Технологические свойства свариваемых металлов

Обновлено: 07.01.2025

Процесс сварки представляет со­бой сочетание нескольких одновремен­но протекающих процессов, которые определяют качество получаемого сварного соединения. К этим процес­сам относятся: нагрев металла около - шовных участков, плавление, кристал­лизация основного металла или взаим­ная кристаллизация основного и при­садочного (или электродного) метал­лов. Протекание этих процессов опре­деляется в основном свойствами сва­риваемых металлов. Однако такие факторы, ка! к слишком высокая тем­пература, очень большие скорости охлаждения, необоснованный выбор присадочного металла и режима свар­ки, могут значительно снизить качест­во сварного соединения. При разно­родных металлах процесс взаимной кристаллизации может не произойти, вследствие чего сварка таких металлов не может быть осуществлена.

Свариваемостью называется свойство или сочетание свойств металлов обра­зовывать при установленной техноло­гии сварки соединение, отвечающее требованиям, обусловленным конструк­цией и эксплуатацией изделия.

Большое влияние на свариваемость металлов и сплавов оказывает их хи­мический состав. Это особенно нагляд­но видно на примере железоуглеродис­тых сплавов. Свариваемость углеро­дистой стали изменяется в зависи­мости от содержания основных при­месей. Углерод является наиболее важным элементом в составе стали, определяющим почти все основные свойства стали в процессе обработки, в том числе и свариваемость. Низкоуг­леродистые стали (С <0,25%) свари­ваются хорошо. Среднеуглеродистые стали (С<0,35%) также сваривают­ся хорошо. Стали с содержанием С >0,35% свариваются хуже. С уве­личением содержания углерода в ста­ли свариваемость ухудшается. В око­лошовных зонах появляются закалоч­ные структуры и трещины, а шов по­лучается пористым. Поэтому для получения качественного сварного со­единения возникает необходимость применять различные технологиче­ские приемы. Марганец не затрудняет сварку стали при содержании его 0,3. 0,8%. Однако при повышенном содержании марганца (1,8. 2,5%) прочность, твердость и закаливае­мость стали возрастают, и это спо­собствует образованию трещин. При сварке высоко марганцовистых сталей (11 . 16% Мп) происходит выгорание марганца, поэтому его восполняют, используя электродные покрытия и флюсы с повышенным содержанием марганца. Кремний содержится в обычной углеродистой стали в преде­лах 0,02. 0,3% и существенного влияния на свариваемость не оказы­вает. При повышенном содержании (0,8. 1,5%) кремний затрудняет сварку, так как придает стали жидко - текучесть и образует тугоплавкие ок­сиды и шлаки. Сера является самой вредной примесью стали. Содержание серы в стали допускается не более 0,05%. Сера образует в металле сульфид железа, который имеет более низкую температуру плавления, чем сталь, и плохо растворяется в рас­плавленной стали. При кристаллиза­ции частицы сульфида железа распо­лагаются между кристаллами металла шва и способствуют образованию го­рячих трещин. Фосфор является также вредной примесью. Фосфор ухудшает свариваемость стали, так как образу­ет хрупкий фосфид железа, придаю­щий стали хладноломкость. Содержа­ние фосфора в стали не превышает 0,05%.

Свариваемость стали принято оце­нивать по. следующим показателям: склонность металла шва к образо­ванию горячих и холодых трещин; склонность к изменению структуры в околошовной зоне и к обра­зованию закалочных структур; фи­зико-механические свойства сварного соединения; соответствие специаль­ных свойств (жаропрочность, изно­состойкость и др.) сварного сое­динения техническим условиям.

Свариваемость определяют двумя основными методами, разработанными МВТУ им. Баумана (валиковая про­ба) и Кировским (г. Ленинград) заводом. Валиковая проба заключает­ся в следующем: изготовляют образ­цы, на которые наплавляют по одно­му валику при различной погонной энергии от 419 • 103 до 838 • 104 Дж/м. Обработанные и протравлен­ные образцы подвергают макро - и микроисследованиям, а затем механи­ческим испытаниям на загиб и удар­ную вязкость. Результаты исследова­ния позволяют не только оценить свариваемость стали по многим пока­зателям, но и установить оптималь­ные режимы сварки.

По методу, разработанному Ки­ровским заводом, исследование про­водят на образцах из толстолистовой стали. Пластины размером 130 X 130 мм имеют в середине выточки диамет­ром 90 мм, при этом оставшиеся донышки у выточек должны иметь толщину 2, 4 и 6 мм. В выточки по диаметру наплавляют валик и в про­цессе наплавки пластины охлаждают с наружной стороны проточной водой или струей воздуха. Стали считаются сваривающимися хорошо, если трещи­ны отсутствуют; удовлетворительно, если трещины образуются при охлаж­дении водой, но отсутствуют при ох­лаждении воздухом; ограниченно, ес­ли сталь для предупреждения образо­вания трещин требует предваритель­ного подогрева до 100. 150° С и ох­лаждения на воздухе. Плохо свари­вающиеся стали требуют предвари­тельного подогрева до 300° С и выше.

Углеродистые стали по сваривае­мости можно условно подразделить на следующие группы: хорошо свари­вающиеся стали: СтО, Ст1, Ст2, СтЗ, Ст4 (ГОСТ 380—71), 08, 10, 15, 20, 25 (ГОСТ 1050—74); удовлетворительно сваривающиеся стали: Ст5 (ГОСТ 380—71), 30, 35 (ГОСТ 1050—74); ограниченно сваривающиеся стали: Стб, Ст7 (ГОСТ 380—71), 40, 45, 50 (ГОСТ 1050—74); плохо свариваю­щиеся стали: 60Г, 65Г, 70Г, 65, 70, 75, 80, 85 (ГОСТ 1050—74).

В сварных строительных конст­рукциях используются главным обра­зом стали первой группы. Стали СтО, Ст1, Ст2, СтЗ, Ст4 применяют при изготовлении различных строительных конструкций, арматуры железобетон­ных изделий, горячекатаных и свар­ных труб с прямым и спиральным швом; из стали СтЗ изготовляют бункера, резервуары, газгольдеры, конструкции доменного комплекса, балки различных перекрытий; стали 10, 15, 20, 25 используют для из­готовления горячекатаных труб. Эти стали хорошо поддаются сварке и об­разуют сварной шов без хрупких структур и пористости.

Свариваемость металла и методы ее оценки

Свариваемость — свойство металла или сочетания металлов образовывать при установленной технологии сварки соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией изделия. Следовательно, свариваемость зависит, с одной стороны, от особенностей материала, технологии сварки и конструктивного оформления соединений, а с другой — от необходимых эксплуатационных свойств сварной конструкции. Последние определяются техническими требованиями, предъявляемыми к таким конструкциям.

Свариваемость материалов считается достаточной, если требования к эксплуатационным свойствам сварных соединений с принятыми допущениями удовлетворяются, и недостаточной, если не обеспечивается минимальный уровень хотя бы одного из эксплуатационных свойств сварного соединения. Различают свариваемость физическую и технологическую.

Физическая свариваемость определяет принципиальную возможность получения монолитных сварных соединений, что особенно важно при сварке разнородных материалов.

Технологическая свариваемость представляет собой реакцию материала на сварочный термодеформационный цикл и металлургическое воздействие сварки, которая оценивается, например, посредством сравнения механических свойств металла сварного соединения с одноименными свойствами основного металла.

При оценке свариваемости учитывают также стойкость металла к образованию трещин и его специальные свойства (коррозионную стойкость, прочность при высоких или низких температурах, сопротивление хрупкому разрушению).

Свариваемость углеродистых сталей определяется, в первую очередь, содержанием в них углерода. Под хорошей свариваемостью низкоуглеродистой стали, предназначенной для изготовления конструкций, работающих при статических нагрузках, понимают возможность с использованием обычной технологии получить сварное соединение, равнопрочное основному металлу, без трещин в металле шва и снижения пластичности в околошовной зоне. При этом металлы шва и околошовной зоны должны быть стойкими к переходу в хрупкое состояние при температуре эксплуатации конструкции и наличии концентраторов напряжений, обусловленных формой сварного узла.

Свариваемость материала оценивается посредством сравнения его свойств со свойствами ранее применявшихся материалов или основного металла. Свариваемость признают удовлетворительной, если результаты испытаний различных свойств сварного соединения соответствует нормативам, установленным техническими условиями на данную продукцию.

Стойкость металла сварного соединения к образованию горячих трещин — это наиболее важный показатель свариваемости, так как при сварке сплавов с широким температурным интервалом кристаллизации под действием возникающих при затвердевании растягивающих напряжений возможно появление горячих трещин, являющихся весьма серьезным дефектом.

Стойкость металла сварного соединения к образованию холодных трещин — это также очень важный показатель свариваемости, поскольку под действием сварочного нагрева изменяется структура основного металла. При этом в околошовной зоне закаливаемых сплавов в результате фазовых превращений образуются хрупкие структуры типа мартенситных, что может привести к появлению холодных трещин.

Процессы, происходящие в металле сварного соединения, могут вызвать хрупкие разрушения сварной конструкции. Причинами таких разрушений могут быть конструктивные недостатки, наличие макроскопических концентраторов напряжений, дефектов сварных соединений (раковин, пор, шлаковых включений, подрезов по краю швов), микротрещин и полостей.

Склонность металла сварного соединения к хрупкому разрушению — это также достаточно важный показатель свариваемости. Оценивают ее посредством специальных испытаний по сравнению со склонностью к хрупкому разрушению основного металла, зоны термического влияния и металла сварного шва. Считается, что лучшей свариваемостью обладают те металлы, сварные соединения которых не отличаются по склонности к хрупкому разрушению от основного металла.

Методы определения показателей свариваемости материалов подразделяются на прямые — при использовании которых выполняют сварку образцов заданной формы по выбранной технологии, и косвенные — основанные на замене сварочного процесса имитирующим его процессом.

Определение стойкости металла к образованию горячих трещин. Стойкость сварного соединения металла к образования горячих трещин определяют по результатам следующих испытаний:

  • машинных испытаний, основанных на принудительном деформировании образцов, подвергнутых сварочному нагреву, в температурном интервале возникновения горячих трещин;
  • технологических испытаний, или сварки проб, при проведении которых условия деформирования в температурном интервале образования горячих трещин регулируют выбором формы и размеров образцов, а также последовательности выполнения сварных швов и режимов сварки.

Машинные испытания заключаются в испытаниях образцов, проплавляемых сварочной дугой, на растяжение и изгиб, а образцов, нагреваемых по сварочному циклу, — на растяжение. Для машинных испытаний применяют специальные установки.

Процедура машинных испытаний включает в себя сварку серии образцов с одновременным деформированием шва при разной скорости перемещения активного захвата и определение критической скорости деформирования, вызывающей появление горячих трещин в нескольких образцах.

Технологические испытания основываются на положении о том, что металл, в котором не возникает трещин в искусственно созданных жестких условиях (что достигается выбором форм и размеров специальных технологических проб и типов их закрепления), не должен разрушаться и в реальных изделиях. При сварке кристаллизующийся металл подвергается деформации вследствие усадки шва и формоизменения технологических проб. Специальная конструкция и технология сварки проб обусловливают повышенные темпы высокотемпературной деформации.

Технологические пробы можно условно подразделить на два класса: количественные и качественные.

К количественным относятся технологические пробы, в которых образование горячих трещин можно связать с каким-либо конструктивным параметром (размерами пробы, глубиной или расположением надрезов и др.) или параметром режима сварки (скорость, температура подогрева). Сравнив такие пробы, можно выделить сплавы с меньшим и бо́льшим сопротивлением образованию горячих трещин.

Качественные технологические пробы предусматривают выполнение сварных швов на образцах постоянной формы в строго заданной последовательности и при соблюдении определенных режимов сварки. Сопротивление металла шва образованию горячих трещин оценивают в этом случае по их наличию или отсутствию на поверхности проб и шлифов или в изломах сварных швов. Качественные пробы не позволяют оценить количественно стойкость сплавов к образованию горячих трещин и предназначены лишь для отбраковки плохо сваривающихся сплавов.

Для определения стойкости металла к образованию горячих трещин используют различные виды проб.

Составная тонколистовая проба содержит несколько пластин разной ширины, соединенных с одной стороны прихватками. Сварку производят в направлении расширения пластин. При этом в местах пересечения стыков пластин сварным швом образуются горячие трещины. Показателем стойкости металла шва к образованию горячих трещин служит минимальная (критическая) ширина пластины, при сварке которой горячие трещины не возникают: чем меньше критическая ширина пластины, тем больше стойкость металла шва.

Проба ИМЕТ из тонколистового металла представляет собой пластину с постоянными размерами и надрезом, параллельным ее короткой стороне. Пластину проплавляют вольфрамовым электродом в струе аргона или электронным лучом таким образом, чтобы ось шва проходила через вершину надреза. Вероятность появления трещины от надреза зависит от его положения на пластине: чем больше длина шва до надреза, тем выше стойкость металла шва к образованию горячих трещин.

Проба Хоулдкрофтарыбья кость») используется для оценки сопротивления металла шва образованию горячих трещин при сварке тонких листов легированных сталей, алюминиевых и магниевых сплавов. Данная проба представляет собой пластину с боковыми прорезями увеличивающейся длины. При испытании выполняют наплавку или проплавляют пластину вольфрамовым электродом в защитном газе. Критерием оценки стойкости металла служит длина горячей трещины.

Крестовидная тонколистовая проба применяется для определения склонности к образованию горячих трещин главным образом алюминиевых и магниевых сплавов. Две прямоугольные пластины сваривают друг с другом четырьмя валиковыми швами в определенных последовательности и направлениях. Критерием наличия склонности к появлению горячих трещин служит отношение длины швов с трещинами к общей длине швов.

Кольцевая сегментная проба для испытания листов большой толщины состоит из четырех заготовок с шлифованными торцевыми поверхностями, свариваемых друг с другом с двух сторон. Размеры такой пробы после сборки составляют 90 × 90 × 25 мм. На ее верхней стороне протачивают кольцевую канавку. При испытании пробу сваривают по канавке по ходу часовой стрелки. После ее охлаждения до температуры ниже 50 °С выполняют замыкающий шов. Горячие трещины образуются в местах стыка заготовок и распространяются вдоль сварного шва. Критерием стойкости металла шва к образованию горячих трещин служит процентное отношение суммарной длины образовавшихся трещин к длине шва.

Пробу с канавками изготовляют из пластин толщиной более

40 мм. При толщине пластины менее 60 мм ее приваривают к жесткой плите по флангам швом с катетом 20 мм, а канавки располагают с шагом 100 мм. При толщине пластины более 60 мм канавки выполняют с двух сторон образца, а пластины сваривают по канавкам с минимальной скоростью. Склонность к образованию горячих трещин в этом случае определяют по отношению суммарной длины образовавшихся трещин или их площади соответственно к длине или площади поперечного сечения шва, а также по коэффициенту периодичности — числу трещин на единице длины шва. При отсутствии горячих трещин в швах, выполненных на рекомендованных для анализа режимах сварки, переходят к сварке более узких образцов либо к сварке с повышенной скоростью.

Способы оценки склонности металла к образованию холодных трещин. Все способы оценки склонности (стойкости, сопротивления) металла сварного соединения к образованию холодных трещин подразделяются следующим образом. По операции оценки различают косвенные и прямые способы, по форме представления показателей — количественные, полуколичественные и качественные, по варианту использования результатов оценки — сравнительные и прикладные.

Косвенные способы позволяют оценить склонность сварного соединения к образованию холодных трещин посредством расчета без непосредственного испытания материалов.

Прямые способы оценки склонности к образованию холодных трещин предусматривают сварку технологических проб и проведение специализированных испытаний сварных соединений или основного материала, подлежащего сварке, в условиях, имитирующих сварочные.

Количественные способы оценки склонности к образованию холодных трещин обеспечивают получение числового значения показателя, связанного с изменением одного из факторов, обеспечивающих контроль этого процесса.

Качественные способы не обеспечивают количественной оценки склонности к образованию холодных трещин и по существу служат для отбраковки материалов.

Способы оценки, которые могут использоваться только для сопоставления материалов и технологических вариантов сварки в целях выбора лучших из них, относятся к сравнительным.

Способы, позволяющие оценить стойкость реальных сварных конструкций к образованию холодных трещин, относятся к прикладным.

По тем же признакам подразделяются и технологические пробы. Пробы отраслевого назначения, или прикладные, позволяют оценить склонность материалов к образованию холодных трещин в условиях, максимально приближенных к технологическим и климатическим условиям изготовления реальных сварных конструкций.

Проба «Геккен» представляет собой плоский прямоугольный образец толщиной 12 … 40 мм, имеющий в центре продольную прорезь с V-образной разделкой. Этот образец заваривается в свободном состоянии и затем выдерживается в течение 20 ч. Сварку выполняют вручную покрытыми электродами, под флюсом или в защитных газах. При этом трещины образуются в корневой части сварного соединения. Обязательное условие пробы — наличие в корне шва непровара, служащего концентратором напряжений. Количественным показателем стойкости к образованию холодных трещин в этом случае могут служить процентное отношение суммарной длины трещин к длине шва; процентное отношение площади трещин к площади сечения шва, температура подогрева, при которой не образуются трещины.

Крестовая проба состоит из трех пластин, собранных в крестовидное соединение. Все поверхности касания этих пластин предварительно шлифуются для обеспечения хорошего контакта. На пробе выполняют четыре угловых шва длиной 160 мм в определенной последовательности. Температура пробы перед сваркой очередного шва не должна превышать (28 ± 3)°С. Через 48 ч после сварки для снятия напряжений производится двухчасовой отжиг пробы при температуре 595 … 650 °С. Пробу разрезают на поперечные темплеты для изготовления микрошлифов и выявления трещин в околошовной зоне. Результаты испытаний считаются удовлетворительными, если на двух первых темплетах не обнаружено ни одной трещины.

Лихайская модифицированная проба состоит из образцов с прорезями, завариваемыми на разных режимах при различных температурах предварительного подогрева. При этом начало и концы прорезей образцов (по 2 … 3 мм) оставляют незаплавленными. Наличие трещин на поверхности сварного соединения, в корне шва и поперечном сечении выявляют через 24 ч после окончания сварки. Для оценки склонности материала к образованию холодных трещин определяют процентную долю разрушений сварных соединений в зависимости от скорости охлаждения металла с температурой 300 °С или от продолжительности его охлаждения в температурном интервале 800 … 300 °С. Скорость охлаждения, при превышении которой разрушение швов заметно усиливается, принимается в качестве критерия оценки сопротивления материала образованию холодных трещин. Также оценку можно производить и по критическому времени охлаждения материала или по минимальной температуре предварительного нагрева, необходимой для устранения холодных трещин.

Оценка влияния термического цикла сварки на изменение структуры и свойств свариваемых металлов. Предварительную оценку в этом случае выполняют по методикам, предусматривающим нагрев и охлаждение образцов по программе с заданными скоростями и механические испытания на любом этапе термической обработки. Такие испытания позволяют имитировать сварочные термические циклы любого участка сварного соединения и выявлять их воздействие на структуру и свойства металла. Для этой же цели используют и специальные технологические пробы, например валиковую. Для такой пробы на пластины металла толщиной 14 … 30 мм наплавляют валики на режимах с разной погонной энергией. Из пластин вырезают поперечные образцы для определения структуры и твердости, а также для испытаний на ударный и статический изгиб.

Расчетная оценка свариваемости конструкционных сталей по химическому составу выполняется следующим образом. Технологическая свариваемость металлов и их сплавов зависит от ряда факторов: их химической активности, степени легирования, содержания примесей и особенностей структуры. Чем выше химическая активность металла, тем больше его склонность к взаимодействию с окружающей средой и в первую очередь к окислению, а следовательно, требуется более эффективная его защита и металлургическая обработка при сварке. Защита расплавленных сталей и сплавов на основе железа от взаимодействия с воздухом обеспечивается с помощью электродных покрытий, флюсов и инертных газов.

Наибольшее влияние на свариваемость сталей оказывает углерод: при увеличении содержания углерода и ряда других легирующих элементов их свариваемость ухудшается.

Ориентировочным количественным показателем свариваемости стали является эквивалент углерода, рассчитываемый по формуле

Сэкв = С + Мn/6 + Si/24 (1)

в которой содержание углерода и легирующих элементов выражено в процентах.

В зависимости от эквивалента углерода (и связанной с этой величиной склонности материала к закалке и образованию трещин) все конструкционные стали подразделяются на четыре группы соответственно с хорошей, удовлетворительной, ограниченной и плохой свариваемостью.

Стали с Сэкв = 0,25 … 0,35 % свариваются удовлетворительно. Они не склонны к образованию холодных трещин при правильном выборе режимов сварки, однако в ряде случаев необходим их подогрев.

Стали с Сэкв = 0,36 … 0,45 % свариваются ограниченно с образованием трещин. Возможность регулирования сопротивления этих сталей образованию трещин посредством изменения режимов сварки ограничена, а следовательно, требуется их подогрев.

Стали с Сэкв > 0,45 % плохо свариваются. Они весьма склонны к закалке и возникновению холодных трещин. При сварке необходим их подогрев и применение специальных технологических приемов, а после сварки требуется термическая обработка.

Свариваемость сталей

Свариваемостью называется свойство металла (или другого материала) образовывать при установленной технологии сварки соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией изделия (ГОСТ 2601).

Свариваемость различных металлов и их сплавов существенно отличается.

Степень свариваемости оценивают изменением свойств сварного соединения по отношению к основному металлу. Степень свариваемости сплава тем выше, чем больше способов сварки и режимов при каждом способе можно применить. Примером хорошей свариваемости является малоуглеродистая сталь.

Под технологической свариваемостью понимают отношение металла к конкретному способу сварки и режиму.

Физическая свариваемость определяется процессами, протекающими в зоне сплавления свариваемых металлов, по завершении которых образуется неразъемное сварное соединение. Все однородные металлы обладают физической свариваемостью. Свойства разнородных металлов зачастую препятствуют протеканию необходимых физико-механических процессов в зоне сплавления. В этом случае металлы не обладают физической свариваемостью.

Влияние элементов, содержащихся в сталях, на их свариваемость

Углерод. Малоуглеродистые стали хорошо свариваются всеми видами сварки. С увеличением содержания углерода в стали повышается твердость и снижается пластичность. Металл в сварном соединении закаливается, и образуются трещины. В результате интенсивного окисления углерода при сварке образуется значительное количество газовых пор.

Марганец. В количестве 0,3…0,8 % марганец не ухудшает свариваемость стали. Является хорошим раскислителем и способствует уменьшению содержания кислорода в стали. При содержании марганца 1,5…2,5 % свариваемость ухудшается и возможно появление трещин из-за увеличения твердости стали и образования закалочных структур.

Кремний. Содержание кремния в углеродистых сталях незначительно (0,03…0,35 %). Кремний вводят как раскислитель, и при содержании до 1 % он не влияет на свариваемость. С увеличением содержания кремния более 1 % свариваемость ухудшается, так как образуются тугоплавкие окислы, которые приводят к появлению шлаковых включений. Металл сварного шва имеет повышенные прочность, твердость и хрупкость.

Хром. В углеродистых сталях содержание хрома не превышает 0,25 % и в таком количестве его влияние на свариваемость не значительно. Конструкционные стали типа 15Х, 20Х, 30Х, 40Х содержат от 0,7 до 1,1 % хрома. При таком содержании хрома твердость увеличивается, а свариваемость ухудшается, особенно с увеличением содержания углерода. Стали, содержащие значительное количество хрома (Х5, 1X13, Х17) имеют самую плохую свариваемость. При сварке образуются тугоплавкие окислы, снижается химическая стойкость стали и образуются закалочные структуры.

Никель. Никель повышает прочность и пластичность металла сварного соединения и не ухудшает свариваемость.

Молибден. В теплоустойчивых сталях содержание молибдена составляет 0,2…0,8 %, а в специальных сталях, предназначенных для работы при высоких температурах, увеличивается до 2…3 %. Молибден значительно повышает прочность и ударную вязкость стали, но вызывает склонность к образованию трещин, как в самом шве, так и в переходной зоне.

Ванадий. Ванадий повышает прочность сталей. Содержание его в инструментальных и штамповых сталях достигает 1,5 %. Ванадий ухудшает свариваемость, так как способен сильно окисляться и при сварке необходимо вводить в зону плавления активные раскислители.

Вольфрам. Содержание вольфрама в специальных (инструментальных и штамповых) сталях составляет до 2 %. Стали с содержанием вольфрама имеют значительную твердость и прочность при высоких температурах. Вольфрам ухудшает свариваемость, сильно окисляется и поэтому сварка требует особых приемов.

Титан и ниобий. Титан и ниобий улучшают свариваемость стали. При сварке высоколегированных хромистых и хромоникелевых сталей углерод взаимодействует с хромом и образуются карбиды хрома. Это приводит к уменьшению содержания хрома по границам зерен, образованию межкристаллитной коррозии и разрушению сварных швов. При введении в стали титана или ниобия в количестве 0,5…1 % происходит их взаимодействие с углеродом, что препятствует образованию карбидов хрома.

Медь. В сталях, используемых для ответственных конструкций, содержание меди составляет 0,3…0,8 %. Медь улучшает свариваемость, повышает прочность, пластические свойства, ударную вязкость и коррозионную стойкость сталей.

Сера. Повышенное содержание серы приводит при сварке к образованию горячих трещин. Наибольшее допускаемое содержание серы до 0,06 %.

Фосфор. Повышенное содержание фосфора ухудшает свариваемость, так как вызывает при сварке появление холодных трещин. Допускается содержание фосфора в углеродистых сталях не более 0,08 %.

Кислород. Кислород ухудшает свариваемость стали, снижая ее механические свойства – прочность, пластичность, ударную вязкость.

Азот. Азот из окружающего воздуха при охлаждении сварочной ванны образует нитриды железа, которые повышают прочность и твердость стали и значительно снижают пластичность.

Водород. Водород попадает в сварочную ванну из влаги и коррозии на поверхности металла, скапливается в отдельных местах сварного шва, образует газовые пузырьки, вызывает появление пористости и мелких трещин.

Классификация сталей по свариваемости

Свариваемость сталей оценивается такими признаками как склонность к образованию трещин и механические свойства сварного соединения.

Количественной характеристикой свариваемости стали является эквивалентное содержание углерода Сэк, которое определяют по формуле

Сэк = С + (Мn/6) + [(Cr + Mo +V)/5 + (Ni + Cu)/15] ,

где С – содержание углерода, %;

Мn, Cr, Mo, V, Ni, Cu – содержание легирующих элементов (марганец, хром, молибден, ванадий, никель, медь), %.

Наибольшее влияние на свариваемость стали оказывает количество содержащегося в ней углерода и легирующих компонентов.

Стали по свариваемости делят на четыре группы: хорошо сваривающиеся стали, удовлетворительно сваривающиеся, ограниченно сваривающиеся и плохо сваривающиеся стали.

К первой группе относятся стали, сварку которых выполняют по обычной технологии без подогрева. Возможно применение термообработки для снятия внутренних напряжений.

Ко второй группе относятся стали, у которых при сварке в нормальных условиях, как правило, трещин не образуется. Для сварки сталей этой группы имеются ограничения по толщине свариваемого изделия и температуре окружающей среды.

К третьей группе относятся стали, склонные в обычных условиях сварки к образованию трещин. При сварке их предварительно подвергают термообработке и подогревают. Кроме того, большинство сталей, входящих в эту группу, подвергают термообработке после сварки.

К четвертой группе относятся стали, наиболее трудно поддающиеся сварке и склонные к образованию трещин. Эти стали свариваются ограниченно, поэтому сварку их выполняют с обязательной предварительной термообработкой, с подогревом в процессе сварки и последующей термообработкой.

В табл. 1 приведена свариваемость и условия сварки сталей различных видов и марок.

Свариваемость металлов

Свариваемостью называется свойство или сочетание свойств металлов образовывать при установлен­ной технологии сварки неразъемное соединение, отвечаю­щее требованиям, обусловленным конструкцией и эксплу­атацией изделия.

Различают физическую и технологическую сваривае­мость.

Физическая свариваемость — свойство материалов да­вать монолитное соединение с химической связью. Такой свариваемостью обладают практически все технические сплавы и чистые металлы, а также ряд сочетаний метал­лов с неметаллами.

Технологическая свариваемость — технологическая ха­рактеристика металла, определяющая его реакцию на воз­действие сварки и способность при этом образовывать свар­ное соединение с заданными эксплуатационными свойства­ми

Свариваемость металла зависит от его химических и

физических свойств, кристаллической решетки, степени легирования, наличия примесей и других факторов.

Назовем основные показатели свариваемости металлов и их сплавов:

• окисляемость при сварочном нагреве, зависящая от химической активности металла;

• чувствительность к тепловому воздействию сварки, которая характеризуется склонностью металла к ро­сту зерна, структурными и фазовыми изменениями в шве и зоне термического влияния, изменением проч­ностных и пластических свойств;

• сопротивляемость образованию горячих трещин;

• сопротивляемость образованию холодных трещин при сварке;

• чувствительность к образованию пор;

• соответствие свойств сварного соединения заданным эксплуатационным требованиям.

Кроме перечисленных основных показателей сваривае­мости имеются еще показатели, от которых зависит каче­ство сварных соединений. К ним относят качество форми­рования сварного шва, величину собственных напряжений, величину деформаций и коробления свариваемых материа­лов и изделий. 1

Окисляемость металла при сварке определяется хими­ческими свойствами свариваемого материала. Чем хими­чески активнее металл, тем больше его склонность к окис­лению и тем выше должно быть качество защиты при свар­ке. Это особенно наглядно видно на примере железоугле­родистых сплавов. Свариваемость углеродистой стали из­меняется в зависимости от содержания основных приме­сей. Углерод является наиболее важным элементом в со­ставе стали, определяющим почти все основные ее свой­ства в процессе обработки, в том числе и свариваемость..

Низкоуглеродистые и среднеуглеродистые стали сварива­ются хорошо. Стали, содержащие С >0,35%, свариваются хуже. С увеличением содержания углерода свариваемость стали ухудшается. В околошовных зонах появляются зака­лочные структуры и трещины, а шов получается пористым.

Марганца в стали содержится обычно 0,3—0,8%, что не затрудняет сварку стали. Однако при повышенном содер­жании марганца (1,8—2,5%) прочность, твердость и зака­ливаемость стали возрастают, и это способствует образова­нию трещин. При сварке высокомарганцовистых сталей (11—16% Мп) происходит выгорание марганца, если не принять меры по его восполнению через электродное по­крытие, флюсы и др.

Хром увеличивает прочность стали, повышает ее устой­чивость против коррозии и длительного воздействия высо­ких температур. Однако с увеличением содержания хрома возрастает закаливаемость сталбй и ухудшается их свари­ваемость.

Никель повышает прочность, пластичность и коррози­онную стойкость стали, улучшает свариваемость. Однако при сварке требуется защита от воздействия кислорода воз­духа во избежание выгорания никеля.

Титан повышает прочность, ударную вязкость стали, улучшает ее свариваемость, способствует измельчению зе­рен при кристаллизации металла. При сварке связывает углерод, препятствуя образованию карбидов хрома по гра­ницам зерен и возникновению межкристаллитной корро­зии металла сварного соединения хромсодержащих ста­лей.

Кремний содержится в обычной углеродистой стали в пределах 0,02—0,3% и существенного влияния на свари­ваемость не оказывает. При повышенном содержании (0,8—1,5%) кремний затрудняет сварку, так как придает стали жидкотекучесть и образует тугоплавкие окислы и шлаки.

Сера является самой вредной примесью стали. Содер­жание серы в стали допускается не более 0,05 %. Сера обра­зует в металле сернистое железо, которое имеет более низ­кую температуру плавления, чем сталь, и плохо растворя­ется в расплавленной стали. При кристаллизации стали сернистое железо располагается между кристаллами метал­ла шва и способствует образованию трещин.

Фосфор является также вредной примесью стали. Со­держание фосфора в стали доходит до 0,05 %. Фосфор ухуд­шает свариваемость стали, так как образует хрупкое фос­фористое железо, придает стали хладноломкость.

Свариваемость стали принято оценивать по следующим показателям:

• склонности металла шва к образованию горячих и хо­лодных трещин;

• склонности к изменению структуры в околошовной зоне и к образованию закалочных структур;

• физикомеханическим качествам сварочного соедине­ния;

• соответствию специальных свойств сварного соеди­нения техническим условиям.

Для определения свариваемости применяют два основ­ных метода. По первому методу изготовляют образцы, на которые наплавляются по одному валику. Обработанные и протравленные образцы подвергают макро - и микроиссле­дованиям, а затем механическим испытаниям на загиб и ударную вязкость. Результаты исследования позволяют не только оценить свариваемость стали, но и установить оп­тимальные режимы сварки.

Сталь считается сваривающейся хорошо, если трещи­ны отсутствуют; удовлетворительно, если трещины обра­зуются при охлаждении водой, но отсутствуют при охлаж­дении воздухом; ограниченно, если сталь для предупреж­дения образования трещин требует предварительного по­догрева до 100— 150°С и охлаждения на воздухе. Плохо сваривающиеся стали требуют предварительного подогре­ва до 300°С и выше.

Углеродистые стали по свариваемости можно условно подразделить на следующие группы: хорошо сваривающи­еся стали — СтО, Ст1, Ст2, СтЗ, Ст4 (ГОСТ 380—88); 08, 10, 15, 20, 25 (ГОСТ 1050—88); удовлетворительно свари­вающиеся стали — Ст5 (ГОСТ 380—88); 30, 35 (ГОСТ 1050— 88); ограниченно сваривающиеся стали — Стб, Ст7 (ГОСТ 380—88); 40, 45, 50 (ГОСТ 1050—88); плохо сваривающие­ся стали — 60Г, 65Г, 70Г, 70, 75, 80, 85.

В сварных строительных конструкциях используются главным образом стали первой группы. Стали СтО, Ст1, Ст2, СтЗ, Ст4, Ст5 применяют при изготовлении строи­тельных конструкций, арматуры, горячекатаных и сварных труб с прямым и спиральным швами. Из стали СтЗ изго­товляют бункера, резервуары, газгольдеры, подкрановые балки, конструкции доменного комплекса, балки перекры­тий. Стали 10, 15, 20 и 25 используют для производства горячекатаных труб. Эти стали хорошо поддаются сварке и образуют сварной шов без хрупких структур и пористости.

Как правило, чем выше прочность свариваемого мате­риала и больше стенень его легирования, тем чувствитель­нее материал к термическому циклу сварки и сложнее тех­нология его сварки.

Чувствительность металла к тепловому воздействию сварки оценивают по свойствам различных зон соединений и, сварных соединений в целом при статических, динами­ческих и вибрационных испытаниях (растяжение, изгиб, определение твердости, определение перехода металла в хрупкое состояние и др.), а также по результатам металло­

графических исследований в зависимости от применяемых видов и режимов сварки.

Сопротивляемость металла образованию трещин при сварке: при сварке могут возникать горячие и холодные трещины в металле шва и в околошовной зоне.

Горячие трещины — хрупкие межкристаллические раз­рушения металла шва и околошовной зоны, возникающие в твердожидком состоянии в процессе кристаллизации, а также при высоких температурах в твердом состоянии.

При кристаллизации жидкий металл шва сначала пере­ходит в жидкотвердое, а затем в твердожидкое и, наконец, в твердое состояние. В твердожидком состоянии образует­ся скелет из кристаллитов затвердевшего металла (твердой фазы), в промежутках которого находится жидкий металл, который в таком состоянии обладает очень низкими плас­тичностью и прочностью.

Усадка шва и линейное сокращение нагретого металла в сварном соединении при охлаждении могут привести к образованию горячих трещин. Горячие трещины могут об­разовываться как вдоль, так и поперек шва.

Для оценки свариваемости металлов по сопротивляе­мости горячим трещинам применяют два основных вида испытаний — сварку технологических проб и машинные способы испытаний.

В технологических пробах сваривают узел или образец заданной жесткости. Пригодность материала, электродов, режимов сварки оценивают по появлению трещины и ее длине.

При машинных методах испытаний растягивают или изгибают образец во время сварки. Стойкость материалов оценивают по критической величине или скорости дефор­мирования, при которых возникает трещина. Для предот­вращения горячих трещин необходимо правильно выбирать присадочный материал и технологию сварки.

Холодные трещины — локальные межкристаллические разрушения, образующиеся в сварных соединениях преиму­щественно при нормальной температуре, а также при тем­пературах ниже 200° С. Причины возникновения холодных трещин при сварке следующие:

• охрупчивание металла вследствие закалочных процес­сов при быстром его охлаждении;

• остаточные напряжения, возникающие в сварных со­единениях;

• повышенное содержание водорода в сварных швах, который усиливает неблагоприятное действие первых двух главных причин.

Для 'оценки свариваемости металлов по сопротивляе­мости холодным трещинам применяют, как и при оценке сопротивляемости горячим трещинам, два вида испыта­ний — технологические пробы ц методы количественной оценки с приложением к образцам внешней постоянной ме­ханической нагрузки.

Преимуществом технологических проб является воз­можность моделировать технологию сварки и, следователь­но, судить о сопротивляемости образованию трещин в ус­ловиях, близких к реальным. Проба представляет собой жесткое сварное соединение. Стойкость материала оцени­вают качественно по наличию или отсутствию трещин.

Существует много технологических проб, в которых имитируют жесткие узлы сварных конструкций. Пробы дают только качественный ответ: образуется или не обра­зуется трещина.

Количественным критерием оценки сопротивляемости сварного соединения образованию холодных трещин явля­ются минимальные внешние напряжения, при которых начинают возникать холодные трещины при выдержке об­разцов под нагрузкой, прикладываемой сразу же после свар­ки. Внешние нагрузки воспроизводят воздействие на ме­

талл собственных сварочных и усадочных напряжений, которые постоянно действуют сразу после сварки при хра­нении и эксплуатации конструкции.

Методы борьбы с холодными трещинами основывают­ся на уменьшении степени подкалки металла, снятии оста­точных напряжений, ограничении содержания водорода. Наиболее эффективным средством для этого является по­догрев металла перед сваркой и замедленное охлаждение после сварки.

Необходимость подогрева и замедленного охлаждения металла сварного шва можно оценить по эквивалентному содержанию углерода Сэкв, учитывающему химический со­став свариваемого металла;

где С — содержание углерода в сотых долях %;

Mn, Ni, Cr, Mo, V - в %.

По величине Сэкв все стали можно разделить условно на четыре группы;

2. Сэкв = 0,25—0,35. Удовлетворительно сваривающиеся стали, которые допускают сварку без появления трещин в нормальных производственных условиях, т. е. при окружающей температуре выше 0°С, отсутствии ветра

3. Сэкв = 0,35—0,45. Ограниченно сваривающиеся стали, которые склонны к образованию трещин при сварке в обычных условиях. При сварке таких сталей необходим предварительный подогрев до 100—200°С. Большин­ство сталей этой группы подвергают термообработке и после сварки.

4. Скв > 0,45. Такие стали склонны к образованию холод­ных трещин при сварке. Их можно сваривать только с предварительным подогревом, подогревом в процессе сварки и последующей термообработкой.

Температуру предварительного подогрева можно рас­считать по формуле

Т = 350 v'Co6-0,25 , где Со6 — общий эквивалент углерода.

S — толщина свариваемого металла, мм.

Поры в сварных швах возникают при первичной крис­таллизации металла сварочной ванны в результате выде­ления газов. Поры представляют собой заполненные газом полости в швах, имеющие округлую, вытянутую или бо­лее сложные формы. Поры могут располагаться по оси шва, его сечению или вблизи границы сплавления. Они могут выходить или не выходить на поверхность, располагаться цепочкой, отдельными группами или одиночно, могут быть микроскопическими и крупными (до 4—6 мм в поперечни­ке). Причины возникновения пор следующие:

• выделение водорода, азота и окиси углерода в резуль­тате химических реакций;

• различная растворимость газов в расплавленном и твердом металле;

• захват пузырьков газа при кристаллизации сварочной ванны.

Для уменьшения пористости необходима тщательная подготовка основного и присадочного материалов под сварку (очистка от ржавчины, масла, влаги, прокалка и т. д.), на­

дежная защита зоны сварки от воздуха, введение в свароч­ную ванну раскислителей (из основного металла, свароч­ной проволоки, покрытия, флюса), соблюдение режимов сварки.

Наряду с порами однородность металла шва нарушают шлаковые включения. Шлаковые включения связаны с ту­гоплавкостью, повышенной вязкостью и высокой плотнос­тью шлаков, плохой зачисткой поверхности кромок и от­дельных слоев при многослойной сварке, затеканием шла­ка в зазоры между свариваемыми кромками и в места под­резов. Помимо шлаковых включений в шве могут быть мик­роскопические оксидные, сульфидные, нитридные, фосфор­содержащие включения, которые ухудшают свойства свар­ного шва.

Технология сварки (вид сварки, сварочные материалы, техника сварки) выбирается в зависимости от основного показателя свариваемости (или сочетаний нескольких по­казателей) для каждого конкретного материала.

СВОЙСТВА СВАРНЫХ ШВОВ

На качественные показатели сварных соединений на­кладывают отпечаток множество факторов, к которым относятся свариваемость металлов, их чувствительность к термическим воздействиям, окисляемость и т. д. Поэтому для соответствия сварных соединений тем или иным экс­плуатационным условиям следует эти критерии учиты­вать.

Свариваемость металлов определяет способность от­дельных металлов или их сплавов образовывать при соот­ветствующей технологической обработке соединения, отвечающие заданным параметрам. На этот показатель оказывают влияние физические и химические свойства металлов, строение их кристаллической решетки, нали - чиє примесей, степень легирования и т. д. Свариваемость может быть физическая в технологическая.

Под физической свариваемостью понимают свойство материала или его составов создавать монолитное соеди­нение с устойчивой химической связью. Физической сва­риваемостью обладают практически все чистые металлы, их технические сплавы и ряд сочетаний металлов с неме­таллами. К технологической свариваемости материала от­носят его реакцию на сварочный процесс и способность создать соединение, удовлетворяющее заданные парамет­ры.

При определении критериев свариваемости металлов и их сплавов ориентируются на следующие их свойства:

— Чувствительность металла к тепловому воздействию, которое создается при сварке;

— склонность металла к росту зерна с сохранением пластических и прочностных свойств, структурным и фа­зовым изменениям в зоне термического воздействия;

— химическая активность металла, влияющая на его окисляемость при термическом воздействия сварочного процесса;

— сопротивляемость металла к образованию пор и тре­щин в холодном и горячем состоянии.

Большое влияние на качество сталей оказывает так называемая их раскисляемость, которая характеризуется содержанием марганца, кремния и некоторых других эле­ментов и равномерностью их распределения. По этому параметру различают три вида сталей: кипящая — «кп», полуспокойная — «пс» и спокойная — «сп».

Кипящая сталь отличается большой неравномерностью распределения вредных примесей (особенно серы и фос­фора) по толщине проката и получается при неполном раскислении металла марганцем. Характерной особенно­стью этого вида сталей является склонность к старению и образование кристаллизационных трещин в шве и около - шовной зоне, что приводит к переходу в хрупкое состоя­ние при отрицательных температурах.

Спокойная сталь получается при равномерном распре­делении примесей, поэтому она менее склонна к старе­нию и меньше реагирует на сварочный нагрев.

Полуспокойная сталь занимает промежуточное значе­ние между кипящей и спокойной.'

Все эти свойства учитывают при выборе технологи­ческих приемов сварки, способов формирования свароч­ного шва, параметров теплового воздействия и т. д.

В качестве примера приведем свариваемость сталей, как наиболее распространенных конструктивных матери­алов.

Для сварных конструкций лучше всего использовать низкоуглеродистые и низколегированные стали, облада­ющие высокой степенью свариваемости.

Наибольшее влияние на качество сварного соедине­ния оказывает углерод. Увеличение содержания углерода и ряда других легирующих элементов снижает сваривае­мость сталей, ухудшая качество шва.

Сварные соединения высокоуглеродистых и высоколе­гированных сталей отличаются повышенным содержани­ем трещин и выполняются по специальной технологии.

Классификация сталей по свариваемости приведена в табл.1.

Классификация сталей по свариваемости

Группа по свариваемости

Констру киионная легированная

Ст. 1; Ст.2; Ст. З; Ст.4; 0,8; сталь І0, 15, 20, 25;12кп, 15кп,

15Г; 20Г; 15Х; 15ХА; 20Х; 15ХМ; 14ХГ. С, 10ХСМД; 10ХГСМД;15ХСМД

Сг5; сталь 30, 35

(2ХМ2; 12ХНЗА; [4Х2МП; 10Г2МП; 20ХНЗА; 20ХЙ; 20ХГСА; 25ХГСА; 30Х; 30 М

Стб; сталь40, 45, 50

35Г; 40Г; 45Г; 40Г2; 35Х; 40Х; 45Х; 40ХН;40; 40ХМФА; 30ХГС; 30ХГС; 30ХГСМ; 35ХМ; 20Х2Н4А; 4ХС; 12Х2Н4МА

Сталь 65, 70, 75, 80, 85, У7, У8, У9, У10, У11, У12

50Г; 50Г2; 50Х; 50ХН; 45ХНЗМФА; бХс; 7X3; 9ХС; 8X3; 5ХНТ; 5ХНВ

Примечание: Стали, относящиеся к хорошим, имеют содержа­ние углерода менее 0,25%. Они хорошо свариваются без образова­ния закалочных структур и трещин в широком диапазоне режимов сварки.

Стали, относящиеся к удовлетворительным, имеют содержание углерода от 0,25 до 0,35%. Они мало склонны к образованию трещин и при правильно подобранных режимах сварки дают качественный шов.

Для улучшения качества сварки часто применяют по­догрев.

Ограниченно свариваемые стали имеют содержание углерода от 0,36 до 0,45% и склонны к образованию тре­щин. Сварка требует обязательного подогрева.

Плохо свариваемые стали содержат углерод в количе­стве более 0,45%. При их сварке требуются специальные технологические процессы.

Легирование стали одним или несколькими легирую­щими элементами придает ей определенные физико-ме­ханические свойства. Как правило, повышение уровня легирования и прочности стали приводит к ухудшению ее свариваемости и первостепенная роль в этом принад­лежит углероду.

Низколегированные стали хорошо свариваются всеми способами плавления. Получение же при сварке равно­прочного сварного соединения, особенно у термоупроч­ненных сталей, вызывает определенные трудности. В зо­нах, удаленных от высокотемпературной области, возни­кает холодная пластическая деформация. При наложении последующих швов эти зоны становятся участками дефор­мационного старения. Это в конечном итоге приводит к снижению пластических и повышению прочностных свойств металла и соответственно к появлению холодных трещин. В среднелегированных сталях увеличивается склон­ность к закалке, в связи с чем такие стали имеют высокую чувствительность к термическому циклу сварки. Их около - шовная зона оказывается резко закаленной, а следователь­но, и непластичной при всех режимах сварки, обеспечи­вающих удовлетворительное формирование шва. Поэтому с целью снижения скорости охлаждения околошовной зоны при сварке этих сталей необходим предварительный подогрев свариваемого изделия.

При сварке высоколегированных хромистых 08X13, 08X17Т и некоторых других сталей существуют отличи­тельные особенности:

— -высокий порог хладноломкости стали, находящий­ся обычно в области положительных температур;

— склонность к значительному охрупчиванию в око - лошовной зоне;

— низкая пластичность и вязкость металла шва, вы­полненного сварочными материалами аналогичного со сталью химического состава;

— невозможность устранить охрупчивание термообра­боткой.

Сварку таких сталей необходимо выполнять с мини­мальным тепловложением, так как с увеличением погон­ной энергии возрастает склонность зон сварного соеди­нения к росту зерен, появлению микротрещин и паде­нию пластичности. При этом снижается сопротивляемость сварного соединения локальным повреждениям и меж- кристаллической коррозии. В процессе сварки возникает опасность коробления и появляется повышенный уровень остаточных напряжений.

После сварки в ряде случаев требуется термообра­ботка.

Окисляемость металла под термическим действием сварочной дуги определяется его химической активнос­тью. От этого напрямую зависит степень защиты свароч­ного шва, применяемой при сварке. Чем выше химичес­кая активность металла, тем качественнее должна быть защита. Наибольшей химической активностью отличают­ся титан, ниобий, цирконий, вольфрам, молибден, тан­тал и некоторые другие. Поэтому при сварке этих метал­лов недостаточно применение флюсов и защитных по­крытий, так как в защите нуждается не только сварочный шов, но и прилегающая к нему область. Самой эффек­тивной защитой в данном случае, служит сварка в вакууме или в среде инертного газа высокой чистоты.

Сварка остальных цветных металлов (меди, алюминия, магния, никеля и их сплавов) тоже требует высокой за­щиты, которую обеспечивают инертные газы, флюсы и специальные электродные покрытия.

Для сварки сталей и сплавов на основе железа в каче­стве защитных средств используют флюсы и электродные покрытия.

Прочность сварных соединений — это свойство, не разрушаясь, воспринимать определенные нагрузки в тех или иных заданных условиях. При этом учитывают как рабочие, так и предельные нагрузки.

Под рабочими нагрузками понимают суммарные на­пряжения, возникающие от собственного веса, внешних нагрузок, появляющихся в процессе эксплуатации, и собственных напряжений, создающихся при сварке, сборке и т. д.

Предельными считаются нагрузки, когда наступает те­кучесть в основном сечении, возникшая под действием статических, повторно-переменных и динамических сил.

При этом образуются максимально допустимые по­вреждения или деформации, за которыми следует потеря эксплуатационной способности конструкции.

При расчете несущей способности сварочного шва ориентируются на допустимое напряжение в наиболее опасном сечении элемента і и допустимое напряжение, составляющее некоторую часть от предела текучести нзэ. При этом обязательно должно выдерживаться соотноше­ние: Н5э і s. При таком соотношении элемент конструкции удовлетворяет требованиям прочности. Для большей уве­ренности применяют коэффициент запаса прочности л, который гарантирует ненаступление текучести и для низ­коуглеродистых сталей лежит в пределах 1,35—1,50, а нзэ “ 160 Мпа.

Допустимое напряжение в наиболее опасном сечении s определяют по формуле:

где F— площадь поперечного сечения элемента, a N — осевое усилие, прикладываемое к нему. '

Говоря о прочности сварочного соединения, не следу­ет забывать о его пористости и трещинах, оказывающих значительное влияние на этот показатель.

Поры в сварочном шве возникают при выделении га­зов в процессе кристаллизации металла. Как правило, это азот, водород или окись углерода, получаемые в резуль­тате химических реакций. Но поры в сварочном шве мо­гут возникать не только от газов. Это явление случается при повышенной тугоплавкости, вязкости и плотности шлаков, которые не покидают пределы сварочного шва.

Поры могут быть внутренними или наружными, рас­полагаться по оси шва или на его границах, форма их может быть округлая, овальная или более сложная, а их размеры могут колебаться от нескольких микрон до не-

Рис. 6. Наличие горячих трещин в сварных соединениях:

1, 2, 3 — поперечные трещины шва и зоны вокруг него в материа­ле; 4, 5— трещины продольные

скольких миллиметров. Уменьшению пористости свароч­ного шва способствует предсварочная подготовка, кото­рая заключается в тщательной зачистке сварного соеди­нения от грязи, масел, ржавчины и прочих посторонних включений. Борются с пористостью при помощи правиль­но подобранных режимов сварки, защитными покрытия­ми и флюсами, вводимыми в сварочную ванну.

Трещины в массиве шва и околошовпой зоны могут быть холодными и горячими. Горячие трещины (рис. 6) возникают в процессе кристаллизации жидкой фазы ме­талла. Этому явлению способствуют линейные сокраще­ния металла, возникающие в результате внутренних на­пряжений. Размеры и направление горячих трещин могут быть самыми различными и зависят от соответствия ма­териала, электродов и режимов сварки.

Для определения этого соответствия сначала сварива­ют пробный образец, который подвергают тщательному анализу.

Наличие трещин может определяться визуально под увеличением, а ответственные детали подвергают про - светке или облучению.

Холодные трещины чаще всего имеют микроскопичес­кий характер и возникают при температурах не более 200°С. Причинами появления холодных трещин может быть хрупкость металла при быстром его охлаждении, остаточные напряжения в сварных соединениях иди по­вышенное содержание водорода.

Коррозия сварных соединений снижает прочность шва и его долговечность. В связи с изрядными структурными изменениями сварных соединений они обладают большей коррозийной активностью по сравнению с основным ме­таллом. Коррозия может быть общей и местной.

При общей коррозии поражается вся поверхность ме­талла, что свидетельствует о его низкой коррозийной стойкости.

Местная коррозия проявляется в наличии отдельных ржавых пятен, точек. Она может быть как поверхностная, так и межкристаллитная.

Наиболее опасна межкристаллитная коррозия, кото­рая проникает вглубь зерен, не разрушая их. Наиболее характерные коррозийные разрушения сварного соедине­ния показаны на рис. 7.

Рис. 7. Коррозионные разрушения при сварке;

А — общая коррозия: 1 — равномерное распределение; 2 — шовная коррозия; 3 — интенсивная коррозия всего металла; 4 — ржавчина в зоне термического влияния; Б— местная1 коррозия: /— коррозия в термической зоне (межкристаллитная); 2— шовная коррозия; 3 — коррозия в зоне сплавления; 4 — точечная коррозия; В — усталость (коррозийное вытрескивание)

Избежать этого опасного явления помогает правиль­ный подбор материалов, сварочных электродов, приме­нение защитных покрытий и замедлителей, которые на­носят на поверхность металла или в коррозионную среду. Хорошие результаты дает применение сварочной прово­локи с высокой коррозийной стойкостью. При сварке та­кой проволокой получается шов с большей коррозийной стойкостью, чем основной металл. На коррозийную ак­тивность сварочного шва Оказывают влияние и выбран­ные режимы сварки.

Читайте также: