если дуралюмин и медные сплавы закаливают в воде; магниевые же сплавы и некоторые аустенитные стали можно закаливать с охлаждением на воздухе. В результате закалки образуется пересыщенный твёрдый раствор. Закалка без полиморфного превращения может, как упрочнять, так и разупрочнять сплав (в зависимости от фазового состава и особенностей структуры в исходном и закалённом состояниях). Алюминиевые сплавы с магнием закаливают для повышения прочности; у бериллиевой бронзы же после закалки прочность оказывается ниже, а пластичность выше, чем после отжига, и закалку этой бронзы можно использовать для повышения пластичности перед холодной деформацией. Основное назначение закалки без полиморфного превращения — подготовка сплава к старению.

Закалка с полиморфным превращением применима к любым металлам и сплавам, в которых при охлаждении перестраивается кристаллическая решётка. Основные параметры процесса — температура нагрева, время выдержки и скорость охлаждения. Нагрев производят до температуры выше критической точки так, чтобы образовалась высокотемпературная фаза. Охлаждение должно идти с такой скоростью, чтобы не происходило "нормального" диффузионного превращения и перестройка решётки протекала по механизму бездиффузионного мартенситного превращения. При закалке с полиморфным превращением образуется мартенсит, и поэтому такую термообработку называют закалкой на мартенсит. Углеродистые стали закаливают на мартенсит в воде, а многие легированные, в которых диффузионные процессы протекают замедленно, можно закаливать на мартенсит с охлаждением в масле и даже на воздухе. Основная цель закалки на мартенсит — повышение твёрдости и прочности, а также подготовка к отпуску. Сильное упрочнение сталей при закалке на мартенсит обусловлено образованием пересыщенного углеродом раствора внедрения на базе a-железа, появлением большего числа двойниковых прослоек и повышением плотности дислокаций при мартенситном превращении, закреплением дислокаций атомами углерода и дисперсными частицами карбида, которые могут выделяться на дислокациях в местах сегрегации углерода. Углеродистые стали при закалке на мартенсит резко охрупчиваются. Основная причина этого — малая подвижность дислокаций в мартенсите. Безуглеродистые железные сплавы после закалки на мартенсит остаются пластичными.

Отпуск

Отпуск термообработка, которой подвергают сплавы, главным образом стали, закалённые на мартенсит. Основные параметры процесса — температура нагрева и время выдержки, а в некоторых случаях и скорость охлаждения (для предотвращения отпускной хрупкости). В сталях мартенсит является пересыщенным раствором, и сущность структурных изменений при отпуске — распад термодинамически неустойчивого пересыщенного твердого раствора. Для мартенсита характерно большое число дефектов кристаллического строения (дислокаций и др.). Атомы углерода быстро диффундируют в решётке мартенсита и образуют на дислокациях сегрегации, а возможно и дисперсные частицы карбида сразу после закалки или даже в период закалочного охлаждения. В результате закалённая сталь оказывается в состоянии максимального дисперсного твердения или в близком к нему состоянии. Поэтому при выделении из мартенсита дисперсных частиц карбида во время отпуска прочность и твёрдость стали или вообще не повышаются, или достигается лишь незначительное ее упрочнение. Уменьшение же концентрации углерода в мартенсите при выделении из него карбида является причиной разупрочнения мартенсита. В итоге отпуск сталей, как правило, приводит к снижению твёрдости и прочности с одновременным ростом пластичности и ударной вязкости. Отпуск без углеродистых железных сплавов, закалённых на мартенсит, может приводить к сильному дисперсионному твердению из-за выделения из пересыщенного раствора дисперсных частиц интерметаллических соединений.

Старение

Старение - термообработка, которая применяется к сплавам, которые были подвергнуты закалке без полиморфного превращения. Пересыщенный твёрдый раствор в таких сплавах термодинамически неустойчив и склонен к самопроизвольному распаду. Старение заключается в образовании путём диффузии внутри зерен твердого раствора участков, обогащенных растворённым элементом (зон Гинье — Престона) и (или) дисперсных частиц избыточных фаз, чаще всего химических соединений. Зоны Гинье Престона (зоны ГП), образующиеся на первой стадии процесса старения (стадия зонного старения), представляют собой весьма малые (субмикронные) объемы твердого раствора с резко повышенной концентрацией растворенного компонента, сохраняющие решетку растворителя. Скопление растворенных атомов вызывает местное изменение периода решетки твердого раствора. При значительной разнице в размерах атомов компонентов сплава, как например, наблюдается в сплавах Аl-Сu, зоны ГП имеют форму дисков, толщина которых (учитывая искажения решетки) составляет несколько межатомных расстояний, диаметр 10-50 нм. Диски закономерно ориентированы относительно пространственной решетки растворителя. Многочисленные зоны ГП затрудняют движение дислокаций через зону и окружающую область с искаженной решеткой, требуется приложить более высокое напряжение. Следовательно, прочность сплава повышается.

Метастабильные фазы, образующиеся на второй стадии процесса старения (стадия фазового старения) имеют отличающуюся кристаллическую решетку от решетки твердого раствора, однако существует сходство в расположении атомов в определенных атомных плоскостях, что вызывает образование когерентной (или полукогерентной) границы раздела. Когерентная граница при некотором различии кристаллической структуры приводит к появлению переходной зоны с искаженной решеткой. Для метастабильных фаз характерна высокая дисперсность, что значительно повышает сопротивление движению дислокаций и приводит к дальнейшему упрочнению сплава.

Стабильная фаза, образующаяся на третьей стадии процесса старения (стадия коагуляционного старения) имеет сложную пространственную решетку с пониженным числом элементов симметрии и с большим числом атомов в элементарной ячейке. Вторичные кристаллы со стабильной структурой в большинстве сплавов выделяются в виде достаточно крупных частиц. Значительное различие кристаллической структуры твердого раствора и стабильных кристаллов приводит к образованию некогерентной межфазной границы раздела и к минимальным искажениям решетки твердого раствора вблизи границы. Упрочнение сплава стабильными кристаллами меньшее, чем при образовании зон ГП и метастабильных когерентных кристаллов.

И зоны ГП и дисперсные частицы выделившихся фаз тормозят скольжение дислокаций, чем и обусловлено упрочнение при старении. Стареющие сплавы называют поэтому дисперсионно-твердеющими. Основные параметры старения — температура и время выдержки. С повышением температуры ускоряются диффузионные процессы распада пересыщенного твёрдого раствора, и сплав быстрее упрочняется. Начиная с определённой выдержки, при достаточно высокой температуре происходит перестаривание — снижение прочности сплава. Причиной перестаривания является коагуляция дисперсных выделений из раствора, которая заключается в растворении более мелких и росте более крупных частиц выделившейся фазы. В результате коагуляции расстояние между этими частицами возрастает, и торможение дислокаций в зёрнах твёрдого раствора уменьшается. Одни сплавы, например дуралюмины, после закалки сильно упрочняются уже во время выдержки при комнатной температуре (естественное старение). Большинство сплавов после закалки нагревают, чтобы ускорить процессы распада пересыщенного твёрдого раствора (искусственное старение). Иногда проводят ступенчатое старение с выдержкой вначале при одной, а затем при другой температуре. Старение применяют главным образом для повышения прочности и твёрдости конструкционных материалов (алюминиевых, магниевых, медных, никелевых сплавов и некоторых легированных сталей), а также для повышения коэрцитивной силы магнитно-твёрдых материалов. Время выдержки для достижения заданных свойств в зависимости от состава сплава и температуры старения колеблется от десятков мин до нескольких суток.

Степень упрочнения при старении может быть очень высокой. Так, твердость, временное сопротивление разрыву алюминиевых сплавов при оптимальных условиях старения увеличиваются в 2 раза, в бериллиевых бронзах - в 3 раза.

Теория термической обработки»

Термической или тепловой обработкойназываются процессы, связанные с нагревом, выдержкой и охлаждением с целью изменения структуры сплава и получения необходимых свойств.

ТО самый распространенный в современной технике способ изменения свойств металлов и сплавов.

ТО может быть применения как промежуточная операция для улучшения технологических свойств ( обрабатываемости резанием, давлением и т.д.) и как окончательную операцию для придания сплаву комплекса свойств, которые обеспечивают необходимые эксплуатационные характеристики изделия .

Чем ответственнее конструкция, тем больше в ней термически обработанных деталей.

ЦЕЛЬЮ ТО – является изменение свойств металла путем изменения его структуры.

ОСНОВНЫЕ ФАКТОРЫ ТО – температура и время.


Поэтому режим любой термообработки можно представить графически в координатах температура и время

По этому графику можно определить температуру нагревания, время нагрева, выдержки, охлаждения, общую производительность производственного цикла. График может быть и более сложного вида. Но по форме этого графика нельзя сказать, с каким видом ТО мы имеем дело.


ВИД ТЕРМИЧЕСКОЙ ОБРАБОТКИ ОПРЕДЕЛЯЕТСЯ НЕ ХАРАКТЕРОМ ИЗМЕНЕНИЯ ТЕМПЕРАТУРЫ ВО ВРЕМЕНИ, А ТИПОМ ФАЗОВЫХИ СТРУКТУРНЫХ ИЗМЕНЕНИЙ В МЕТАЛЛЕ.

Термическая обработка ТО- заключается только в термическом воздействии на металл.

Термомеханическая ТМО – заключается в сочетании термического воздействия и пластической деформации

Химико-термическая обработка ХТО-в сочетании термического и химического воздействия.

• Отжиг (первого рода) – термическая операция, состоящая в нагреве металла, имеющего неустойчивое состояние в результате предшествующей обработки, и приводящая металл в более устойчивое состояние.

• Отжиг (второго рода) – нагрев металла выше температуры превращения с последующим достаточно медленным охлаждением для получения структурно устойчивого состояния сплава.

• Закалка – нагрев металла выше температуры превращения с последующим достаточно быстрым охлаждением для получения структурно неустойчивого состояния сплава.

• Отпуск – нагрев закаленного сплава ниже температуры превращения для получения более устойчивого структурного состояния .

* Химико-термическая обработка – нагрев сплава в соответствующих химических реагентах для изменения состава и структуры поверхностных слоев. В данном случае используется способность металлов растворять различные, окружающие их поверхность элементы, атомы которых, при повышенных температурах, могут диффундировать в металлы.

* Термомеханическая (термопластическая) обработка – деформация и последующая термическая обработка, сохраняющая в той или иной форме результаты наклепа

В системе железо-углеродистых сплавов приняты следующие обозначения критических температур.

Нижняя критическая точка – Ас1 соответствует линии PSK при охлаждении – Аr1

Верхняя критическая точка – Асз соответствует линии GOS при охлаждении – Аr 3

Температура линии SE – обозначается Асm

РОСТ ЗЕРНА АУСТЕНИТА ПРИ НАГРЕВЕ

Зародыши аустенита при нагреве выше Ас1 образуются на границе раздела феррит-карбид. При таком нагреве число зародышей всегда велико и начальное зерно аустенита мелкое.

При дальнейшем повышении температуры и увеличении выдержки происходит рост зерна.

Способность зерна аустенита к росту неодинакова даже у сталей одного марочного состава и зависит от условий выплавки.

По склонности к росту зерна различают два типа сталей:

Наследственно мелкозернистые

Наследственно крупнозернистые

* В наследственно мелкозернистых сталях при нагреве до высоких температур (1000-1050оС) зерно увеличивается незначительно, однако при более высоком нагреве наступает бурный рост зерна.

* В наследственно крупнозернистых сталях наоборот сильный рост зерна наблюдается даже при незначительном перегреве выше Ас1

Теория термической обработки металлов

Книга написана по программе курса «Теория термической обработки», который автор читает в Московском институте стали и сплавов студентам, специализирующимся по металловедению цветных и редких металлов.

Теория термической обработки является центральной учебной дисциплиной в подготовке металловедов и термистов. Перед ее изучением студент должен освоить физическую химию, кристаллографию, металлографию, учение о дефектах кристаллической решетки, изучить механические свойства и методы испытания металлов.

В свою очередь теория термической обработки является базой для изучения технологии термической обработки и таких профилирующих спецкурсов металловедения, как «Легированные стали» и «Сплавы цветных и редких металлов».

В последние 10 — 15 лет теория термической обработки развивалась очень быстрыми темпами. Для ее развития наиболее характерно все большее использование научных представлений и экспериментальных методов физики металлов, в особенности учения о дефектах кристаллической решетки, с целью более глубокого понимания природы, механизма и кинетики структурных изменений и закономерностей изменения свойств металлов и сплавов при тепловом воздействии.

В результате весьма подробно изучены процессы термообработки давно используемых и новых металлических материалов.

В одном учебнике уже невозможно изложить и общую теорию термической обработки, и особенности термообработки отдельных групп сплавов.

Поэтому в отличие от первого издания книги пришлось отказаться от рассмотрения особенностей термообработки легированных сталей, алюминиевых, титановых и медных сплавов. Соответствующие вопросы должны излагаться, как это и принято теперь в большинстве вузов, в специальных курсах.

«Теория термической обработки металлов»,
И.И.Новиков

При ВТМО аустенит деформируют в области его термодинамической стабильности и затем проводят закалку на мартенсит (смотрите рисунок Схема обработки легированной стали). После закалки проводят низкий отпуск. Основная цель обычной термообработки…

Большой интерес представляет обнаруженное М. Л. Бернштейном явление наследования («обратимости») упрочнения от ВТМО при повторной термической обработке. Оказалось, что упрочнение от ВТМО сохраняется, если сталь перезакалить с кратковременной выдержкой при…

Процессы ТМО сталей начали интенсивно изучать с середины 50-х годов в связи с изысканием новых путей повышения конструктивной прочности. Низкотемпературная термомеханическая обработка (НТМО) При НТМО переохлажденный аустенит деформируется в области…

Применение ВТМО ограничивают следующие факторы. Сплав может отличаться столь узким интервалом температур нагрева под закалку, что поддерживать температуру горячей обработки давлением в таких узких пределах практически невозможно (например, в пределах…

Сущность ПТМО заключается в том, что полуфабрикат, полученный после горячей деформации в нерекристаллизованном состоянии, сохраняет нерекристаллизованную структуру и при нагреве под закалку. ПТМО отличается от ВТМО тем, что операции горячей…

При ВТМО проводят горячую деформацию, закалку с деформационного нагрева и старение (смотрите рисунок Схемы термомеханической обработки стареющих сплавов). При горячей деформации повышается плотность дислокаций и возникает горячий наклеп, который в…

На рисунке приведены основные схемы ТМО стареющих сплавов. Зубчатыми линиями обозначена пластическая деформация. Схемы термомеханической обработки стареющих сплавов Низкотемпературная термомеханическая обработка (НТМО) НТМО стареющих сплавов — это первая по времени…

Рассмотрим вначале влияние холодной деформации на зонное старение. Казалось бы, что деформация, увеличивая плотность дислокаций и концентрацию вакансий, должна ускорять зонное старение. Но, во-первых, зоны зарождаются гомогенно, а не на…

Эффективность применения НТМО определяется тем, какая фаза-упрочнитель выделяется при старении. Так, например, дополнительное упрочнение от введения деформации перед искусственным старением у сплавов Al — Cu — Mg (упрочнитель — фаза…

Предстарение может быть не только естественным, но и искусственным. Для сплавов на разных основах следует шире опробовать усложненные схемы НТМО типа закалка → старение → холодная деформация → старение. Повышенную…

Азотирование стальных изделий проводят в аммиаке, который при нагревании диссоциирует, поставляя активный атомарный азот: В системе Fe — N при температурах азотирование могут образовываться следующие фазы: α-раствор азота в железе…

Металлы растворяются в железе и других металлах по способу замещения и потому медленнее, чем неметаллы, диффундируют в изделие. Как правило, диффузионное насыщение металлами проводят при более высоких температурах, чем насыщение…

ГЛАВА V. ОСНОВЫ ТЕРМИЧЕСКОЙ ОБРАБОТКИ

§ 19. ТЕОРИЯ ТЕРМИЧЕСКОЙ ОБРАБОТКИ

Термической обработкой называют технологические, процессы теплового воздействия, состоящие из нагрева, выдержки и охлаждения металлических изделий по определенным режимам с целью изменения структуры и свойств сплава. Любой процесс термической обработки может быть описан графиком в координатах температура - время (рис. 30). Параметрами процесса термической обработки являются максимальная температура нагрева (tmax) сплава; время выдержки (тв) сплава при температуре нагрева; скорость нагрева (vн) и охлаждения (vо). На практике обычно подсчитывают среднюю скорость нагрева или охлаждения. Она равна максимальной температуре нагрева, поделенной на время нагрева или охлаждения, т.е. vн.ср=tmaxн и vо.ср=tmaxо.

Теория термической обработки


Рис. 30. График термической обработки

Термическая обработка изменяет в нужном направлении прочностные, пластические и другие свойства материала изделий.
В основе теории термической обработки лежат фазовые и структурные превращения, протекающие при нагреве и охлаждении металлов и сплавов. Эти превращения характеризуются определенными критическими точками. При медленном нагреве от комнатной температуры до 727°С в сплаве I фазовых изменений не происходит (рис. 31). При температуре 727°С перлит превращается в аустенит (точка а). Точку а на диаграмме называют нижней критической точкой и обозначают Ac1 (при охлаждении – Аг1). Буквы с и г указывают на то, что превращение происходит соответственно при нагреве или охлаждении стали, а индекс единица внизу этих букв - на точки, образующие линию PSK. При дальнейшем нагреве сплава I зерна феррита растворяются в аустените.
Растворение аустенита заканчивается в точке а, (линия GS), которую называют верхней критической точкой и обозначают при нагреве Ас3 , охлаждении Аг3.
Если нагревать эвтектоидный сплав II, то перлит в точке S (линия PSK) при 727°С превращается в аустенит. Критические точки Ac1 и Ас3 при этом совпадают. Перлит сплава III при 727°С превращается в аустенит (точка b). Дальнейший нагрев сплава III вызывает растворение цементита (вторичного) в аустените. В точке b1, лежащей на линии SE, процесс растворения заканчивается. Эту точку обозначают Аcm.
Таким образом, на диаграмме железо-цементит критические точки, образующие линию PSK, обозначают Ас1 (при нагреве) и Аг1 (при охлаждении), точки по линии GS - Ac3 и Аг3 , по линии SE - Аcm. Знание критических точек облегчает изучение процессов термической обработки сталей.

Теория термической обработки


Рис. 31. «Стальной» участок диаграммы состояния железо-цементит:
I - доэвтектоидная сталь, II - эвтектоидная сталь, III - заэвтектоидная сталь

Превращения в стали при нагреве. Нагрев стали при термической обработке используют для получения аустенита. Структура доэвтектоидной стали при нагреве ее до критической точки Ас1 состоит из зерен перлита и феррита. В точке Ac1 происходит превращение перлита в мелкозернистый аустенит. При дальнейшем нагреве от точки Ac1 до Ас3 избыточный феррит растворяется в аустените и в точке Ас3 (линия GS) превращения заканчиваются. Выше точки Ас3 структура стали состоит из аустенита.
Таким же образом происходят превращения при нагреве заэвтектоидной стали, но с той лишь разницей, что при дальнейшем повышении температуры от точки Ac1 до точки Аcm в аустените начинает растворяться избыточный цементит (вторичный). Выше точки Аcm (линия SЕ) структура состоит только из аустенита. Вновь образовавшийся аустенит неоднороден даже в объеме одного зерна. В тех местах, где раньше были пластинки цементита, содержание углерода значительно больше, чем в тех местах, где находились пластинки феррита.
Для выравнивания химического состава и получения однородного аустенита доэвтектоидную сталь нагревают немного выше верхней критической точки Ас3 и выдерживают некоторое время при этой температуре для завершения диффузионных процессов.
По окончании процесса превращения перлита в аустенит образуется большое количество мелких аустенитных зерен. Эти зерна называют начальными зернами аустенита.
Дальнейший нагрев стали или увеличение выдержки приводит к росту аустенитного зерна. Размер зерна, полученный в стали в результате той или иной термической обработки, называют действительным зерном. Величина такого зерна зависит не только от термической обработки, но и от способа выплавки стали. Однако склонность к росту аустенитных зерен с повышением температуры нагрева различная. Стали, раскисленные в процессе плавки кремнием и марганцем, обладают большой склонностью к непрерывному росту зерен аустенита при повышении температуры. Такие стали называют наследственнокрупнозернистыми. К ним относят кипящие стали.
Стали, раскисляемые в процессе выплавки дополнительно алюминием и в особенности легированные титаном или ванадием, мало склонны к росту зерна аустенита при нагреве до 950-1000°С. Такие стали называют наследственномелкозернистыми. К ним относят спокойные стали.
Размер наследственного зерна не оказывает влияния на свойства стали. От размера действительного зерна зависят механические свойства стали, главным образом ударная вязкость, она значительно понижается с увеличением размера зерна. Размер действительного зерна в стали зависит от размера зерна аустенита. Как правило, чем крупнее зерна аустенита, тем крупнее действительные зерна.
Размер наследственного зерна оказывает влияние на технологические свойства стали. Если сталь наследственно мелкозернистая, то ее можно нагревать до более высокой температуры и выдерживать при ней более длительное время, не опасаясь чрезмерного роста зерна но сравнению с наследственно крупнозернистой сталью. Горячую обработку давлением - прокатку, ковку, объемную штамповку наследственно мелкозернистой стали - можно начинать и оканчивать при более высокой температуре, не опасаясь получения крупнозернистой структуры.
Для определения размера наследственного (аустенитного) зерна применяют различные методы. Например, для низкоуглеродистых цементуемых сталей применяют метод цементации, т. е. науглероживание поверхности стали. При нагреве стали до 930±10°С в углеродсодержащей смеси и выдержке при данной температуре в течение 8 ч поверхностный слой ее насыщается углеродом до заэвтектоидного состава. При охлаждении из аустенита выделяется избыточный цементит, который располагается по границам зерен аустенита в виде сетки. После полного охлаждения эта цементитная сетка окружает зерна перлита и показывает размер бывшего при нагреве аустенитного зерна. Подготовленную таким образом структуру стали рассматривают в микроскоп при 100 х увеличении, видимые под микроскопом зерна сравнивают с эталонными, предусмотренными стандартной шкалой размеров зерна (рис. 32). Зерна от № 1 до № 4 считают крупными, а с № 5 - мелкими.

Теория термической обработки


Рис. 32. Шкала для определения размера зерен:
1-10 – номера зерен при 100 х увеличении

Превращения в стали при охлаждении. Аустенит является устойчивым только при температуре выше 727°С (точка Ar1). При охлаждении стали, предварительно нагретой до аустенитного состояния (ниже точки Ar1), аустенит становится неустойчивым - начинается его превращение. Такое превращение может начаться только лишь при некотором переохлаждении аустенита. Для случая эвтектоидной углеродистой стали аустенит превратится в перлит, т. е. в механическую смесь феррита и цементита. При этом, с одной стороны, чем ниже температура превращения, тем больше переохлаждение и тем быстрее будет происходить превращение аустенита в перлит. С другой стороны, это превращение сопровождается диффузионным перераспределением углерода и чем ниже температура переохлаждения, тем медленнее протекает процесс диффузии, что в свою очередь замедляет превращение аустенита в перлит. Такое противоположное действие обоих названных факторов (переохлаждения и диффузии) приводит к тому, что вначале с увеличением переохлаждения скорость превращения возрастает, достигая при определенной величине переохлаждения максимума, а затем убывает.

Теория термической обработки


Рис. 33. Диаграмма изотермического превращения эвтектоидной стали:
А – аустенит, П – перлит, С – сорбит, Т – троостит, Б – бейнит, М – мартенсит

Процесс превращения аустенита в перлит экспериментально проводят при постоянной температуре, т. е. в изотермических условиях. Для этого образцы из стали нагревают до температуры, при которой ее структура состоит из однородного аустенита, а затем быстро переносят в термостаты с заданной температурой.
Превращение аустенита при постоянной температуре обобщается и изображается наглядно в виде диаграммы изотермического превращения (рис. 33). Эта диаграмма строится на основе исследований при постоянных температурах (700, 650, 550°С и т. д.). По горизонтальной оси диаграммы наносят время в логарифмической шкале: 1, 10, 100, 1000, 10 000 и 100 000 с. Это дает возможность проследить превращения, протекающие за промежуток от долей секунды до суток и более. По вертикальной оси откладывают температуру. Далее на диаграмме проводят жирные С-образные линии, отвечающие полученным экспериментальным путем точкам изотермического превращения аустенита. В этой стали распад аустенита происходит в интервале температур от Ас1 до Мн (температуры начала мартенситного превращения, см. гл. V). Левая кривая I соответствует началу, а правая кривая II - окончанию распада аустенита.
Стальной образец охлаждают до 700°С и выдерживают его при этой температуре. В течение некоторого промежутка времени до точки а (пересечение горизонтали, соответствующей 700°С с кривой I) в аустените превращений не происходит. Этот период времени называют инкубационным.
На диаграмме изотермического превращения в зависимости от степени переохлаждения различают три температурные области превращения: перлитную, бейнитную и мартенситную. В точке а начинается перлитное превращение. Диффузионный распад аустенита продолжается до точки b (пересечение горизонтали 700°С с кривой II), где происходит превращение аустенита в перлит. Перлит образуется при распаде аустенита при малых степенях переохлаждения в области температур от Ас1 до 650°С. Твердость перлита НВ 160. Если охлаждать образец до 650°С, т. е. до точек начала a1 и конца b1 распада аустенита, то инкубационный период и период распада аустенита уменьшаются, в результате чего образуется структура сорбит.
Перлитом (рис. 34, а) называют механическую смесь кристаллов феррита и цементита; сорбитом (рис. 34, 6) - более мелкую (дисперсную), чем перлит, механическую смесь феррита и цементита. Сталь, в которой преобладает структура сорбита, обладает высокой прочностью и пластичностью.
При охлаждении образца до 500°С, до точек распада а2 и b2, аустенит превращается в троостит. Троостит (рис. 34, в) представляет собой очень тонкую смесь феррита и цементита; отличается от перлита и сорбита очень высокой степенью дисперсности составляющих. Сталь со структурой троостита обладает повышенной твердостью (НВ 330-400), достаточной прочностью, умеренной вязкостью и пластичностью.
Таким образом, основным фактором, определяющим структуру и свойства аустенита, является температура превращения. Если на С-образную кривую нанести лучи (термические линии охлаждения), то получим следующую схему (рис. 35). При медленном охлаждении образца луч v1, пересечет кривые I и II в точках a1 и b1. При этих температурах происходит превращение аустенита в перлит.
При большей скорости охлаждения луч v2 пересечет кривые в точках а2 и b2 и аустенит полностью превратится в сорбит. При еще больших скоростях охлаждения луч v3 проходит через точки а3 и b3 и образуется новая структура - троостит.
Далее по мере ускорения процесса охлаждения лучи будут все круче (линии v4 и v5) и первое превращение аустенита в троостит не успеет закончиться. Оставшаяся часть переохлажденного аустенита (точки а4 и а5) начнет превращаться в троостит с мартенситом.

Теория термической обработки


Рис. 34. Микроструктура перлита (а), сорбита (б), троостита (в) при 7500 х увеличении

Теория термической обработки


Рис. 35. Кривые охлаждения стали на диаграмме изотермического распада аустенита

Наконец, при наибольших скоростях охлаждения, когда луч vкр касается кривой I (начала распада аустенита) и пересекает горизонталь Мн, в стали получается только мартенсит. Скорость охлаждения, при которой в закаливаемой стали из аустенита образуется только мартенсит, называют критической скоростью закалки. Чтобы закалить сталь, ее охлаждают со скоростью, не меньшей, чем критическая (например, v6).
Мартенситное превращение в отличие от перлитного имеет бездиффузионный характер. Мартенсит является основной структурой закаленной стали. Он имеет высокую твердость, зависящую от содержания углерода в стали. Чем больше содержится углерода в мартенсите, тем выше твердость стали. Так, например, для стали с содержанием 0,4% углерода твердость мартенсита составляет HRC 52-54, а для стали с содержанием углерода 1,0% - HRC 62-64. Мартенсит имеет совершенно отличную от других структур природу. При резком переохлаждении углерод не успевает выделиться из твердого раствора (аустенита) в виде частичек цементита, как это происходит при образовании перлита, сорбита и троостита. В этом случае происходит только перестройка решетки γ-железа в решетку α-железо. Атомы углерода остаются в решетке α-железа (мартенсите) и поэтому сильно ее искажают.
Такую искаженную кристаллическую решетку называют тетрагональной (рис. 36), в которой один параметр с больше другого а и, следовательно, отношение параметров с/а>1. Степень искаженности (тетрагональности) зависит от содержания углерода в стали: она тем выше, чем больше углерода в стали. Следовательно, мартенсит представляет собой твердый раствор углерода в α-железе, которое способно растворять очень небольшое количество углерода (до 0,02%), а в мартенсите углерода столько, сколько его содержится в аустените этой стали, поэтому мартенсит является α-твердым раствором, перенасыщенным углеродом.

Теория термической обработки


Рис. 36. Кристаллическая ячейка мартенсита:
1 – атомы железа, 2 – атомы углерода

Теория термической обработки


Рис. 37. Микроструктура мартенсита при 1000 х увеличении

Мартенсит имеет характерное игольчатое строение (рис. 37, а). Чем мельче зерна аустенита, тем мельче получаются иглы мартенсита (рис. 37, 6). Такая структура характерна для правильно закаленной стали.
Для аустенитно-мартенситного превращения характерно то, что оно происходит в интервале температур. Начинается превращение при температуре Мн, а заканчивается при более низкой температуре Мк (рис. 38). Чем больше в стали углерода, тем ниже температура точек Мн и Мк. При содержании углерода более 0,6% мартенситное превращение оканчивается при температурах ниже нуля. Поэтому, для того, чтобы в высокоуглеродистых сталях получить большее количество мартенсита, их следует охлаждать до температур ниже нуля. Однако при температуре конца мартенситного превращения (точка Мк) не происходит полного образования мартенсита. Аустенит А частично остается не превращенным в мартенсит и называется остаточным аустенитом. В конструкционных углеродистых сталях остаточный аустенит составляет ~5%. Закаленные высокоуглеродистые стали содержат большее количество остаточного аустенита - до 12%.

Теория термической обработки


Рис. 38. Влияние содержания углерода на температуру начала и конца мартенситного превращения

При аустенитно-мартенситном превращении изменяется объем образующихся структур. Максимальный объем имеет структура мартенсита, меньший объем - структура троостита, еще меньший - сорбита и перлита и самый минимальный объем имеет структура аустенита.
Бейнитное (промежуточное) превращение при изотермической выдержке углеродистых сталей происходит в интервале температур ~500-250°С с образованием структуры, называемой бейнитом. Это превращение характеризуется сочетанием как перлитного (диффузионного), так и мартенситного (бездиффузионного) превращения. Начинается бейнитное превращение с перераспределения углерода в аустените. Благодаря этому в аустените образуются обогащенные и обедненные углеродом участки. Цементит выделяется в участках, обогащенных углеродом, в результате чего образуются участки аустенита, обедненные углеродом. В этих участках, а также в уже имеющихся участках, обеднениях углеродом, идет мартенситное превращение, а затем распад цементита, в результате чего образуется ферритоцементитная смесь.
При температуре изотермической выдержки более 350°С образуется верхний бейнит (~НВ 450) с перистым строением, напоминающим строение перлита, при температуре изотермической выдержки менее 350°С образуется нижний бейнит (~НВ 550), имеющий игольчатое строение, похожее на строение мартенсита.

Уважаемый посетитель, Вы прочитали статью "Теория термической обработки", которая опубликована в категории "Материаловедение". Если Вам понравилась или пригодилась эта статья, поделитесь ею, пожалуйста, со своими друзьями и знакомыми.

Читайте также: