Технологические свойства цветных металлов

Обновлено: 07.01.2025

1. Общие сведения о цветных металлах и сплавах. Классификация цветных металлов.

2. Алюминий, его свойства, применение и технология производства. Торговые сорта алюминия. Сплавы на основе алюминия. Маркировка.

3. Титан, свойства, применения и технология производства. Торговые сорта титана и титановых сплавов. Маркировка.

4. Медь, ее свойства, применение и технология производства. Торговые сорта меди. Медные сплавы. Маркировка.

5. Благородные (драгоценные, ювелирные) цветные металлы и сплавы. Свойства и маркировка.

6. Контроль качества цветных металлов и сплавов

Общие сведения о цветных металлах и сплавах. Классификация цветных металлов.

Цветные металлы применяются в технике реже, чем черные. Причины:

- незначительное содержание многих цветных металлов в земной коре,

- сложность процесса их выплавки,

Во многих случаях, когда это возможно, их заменяют черными металлами, пластмассами и другими материалами. Однако цветные металлы имеют ценные свойства, которые делают их применение в технике неизбежным. Например, Cu и Al обладают высокой электро- и теплопроводность и применяются в электропромышленности.

В технике широко применяются не только чистые цветные металлы, но и их сплавы, которые нашли широкое применение в качестве продукции технического, бытового и специального назначения.

Из большого числа цветных металлов и сплавов наибольшее распространение получили сплавы на основе алюминия, титана, меди, которые широко применяются в химической промышленности, авиа- и ракетостроении, в космической технике.

Цветные металлы и сплавы условно принято делить на четыре группы:

К легким металлам относят: алюминий, магний и титан, литий, бериллий, которые имеют более низкую относительную плотность по сравнению с железом.

К тяжелым металлам из числа широко применяющихся относят: медь, никель, кобальт, относительная плотность которых выше чем у железа и температура плавления достаточно высокая.

К тяжелым легкоплавким металлам относят: цинк, свинец, олово, сурьма, кадмий, которые имеют высокую относительную плотность, но температура плавления их существенно ниже, чем у железа.

К благородным металлам относят: золото, серебро, платина и металлы платиновой группы (палладий, осмий и др.); они отличаются от всех прочих металлов высокой химической стойкость и красивым внешним видом.

Дополнительно выделяют еще следующие группы металлов:

- тугоплавкие – вольфрам, молибден, ниобий, ванадий, имеющих температуру плавления более высокую, чем железо;

- урановые металлы – актиноиды, используемые в атомной технике;

- редкоземельные (РЗМ) – скандий, иттрий, лантан и лантоноиды, применяемые в качестве присадок к сплавам других элементов;

- щелочноземельные – натрий, калий, литий, которые не находят применения в свободном состоянии из-за химической активности.

Технологические свойства металлов и сплавов


Технологические свойства металлов и сплавов определяют пригодность материала для конкретного вида обработки и в целом возможность его использования в том или ином производственном цикле. Добавление в металл или сплав сторонних элементов напрямую влияет на их основную характеристику. Для определения технологических свойств необходимо провести испытания.

В нашей статье мы расскажем, какими бывают указанные свойства, как проявляют себя примеси, а также приведем пример производственных испытаний, которые выявляют пригодность материала к использованию в производстве.

Понятие металлов и сплавов

К технологическим свойствам металлов и сплавов относятся:

  • высокая обрабатываемость (ковкость, штампуемость, возможность резки, пайки, сварки и т. п.);
  • прочность;
  • твердость;
  • ударная вязкость и пр.

Все металлы делятся на черные и цветные.

Технологические свойства чистых металлов зачастую не позволяют использовать их для промышленных и технических нужд. Поэтому в основном применяются сплавы.

Сплав состоит из двух и более затвердевших расплавленных металлов и других веществ.

Помимо металлов, в составе сплавов могут присутствовать, к примеру, углерод, кремний, другие элементы.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Используя разные комбинации металлов и неметаллов, можно получать материалы с различными технологическими свойствами, которыми не обладают составляющие сплав компоненты.

Технологические свойства сплавов могут отличаться от характеристик составляющих их металлов. Они могут быть:

  • более прочными и твердыми;
  • обладать более высокой или, напротив, более низкой температурой плавления;
  • более коррозионно-устойчивыми;
  • менее подверженными высокотемпературному воздействию;
  • оставаться прежнего размера при нагревании или охлаждении и пр.

Чтобы увеличить твердость железа, в него добавляют углерод. Менее 2 % углерода содержится в сталях, более 2 % – в чугуне. Для придания металлам и сплавам такого технологического свойства, как коррозионная устойчивость, в них добавляют хром, твердость достигается за счет добавления вольфрама, износостойкость – марганца, прочность – ванадия.

Определение и виды технологических свойств металлов и сплавов

Технологические свойства металлов и сплавов определяют их способность меняться под воздействием горячих или холодных способов обработки. В их основе лежат физико-механические характеристики материалов.


Выделяют такие технологические свойства металлов и сплавов, как:

  • О+бработка при помощи резки;
  • подверженность деформациям за счет ковкости, штампуемости, загибов, перегибов, отбортовки и пр.;
  • свариваемость;
  • литейные свойства;
  • способность к пайке;
  • упрочняемость и т. п.

Именно от технологических свойств металлов и сплавов зависит, как поведет себя заготовка в процессе обработки.

Остановимся более подробно на основных технологических свойствах.

Свариваемость.

Это технологическое свойство металлов и сплавов, благодаря которому они образуют друг с другом прочные соединения. Соединяются заготовки за счет расплавления материала и его последующего охлаждения. В зависимости от источника нагрева деталей сварку делят на газовую, дуговую, электроконтактную, ультразвуковую и пр.

Деформируемость.

Под этим технологическим свойством понимают способность металлов и сплавов меняться под воздействием пластических деформирующих операций, таких как гибка, ковка, штамповка, прокат, прессование и др. При этом целостность заготовок не нарушается. На это свойство материалов влияют их химический состав, механические свойства, скорость деформации, температура, при которой выполняются операции и т. п. Способ деформации выбирают после выполнения технологических испытаний, в процессе которых оценивают деформируемость различных сплавов и металлов.

Литейные свойства.

Это технологические свойства (жидкотекучесть, усадка и ликвация), учет которых позволяет изготавливать отливки деталей и изделий без возникновения трещин, усадочных раковин и других дефектов.


Жидкотекучесть.

Металлы и сплавы, находясь в жидком состоянии, заполняют все полости, узкие и тонкие места литейных форм и принимают четкое объемное изображение очертаний отливок. На это технологическое свойство металлов и сплавов влияют химический состав материала заготовки, температура заливки, вязкость, поверхностное натяжение. Помимо характеристик обрабатываемых металлов, жидкотекучесть зависит от качества внутренней полости формы, ее шероховатости, теплопроводности и пр. Это свойство при использовании песчаных сухих форм гораздо выше, чем при применении сырых металлических.

Усадкой называют такое технологическое свойство металлов и сплавов, за счет которого их объем уменьшается при затвердевании отливок. Степень усадки выражается в процентах, для разных металлов она варьируется в пределах 1-2 %. На нее влияют химический состав материала и температура заливки (чем она выше, тем сильнее усадка).

При усадке в отливках образуются усадочные раковины и рыхлости. Во избежание появления подобных дефектов используют литейные формы с дополнительными устройствами – прибылями, за счет которых в формы постоянно поступает жидкий металл.

В процессе кристаллизации металлы и сплавы в отливках становятся неоднородными по химическому составу. Эта неоднородность называется ликвацией. Она может быть зональной – наблюдаемой на отдельных заготовках, и внутрикристаллической – распространяющейся на отдельные зерна.

Для устранения последней используют термическую обработку, первой – механическую, в процессе которой при заливке жидкого металла в форму его механически перемешивают. Ликвация зависит от скорости охлаждения заготовки, если она остывает равномерно, то этот дефект не образуется.

Технологическое свойство металлов и сплавов, благодаря которому они способны создавать прочные и герметичные соединения за счет пайки. Если спаиваемые детали предполагается использовать в области радио- и электротехники, то материалы, из которых они изготовлены, должны обладать такими свойствами, как электропроводность, индуктивность и пр.

Рекомендуем статьи:

Упрочняемость.

Так называют технологическую характеристику материалов, благодаря которой их механические свойства повышаются при термической и химико-термической обработке. Упрочняемость включает в себя закаливаемость, прокаливаемость и незакаливаемость.

Закаливаемость.

Это свойство означает, что материалы воспринимают закалку, оно характерно для углеродистых и легированных сталей, в которых содержание углерода превышает 0,3 %, а также для чугуна, сплавов цветных металлов, бронзы, латуни и других сплавов.

Прокаливаемостъ.

Прокаливаемость означает глубину закалки, воспринимаемую металлами и сплавами и определяемую в соответствии с требованиями ГОСТ 5657-69. На эту характеристику влияют химический состав обрабатываемых материалов, температура нагрева и способ охлаждения.

Незакаливаемость.


Означает, напротив, невосприимчивость материала (к примеру, углеродистых и других сталей с содержанием углерода в составе менее 0,3 %) к закалке. Это технологическое свойство металлов и сплавов учитывают при сварке, поскольку чем оно выше, тем более качественным будет сварное соединение. Отдельные стали устойчивы к закаливанию при нагревании и охлаждении, заготовки из них также не воспринимают закалку.

Изменение технологических свойств на примере стали

Наиболее распространенным материалом является сталь. На технологические свойства стальных сплавов влияет их химический состав – входящие в него примеси могут повышать или понижать отдельные характеристики материала:

  • Чем больше содержание в составе сплава углерода, тем выше его прокаливаемость и ниже восприимчивость к ковке. Ковка и прокатка возможны для металлов и сплавов, в которых присутствует не более 1,4 % этого химического элемента.
  • Марганец понижает теплопроводность металлов и сплавов и, как следствие, возможность их сваривания. Однако при равномерном медленном нагревании такие материалы прекрасно подходят для ковки.
  • Никель положительно сказывается на пластичных технологических свойствах металлов и сплавов, материалы, в которых он присутствует, хорошо поддаются ковке. Однако при нагреве никель способствует образованию окалины. Она не разрушается во время ковки, проникает в металл и снижает качество готовых изделий.
  • Хром способствует повышению прочности металлов и сплавов, следовательно, заготовки, в составе которых он присутствует, не следует обрабатывать при помощи ковки или проката, так как велика вероятность возникновения трещин.
  • Большое содержание в составе металлов и сплавов молибдена снижает такое их технологическое свойство, как теплопроводность. Этот момент важно учитывать при выборе температурного режима обработки, нагрев и охлаждение должны выполняться при строгом соблюдении предписанных технологией требований. Ковка возможна при применении более мощного оборудования
  • Ванадий же, напротив, повышает качество ковки, увеличивает устойчивость сталей к перегреву.

Отрицательно сказываются на технологических свойствах металлов и сплавов присутствие в их составе серы и фосфора. Их высокое содержание становится причиной красноломкости (ломкости при нагревании) и хладноломкости (ломкости при охлаждении) заготовок. Несмотря на то, что полностью очистить сплавы от присутствия этих химических элементов невозможно, на производстве стремятся к максимально возможному снижению их содержания в составе.


Технологические свойства металлов и сплавов напрямую зависят от их химического состава, поэтому, прежде чем выбрать тот или иной способ обработки, на производстве тщательно анализируют состав подлежащего обработке материала. Если этого не сделать, вероятно возникновение проблем как в процессе обработки, так и при дальнейшем использовании готовых изделий.

Технологические испытания металлов и сплавов

Технологические испытания включают в себя испытания на изгиб, осадку, сплющивание, бортование, загиб и т. д. Многие пробы и испытания проводятся в соответствии с разработанными и утвержденными стандартами.

В зависимости от результатов технологических испытаний принимают решение о возможности изготовления деталей и конструкций соответствующего качества из имеющегося материала с применением той или иной операции, выполняемой на данном производстве.

Испытание на изгиб проводится в соответствии с требованиями ГОСТ 14019-80. С его помощью определяют, способны ли металлы и сплавы выдерживать изгибание без разрушения. Образец помещают под пресс и изгибают до необходимого угла. Если угол изгиба равен 180°, то материал может выдерживать предельную деформацию. О том, что образец прошел испытание, свидетельствует отсутствие трещин, надрывов, расслоений и других дефектов

Такое технологическое испытание проводят для листовых металлов толщиной до 3 см, а также для сортового металлопроката (прутков, швеллеров, уголков).

Испытание на осадку выполняется в соответствии с требованиями ГОСТ 8817-82. С его помощью определяют, способны ли металлы и сплавы выдержать требуемую пластическую деформацию. Проводится оно при помощи пресса или молота, осаживающего горячий или холодный образец до заданной высоты. Для испытания используют круглые или квадратные образцы диаметром или стороной квадрата 0,3–3 см в холодном состоянии, 0,5–15 см – в горячем. Стальные образцы должны быть высотой не менее двух диаметров, из цветных металлов – не менее полутора диаметров. Об успешном прохождении испытания свидетельствует отсутствие трещин, надрывов или изломов.

Испытание на сплющивание труб проводится в соответствии с требованиями ГОСТ 8695-75. С его помощью определяют, способны ли трубы сплющиваться до определенной высоты без появления дефектов. Для этого конец или отрезок трубы длиной 2–5 см размещают между двумя параллельными плоскостями и сплющивают. При испытании сварной трубы место соединения должно быть расположено на горизонтальной оси. Скорость сплющивания не должна превышать 2,5 см/мин. Об успешном прохождении испытания свидетельствует отсутствие трещин и надрывов.

Испытание на бортование труб проводится в соответствии с требованиями ГОСТ 8693-80. С его помощью определяют, способны ли трубы отбортовываться на прямой угол. Для этого конец трубы помещают в оправку и отбортовывают усилием пресса до тех пор, пока не получают фланец требуемого диаметра. При испытании используют оправку с чисто обработанной рабочей поверхностью, обладающей высокой твердостью (HRC не менее 50). Радиус закругления оправки, формирующей борт, должен составлять две толщины стенки трубы (R = 2s). Об успешном прохождении испытания свидетельствует отсутствие трещин и надрывов.

Об успешном прохождении испытания свидетельствует отсутствие трещин, надрывов, расслоений.

Для того чтобы определить прочность сварного соединения, проводят испытание на свариваемость. Сваренный образец изгибают на определенный угол или растягивают. После чего проводят сравнение прочности сваренного и несваренного образцов из испытуемого материала.

В статье мы рассказали о том, какое значение имеют технологические свойства металлов и сплавов, а также проведение испытаний для получения качественных, долговечных изделий и конструкций из них.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Свойства металлических изделий

Свойства металлических изделий

Свойства металлических изделий зависят от металлов, входящих в их состав. Речь идет про тепло- и электропроводность, хрупкость или, наоборот, пластичность, а также свариваемость, ковкость и другие. Металлические изделия широко используются как в промышленности, так и в быту.

Выбор металлов определяется назначением изделия и тем, в каких условиях оно будет эксплуатироваться. Более подробно о свойствах металлических изделий читайте в нашем материале.

Общая характеристика металлических изделий

Современная металлургическая промышленность предлагает большое разнообразие видов металлических изделий. К самым распространенным из них относится металлический прокат, то есть изделия, которые производят на специальных станках методом горячей либо холодной прокатки.

Общая характеристика металлических изделий

Все разновидности металлического проката объединяются общим понятием «сортамент». Сортамент принято разделять на четыре группы: листовой, сортовой, трубы и специальные виды проката. К последним относятся бандажи, колеса, шары, периодические и гнутые профили. По способу обработки поверхности выделяют калиброванный, шлифованный, зеркальный и матовый сортамент.

Говоря о свойствах металлических изделий, стоит отметить, что сортовой прокат обладает самой разнообразной номенклатурой, где принято выделять простые и фасонные профили.

Прокатные цеха изготавливают примерно две тысячи размеров простых профилей, более тысячи фасонных общего потребления, а также около полутора тысяч размеров профилей специального назначения. Простыми называют профили с сечением в виде геометрических фигур, таких как круг, полукруг, овал, сегмент, шестигранник, квадрат, треугольник, полоса плоского сечения, пр.

Прокат сложного поперечного сечения обозначают как фасонные профили. В данной группе выделяют профили общего или массового потребления и специального назначения. К первым относятся уголки, швеллеры, двутавровые балки, шестигранные профили, пр. Тогда как вторые представлены трамвайными и железнодорожными рельсами широкой и узкой колеи, профилями сельскохозяйственного машиностроения, нефтяной и электропромышленности, пр. Из цветных металлов обычно производятся простые профили.

Размеры являются еще одним важным нюансом, о котором не стоит забывать, говоря на тему свойств металлических изделий. Сортовой прокат делят на:

  • Крупный. Сюда относят круглую сталь диаметром 80–250 мм, квадратную со стороной 70–200 мм, периодические арматурные профили № 70–80, угловая сталь с шириной полок 90–250 мм, швеллеры и двутавровые балки обычные и облегченные высотой 360–600 мм. Также в эту категорию входят специальные широкополочные двутавры и колонные профили высотой в пределах 1 000 мм, шестигранная сталь до № 100, железнодорожные рельсы массой 43–75 кг на метр длины изделия, полосовая сталь шириной не более 250 мм, пр.
  • Средний. Речь идет о круглой стали диаметром 32–75 мм, квадратной со стороной 32–65 мм и шестигранной до № 70. Здесь же представлен стальной периодический арматурный профиль № 32–60, двутавровые балки высотой до 300 мм, швеллеры высотой 100–300 мм, рельсы узкой колеи Р18 – Р24, штрипсы с сечением до 8×145 мм и фасонные профили.
  • Мелкий. Такая круглая сталь имеет диаметр 10–30 мм, квадратная со стороной 3,2–31 мм, сюда же относят периодический арматурный профиль.

В качестве элементов строительных конструкций применяют листовую и сортовую сталь. Нередко используют вторичные профили, то есть сварные, для изготовления которых соединяют полосы или листы, и гнутые. Для изготовления вторых прибегают к холодной гибке полос и листов.

Технологические свойства металлических изделий

Технологические свойства металлов являются частью их общих физико-химических свойств. Их важно учитывать во время проектирования и производства изделий с улучшенными характеристиками для данного металла или сплава.

Технологические свойства металлических изделий

Вот ключевые технологические свойства материалов и металлических изделий:

    • Обрабатываемость резанием. Предполагает возможность обработки металла или сплава при помощи резца, абразива. Для оценки этого показателя учитывают скорость затупления резца во время работы на определенных режимах резания при получении поверхности необходимой шероховатости. Данный параметр фиксируют в процентах от обрабатываемости стали или свинцовистой латуни повышенной обрабатываемости резанием – здесь все зависит от того, идет речь о сталях или о медных сплавах.
    • Обрабатываемость давлением в горячем и холодном состоянии. Для замера данного показателя используют различные технологические пробы: на осадку, на изгиб, на вытяжку сферической лунки, пр. Обязательно учитываются пластичность, твердость, упрочнение материала при конкретной температуре обработки.
    • Свариваемость. Так называют способность металлов и сплавов образовывать неразъемные соединения, соответствующие необходимым механическим характеристикам. Для оценки свариваемости сопоставляют качества сварных соединений со свойствами основного материала металлического изделия. Чем больше методов сварки может использоваться при работе с конкретным металлом и чем шире выбор среди режимов такой обработки, тем выше показатель свариваемости. Данную характеристику проверяют за счет рассмотрения структуры, механических свойств, вероятности растрескивания металла шва в зоне шва.
    • Литейные свойства. Речь идет о сочетании таких показателей, как температура плавления, кипения, заливки и кристаллизации, плотность и жидкотекучесть расплава, литейная усадка, пр.
    • Жидкотекучесть представляет собой способность металла заполнять литейную форму и зависит от вязкости, поверхностного натяжения, температуры заливки расплава. Если этот показатель высокий, удается легко заполнить расплавом сложную литейную форму.
    • Усадка является разницей между моделью и отливкой в соответствии с их линейными размерами. Чем она ниже, тем меньше вероятность, что в металле появятся усадочные раковины.
    • Пластичность, также известная как деформируемость, обозначает способность металла изменять форму в результате гибки, ковки, штамповки, прессования таким образом, чтобы не страдала целостность материала заготовки. За счет оптимальных показателей и учета данного свойства удается производить металлические изделия без видимых и скрытых дефектов.
    • Упрочняемость металлов и сплавов зависит от их способности становиться более прочными в результате термической, механической обработки.
    • Закаливаемость – это повышение твердости стали в процессе закалки. Есть разновидности металла с плохой закаливаемостью – они остаются недостаточно твердыми после подобной обработки.

    Закаливаемость

      Прокаливаемость – так называют глубину проникновения закалки при обработке массивных изделий. Дело в том, что разные слои металла охлаждаются неравномерно: его поверхность, которая вступает в контакт с закалочной жидкостью, остывает быстрее остального объема. Вполне логично, что медленнее всего остывает центр изделия. Чем выше критическая скорость закалки, тем ниже прокаливаемость стали.

    Углеродистые стали отличаются высокой критической скоростью, из-за чего страдает прокаливаемость. Учитывая данное свойство, их не используют для производства массивных металлических изделий, так как здесь важны хорошие механические характеристики по всему сечению. Для таких целей обычно выбирают легированную сталь, поскольку она отличается более высокой прокаливаемостью.

    Термическое старение предполагает изменение растворимости углерода в железе в зависимости от температуры. Деформационное старение происходит в сплаве, подвергнутом пластической деформации при температуре ниже показателя рекристаллизации. В обычных условиях подобный процесс занимает не менее 15 суток, тогда как при +200…+350 °C на него уходит несколько минут.

    Перед проведением искусственного старения закаленных и отпущенных при низкой температуре изделий осуществляют механическую обработку при +100…+180 °C. Последняя предполагает выдержку в течение 18–35 часов и постепенное охлаждение. Естественное старение происходит на открытом воздухе под навесом, где металлические изделия меняют свои свойства на фоне перепадов температуры, влажности, давления воздуха. На весь процесс уходит от трех месяцев до двух лет. Именно так защищают от дальнейших изменений станины прецизионных станков, корпусные детали ответственного назначения, рамы роялей и пианино. В результате снижается внутреннее напряжение металлов, стабилизируются размеры и форма заготовки.

    Механические свойства металлических изделий

    Речь идет о характеристиках материала, позволяющих ему противостоять воздействию внешних сил. Такие нагрузки бывают статическими, динамическими или циклическими, то есть повторно-переменными. По направлению действия силы принято выделять деформации растяжения, сжатия, изгиба, скручивания и среза. В реальной жизни изделие испытывает на себе воздействие сразу нескольких сил, при этом возникает упругая или пластическая деформация. Первая является обратимой, тогда как вторая необратима.

    Механические свойства металлических изделий

    Основными механическими свойствами металлических изделий считаются прочность, твердость, пластичность, упругость, вязкость. Также на производствах определяют усталость или выносливость металлов, ползучесть и другие показатели.

    Статические испытания на растяжение позволяют оценить следующие прочностные свойства материала: предел пропорциональности, упругости, текучести, прочности. Также рассматривается пластичность, которая предполагает относительное удлинение и относительное сужение образца. Для испытания используют образцы, отвечающие требованиям ГОСТ по форме и размерам. В процессе проверки на растяжение их растягивают до разрыва при помощи плавно возрастающей нагрузки. А напряжение, при котором происходит течение пластичного металла/сплава, является пределом текучести и выражается в МПа.

    Рекомендуем статьи по металлообработке

    Твердостью называют способность твердого тела противостоять внедрению в его поверхность другого более твердого тела. На производствах в этом случае принято пользоваться тремя методами испытания – все они названы в честь своих изобретателей. Речь идет о методах Бринелля (НВ), Роквелла (HRA, HRB, HRC) и Виккерса (HV). Они позволяют косвенно судить о прочности материалов, стойкости к износу. Также перечисленные подходы дают возможность контролировать качество и сохранение необходимых свойств металлических изделий после термического и химико-термического воздействия и обработки давлением.

    Способность металлов сопротивляться ударным, циклическим (повторно-переменным) нагрузкам и нагрузкам при высоких температурах считаются основными свойствами.

    Для определения ударной вязкости прибегают к помощи маятниковых копров, где перебивается стандартный образец с надрезом. По работе, затраченной на излом образца (в ДЖ), можно судить об ударной вязкости металла или сплава (KCU, KCV и КСТ).

    Циклические испытания на усталость помогают оценить те материалы и детали оборудования, которые испытывают многократные повторно-переменные нагрузки. Речь идет о нагружении – разгружении, растяжении – сжатии, закручивании в противоположные стороны, пр. Усталостному разрушению подвержены, например, пружины, рессоры, валы, шатуны. Способность материала противостоять усталости называют выносливостью. Она оценивается числом циклов нагрузка – разгрузка, которые металл способен выдержать до наступления усталостного разрушения.

    Функционирование деталей в условиях высокой температуры и нагрузки приводит к ползучести материала. Тогда наиболее значимым свойством металлического изделия становится стойкость сплава к ползучести.

    Физические свойства металлических изделий

    В стандартных условиях все металлы, кроме франция и ртути, имеют твердое состояние. Нагревание до определенной температуры приводит к их плавлению, а достижение еще более высоких показателей вызывает переход в газообразное состояние. Твердость, температура плавления металлов зависят от их пространственной кристаллической решетки. Наиболее мягкими являются щелочные металлы – их можно разрезать даже ножом. Самыми твердыми считаются металлы VIВ-группы, главным представителем которой является хром. По твердости он близок к алмазу и может резать стекло.

    Физические свойства металлических изделий

    Такое свойство металлических изделий, как электропроводность, объясняется наличием в металле свободных электронов – наложение электрического тока приводит к их направленному перемещению. Металлы являются проводниками первого рода, так как сохраняют изначальную структуру при проведении тока. Нагревание приводит к снижению электропроводности, поскольку колебательное движение ионов усиливается, соответственно, перемещение электронов затрудняется. Охлаждение позволяет повысить электропроводность, при абсолютном нуле она стремится к бесконечности. Данное явление принято называть сверхпроводимостью.

    Теплопроводность представляет собой характеристику, которая обеспечивается взаимодействием электронов проводимости с ионами, расположенными в узлах кристаллической решетки. Описанная выше электропроводность и теплопроводность взаимосвязаны – если у металла высокий первый показатель, то и второй находится на аналогичном уровне.

    Пластичность – это легкость деформации металлов, которая проявляется наиболее ярко при высоких температурах. Дело в том, что под внешним воздействием одни слои в кристаллах легко перемещаются относительно других, что не приводит к разрыву. Данное свойство позволяет изготавливать такие металлические изделия, как листы, проволока, кроме того, металлы можно ковать и прессовать. Наиболее пластичны золото, серебро и медь. Чтобы произошла деформация материалов с механической прочностью, изделия из них должны испытывать серьезные нагрузки.

    Физические свойства металлических изделий

    По плотности металлы делят на легкие и тяжелые. Если данный показатель ниже 5 г/см 3 , металл относят легким, при его превышении – к тяжелым. Самым легким является литий, его плотность составляет 0,53 г/см 3 , а самым тяжелым – осмий с плотностью 22,6 г/см 3 . Легкими считаются щелочные, щелочноземельные металлы, а еще бериллий, алюминий, скандий, иттрий и титан, тогда как все остальные называют тяжелыми.

    Магнитные свойства имеют все металлические изделия, так как металлы являются магнетиками. Они изменяют либо приобретают магнитный момент под действием стороннего магнитного поля. Магнитные свойства измеряют при помощи остаточной индукции, коэрцитивной силы и магнитной проницаемости, также известной как магнитная восприимчивость.

    На основе магнитных свойств металлы делят на три группы:

    • Диамагнетики – выталкиваются из магнитного поля и ослабляют его.
    • Парамагнетики – втягиваются в магнитное поле, усиливают его, но незначительно.
    • Ферромагнетики – способны серьезно усиливать магнитное поле.

    В первую категорию входят медь, серебро, золото, кремний, бериллий и металлы подгруппы цинка, галлия, германия. Они выделяются отрицательной магнитной восприимчивостью, а под действием внешнего магнитного поля в них возникает направленная навстречу ему намагниченность.

    Ко второй группе относят металлы с небольшой положительной восприимчивостью, это преимущественно щелочные и щелочноземельные. Они намагничиваются в направлении внешнего поля. Ферромагнетики – это металлы с высокой магнитной восприимчивостью, а именно железо, кобальт, никель.

    Нужно понимать, что существуют металлы и сплавы, которые не относятся ни к одной из данных групп. Это ряд редкоземельных металлов, которых называют антиферромагнетиками, и ферриты, то есть соединения оксида железа, пр.

    Обработка цветных металлов

    Обработка цветных металлов

    Легкость обработки цветных металлов возможна благодаря широкому спектру их свойств. Олово, цинк, медь, никель и др. обладают ковкостью и относительной пластичностью, потому широко используются в разных отраслях промышленности. Электроника, энергетика, авиа- и машиностроение процветают именно благодаря цветным металлам.

    Однако в чистом виде эти материалы практически не встречаются, да и добыча их довольно сложна. Именно поэтому переработка и обработка цветных металлов применяются столь активно, ведь они позволяют избавить материалы от примесей и добиться необходимых свойств. Обо всех тонкостях этого процесса мы поговорим далее.

    Классификация и основные свойства цветных металлов

    Цветные металлы отличаются высокой пластичностью и имеют характерный оттенок. Добывают их из металлической руды, в очень небольшом количестве содержащейся в горной породе.

    Обработка цветных металлов – это отрасль металлургической промышленности. Она, несмотря на то, что затратна по многим параметрам, приносит неплохую прибыль. Характеристики, которые приобретают изделия, существенно отличаются от тех, что присущи черным металлам.

    Цветные металлы можно разделить по свойствам на группы:

    • тяжелые (цинк, олово, свинец);
    • легкие (литий, титан, магний, натрий);
    • малые (мышьяк, сурьма, кадмий, ртуть);
    • рассеянные (селен, германий, теллур);
    • драгоценные (золото, платина, серебро);
    • радиоактивные (уран, плутоний, радий);
    • тугоплавкие (вольфрам, хром, ванадий, марганец).

    Который металл будет выбран для производства, зависит от того, какие свойства нужно получить от изделия:

    • Медь – имеет хорошую теплопроводность и пластичность, но малое сопротивление электричеству. Цвет обычно золотистый с розовым отливом. Как правило, ее добавляют в сплавы и редко используют как отдельный металл. Применяется в изготовлении электротехники, различных приборов и машин.
    • Бронза – пожалуй, самый популярный из медных сплавов. Получается при добавлении олова и различных химических веществ. Полученный материал достаточно прочен, обладает гибкостью и пластичностью, в связи с этим легко поддается ковке и износостоек.
    • Алюминий – также относится к пластичным металлам, имеет хорошую электропроводимость, серебристый оттенок, весит мало. Он непрочный, но отличается антикоррозийной стойкостью. Чаще всего используется в военном производстве, пищевой промышленности и в смежных с ними областях.
    • Цинк – достаточно хрупкий металл среди цветных, но пластичный и устойчивый к коррозии при нагревании до +100…+150 °C. Он входит в состав антикоррозийных покрытий изделий и стальных сплавов.

    Выбирая, из какого цветного металла изготовить деталь, нужно учесть его свойства, а также недостатки и преимущества, знать в каких вариантах сплавов он может использоваться. В этом случае вы получите качественное изделие, максимально соответствующее необходимым характеристикам.

    Защитная обработка цветных металлов

    Так как некоторые цветные металлы подвержены разрушению с течением времени из-за контакта поверхности изделия с внешней средой (кислородом и водой), рекомендуется заблаговременно производить обработку деталей с покрытием защитными средствами, учитывая физико-химическую специфику элементов сплава.

    Обработка цветных металлов

    К наиболее эффективным способам обработки цветных металлов для защиты от ржавчины можно отнести обработку лакокрасочными материалами. Это грунтовка, краски или универсальные средства «3 в 1».

    Грунтовка лучше всего спасает от атмосферной коррозии. При этом ею следует обрабатывать металл в один или несколько слоев до его окрашивания. Помимо защиты от окисления, она способствует лучшему сцеплению краски с основой.

    Изделия из алюминия лучше держат уретановые краски или составы на основе цинка. Медь, бронза и латунь обрабатывают обычно в процессе производства деталей и не покрывают ничем дополнительно.

    При повреждении заводское покрытие нужно полностью убрать, а поверхность детали отполировать и нанести эпоксидный или полиуретановый лак. Такой слой позволяет сохранить металл от повреждений и сделать его особенно блестящим.

    Защитные покрытия можно наносить на металл по-разному. Есть несколько способов: гальванический, горячий, диффузионный, напыление, плакирование и т. п.

    • Гальваника. Один из самых известных способов защиты металла. Суть в том, что на поверхность детали наносятся особые антикоррозийные химические средства. Какой толщины будет слой покрытия, зависит от условий окружающей среды. Чем климат резче, тем толщина слоя больше. Гальваника очень популярна, применяется в машиностроении и строительстве. При данном методе используют способы никелирования, хромирования, анодирования и др.
    • Никелирование подразумевает равномерное нанесение тонкого слоя никеля на металл, сюда же добавляется до 12 % фосфора. Также необходима термическая обработка цветных металлов и сплавов, чтобы повысить износостойкость и сопротивляемость коррозии. Никелирование разделяют на химическое, электрохимическое и «черный никель».
    • Анодирование – способ, при котором защитная (а также декоративная) пленка на магниевых, алюминиевых и прочих сплавах образуется под действием тока. Такой способ обработки позволяет обеспечить поверхности изделия электроизоляцию, водостойкость и антикоррозийность.

    Обработка цветных металлов

    • Процесс хромирования – подразумевает нанесение хрома и его сплавов на поверхность металла. Благодаря этому изделие не потускнеет, а также приобретет антикоррозийные качества, станет износостойким и жаропрочным. Такой вид покрытия широко применяется в машиностроении и других отраслях промышленности.
    • Металлизация напылением. Для этого применяется воздушная струя на поверхности расплавленных изделий из металла.
    • Горячий метод – изделие погружают в ванну с расплавленным металлом.
    • Плакирование – используется, когда нужно придать большую устойчивость к агрессивным средам. Основной металл покрывается другим, более прочным и устойчивым к климатическим изменениям. Плакирование можно совмещать с литьем, прессованием, совместной прокаткой и ковкой.
    • Диффузионный метод – это покрытие под воздействием высокой температуры. Оно смешивается с поверхностным слоем основного металла и проникает в него, придавая изделию различные защитные свойства.

    Современные технологии конструкционной обработки цветных металлов

    При обработке цветных металлов используется обширный спектр методов в зависимости от температурного режима и технологии. Это могут быть холодные и горячие способы, термические и механические.

    Обработка цветных металлов

    Вот несколько наиболее популярных:

    • Штамповка – обработка цветных металлов давлением. Детали помещают в металлические формы с заданными параметрами и изготавливают под прессом.
    • Прокатка. Заготовки также находятся под давлением. Металл пропускается между вальцами и вращается в разных направлениях. Это дает уменьшение площади поперечного сечения и изменение профиля детали. Этот способ применяется при изготовлении рельсов, балок, трубного и сортового металлопроката.
    • Волочение. Относится к способу механической обработки цветных металлов. Изделие в холодном виде протягивают через матрицу. Этот метод используется, когда требуется увеличить длину детали и сократить площадь поперечного сечения. Кроме того, улучшаются свойства поверхности самого металла.
    • Прессовка. Метод с применением давления. Подходит для обработки меди, алюминия, олова и свинца. Через специальную матрицу детали продавливают. Такой способ характерен для производства прутов, труб и различных профилей.

    Говоря об обработке цветных металлов, мы подразумеваем, что это довольно сложные производственные процессы. Вышеупомянутые материалы подвергаются обработке самыми разными методами, которые принято делить на горячие, холодные и механические. Из них на текущий момент наиболее актуальны:

    • отливка;
    • сварка;
    • обработка под давлением;
    • обработка станочная.

    Выбор способа обработки всегда зависит от особенностей и характеристик металла. Необходимо учитывать свойства, которые могут изменяться при нагревании, влияние атмосферных газов, теплопроводность (если требуется термическая обработка) плюс теплоемкость материала.

    Отдельное внимание стоит уделить защите изделиям из цветных металлов в будущем. Именно поэтому часто используются лакокрасочные покрытия.

    Особенности художественной обработки цветных металлов

    В основе металлообработки не всегда лежит только изменение размеров и формы детали, часто применяется и декорирование. Можно не только создавать самостоятельные изделия, но и украшать готовые конструкции из металла. В качестве примера можно привести четыре способа обработки металла, которые могут украсить или изменить внешний вид детали:

    Литье

    Один из древнейших способов металлообработки, популярность которого не уменьшается со временем. Металл плавят до жидкого состояния, а затем разливают в подготовленные формы. Материал остывает и твердеет, повторяя очертания заданной формы. Далее на отливке зачищаются все неровности и «заусенцы» – деталь готова.

    Металлургия развивается, а вместе с ней совершенствуются процессы литья. В настоящий момент есть несколько видов этого процесса, даже с параллельным применением давления. Благодаря новейшим методам можно получить отливки совсем небольшого размера, но с невероятной точностью повторяющие параметры формы.

    Ковка

    Металлическому изделию придается форма за счет ударов инструмента по заготовке.

    Обработка цветных металлов

    Ковка бывает ручной и машинной. Первый вариант применяется при производстве мелких деталей, а второй – в промышленности: на пневматических молотах и гидравлических прессах.

    Чеканка

    Популярный метод декорирования путем выбивания изображения на листе металла. Относится к прикладным искусствам и используется при изготовлении картин, изделий из серебра и других драгметаллов, кухонной утвари и т. д. Рельеф выполняется с использованием чеканов, по которым бьют молоточками. Сами инструменты изготавливаются из дерева и металла.

    Обычно чеканка выполняется на меди, латуни, а также на золоте, серебре, платине и других металлах, если речь идет об изготовлении ювелирной продукции. Толщина заготовки варьируется от 0,2 до 1 мм.

    Сварка

    Цветные металлы также сваривают. Этот процесс довольно сложный, так как обязательно нужно учитывать особенности материала. Бытовые аппараты далеко не всегда могут создать шов хорошего качества. Промышленные инструменты справляются лучше, но также требуются и специальные электроды, и защитный газ.

    В отличие от прочих, сварочная технология – достаточно новый способ обработки металла. Активно развиваться сварка начала только во второй половине XX века. Когда мы говорим об обработке цветных металлов резанием, мы имеем в виду также использование сварочного аппарата, с помощью которого можно не только соединять детали между собой.

    Рекомендуем статьи

    Есть одно общее правило при декоративных работах с металлом – его нужно предварительно разогреть. Потому что чем больше его пластичность, тем проще его обрабатывать.

    Задача металлообработки – изменить форму и размеры детали, как дополнительный плюс – улучшить ее характеристики. Декоративная работа позволяет усовершенствовать внешний вид изделия, украсив его.

    КЛАССИФИКАЦИЯ СВОЙСТВ МЕТАЛЛОВ

    Сегодня мы поговорим о цветных металлах. В современном машиностроении, энергетике, радиоэлектронике и других отраслях экономики наряду с чёрными металлами и сплавами широкое применение находят цветные металлы и сплавы на их основе. Цветные металлы и их сплавы обладают различными физико-химическими, механическими и технологическими свойствами, благодаря которым они нашли широкое применение: высокой устойчивостью против коррозии, электро- и теплопроводностью, способностью подвергаться различным видам обработки, в том числе пластически деформироваться (прокатка, волочение, ковка, штамповка). Цветные металлы способны сплавляться как между собой так и с чёрными металлами и образовывать сплавы с высокими и физико-химическими и механическими свойствами.

    (Посмотреть видео на слайде «Производство цветных металлов»)

    Повторение ранее изученного материала :

    1. Что лежит в основе свойств металлов?

    - Строение кристаллической решётки.

    Давайте вспомним основные группы свойств металлов по классификации и некоторые виды этих свойств.

    1. Назвать основные группы и виды свойств металлов, относящихся к ним, дать определения этим видам свойств.
    ( при этом заполним сравнительную таблицу).

    Путём сравнения выясним возможность и необходимость применения сплавов цветных металлов.

    КЛАССИФИКАЦИЯ СВОЙСТВ МЕТАЛЛОВ

    Группы и виды свойств металлов

    К цветным металлам относятся все металлы и их сплавы за исключением железа. Цветные металлы отличаются тем, что способны образовывать окислительную пленку, которая предотвращает коррозию металла. По объёму производства и применению цветные металлы по сравнению с чёрными металлами и их сплавами (сталями и чугунами ) занимают незначительное место. Это объясняется тем, что цветные металлы имеют более низкие механические свойства, значительно реже встречаются в природе и из-за сложности металлургического производства они значительно дороже чёрных металлов. Руды, содержащие цветные металлы, более бедные, чем например, железная руда. Чтобы получить 1 т чугуна, требуется переработать 2,0…2,5 т железной руды, а чтобы получить 1 т меди, необходимо переработать до 200т медной руды. Кроме того, в рудах цветных металлов кроме основного металла содержится ещё несколько цветных металлов в виде оксидов или в чистом виде, которые затрудняют производство основного металла. Например медная руда кроме меди включает в себя золото, платину, серебро, цинк, свинец и другие металлы. В связи с этим при переработке руд цветных металлов применяют комплексную технологию производства, которая значительно удорожает выплавку меди. Поэтому исследования современных технологий в отрасли цветной металлургии направлены на увеличении добычи этих металлов с меньшими затратами.

    Основные задачи, которые стоят перед современной металлургией:

    — необходимость более продуктивной переработки руды;

    — разработка новых методов использования в качестве источника цветных металлов вторичного сырья;

    — развитие производства редко используемых металлов – кобальт, титан, тантал.

    Решив эти задачи, можно добиться увеличения производства, оборота и потребления цветных металлов. Высокая цена на эти металлы обусловлена чрезвычайно высоким спросом на них.

    На сегодняшний день цветные металлы имеют огромное значение для производства любого типа техники. Безусловно, тяжелые или черные металлы составляют основу машиностроительного производства, но и цветные металлы нашли широкое применение в создании машин и их составных элементов. Прежде всего, это алюминий, медь, цинк, олово, никель и их сплавы. Они используются там, где их свойства, необходимы. Например, медь в обмотках генераторов и стартеров автомобилей, олово и бронза для подшипников скольжения и втулок, свинец и сурьма при изготовлении пластин аккумуляторных батарей, алюминий и его сплавы при отливке блоков цилиндров двигателей внутреннего сгорания. В современной технике объем применения цветных металлов и сплавов на их основе непрерывно растет. Области применения отдельных цветных металлов и сплавов на их основе весьма разнообразны. В автомобилестроении алюминий применяют в основном как компонент в различных сплавах, для изготовления фольги, идущей на обкладки конденсаторов, для покрытия рефлекторов фар и т. д. Наиболее широкое применение олово находит как добавка в сплавы цветных металлов, для приготовления припоев и изготовления баббитов. Автомобильные детали изготовляют из оловянистых бронз, которые характеризуются достаточной прочностью, высокими антифрикционными качествами, коррозионной стойкостью, хорошей теплопроводностью. Деформируемые оловянистые бронзы отличаются, кроме того, хорошими упругими свойствами. Повышение содержания олова в оловянистых бронзах увеличивает прочность и твердость, но уменьшает пластичность и ударную вязкость. Из оловянистых бронз изготавливают арматуру, втулки шкворней, полуосевые и упорные шайбы, втулки коромысел, шатунов и др. Из литейных алюминиевых сплавов изготовляют поршни, головки и блоки ‘цилиндров, корпуса карбюраторов и топливных насосов, картеры коробок передач легковых автомобилей и другие детали. Сплавы на цинковой основе. В состав цинковых сплавов входят алюминий, медь, магний и другие элементы. Сплавы на цинковой основе имеют низкую температуру плавления. Основным положительным качеством цинковых, сплавов является их жидкотекучесть в расплавленном состоянии. Их применяют для изготовления автомобильных деталей сложной формы с тонкими сечениями методом литья под давлением. Из цинковых сплавов изготавливают корпуса карбюраторов, корпуса топливных насосов, тормозные краны, облицовку радиаторов и т. п. Антифрикционные сплавы широко применяют в автомобилестроении для заливки вкладышей коренных и шатунных подшипников коленчатых валов двигателей, опорных втулок распределительных валов, шатунных вкладышей коленчатых валов компрессоров и других целей. В качестве антифрикционных сплавов применяют баббиты, свинцовистые бронзы и другие сплавы. На карбюраторных автомобильных двигателях преимущественно применяют малосурьмяннстый свинцовый сплав СОС-6-6, обладающий хорошей сопротивляемостью циклическим деформациям и выкрашиванию. Для заливки вкладышей коренных и шатунных подшипников коленчатых валов дизельных автомобильных двигателей применяют свинцовистую бронзу, обычно БрСЗО. Для заливки вкладышей дизельных и карбюраторных двигателей применяют сплавы на алюминиевой основе, например сплав АСС6-5 и др. Преимуществами тонкостенных вкладышей, залитых свинцовистой бронзой или алюминиевым сплавом, является их большая прочность, меньшая вероятность выкрашивания, хорошая теплопроводность, высокая жаростойкость.

    В автомобилестроении и авторемонтном производстве широко применяют оловянисто-свинцовые и медно-цинковые припои, кроме того, используют серебряные припои. Положительными свойствами серебряных припоев являются высокая механическая прочность, пластичность, электропроводность, коррозионная стойкость, однако эти припои дефицтны. Оловянисто-свинцовые припои применяют для лужения вкладышей, заливаемых свинцовыми баббитами, для пайки радиаторов, топливных баков, деталей электрооборудования и т. п. Медно-цинковые припои применяются для пайки деталей из латуни, медных сплавов, для газовой пайки деталей из серого и ковкого чугуна и т. п. Серебряные припои применяют для пайки ответственных соединений электроприборов и электропроводов.

    Технический алюминий хорошо сваривается, имеет высокую пластичность. Из него изготавливают строительные конструкции, малонагруженные детали машин, используют в качестве электротехнического материала для кабелей, проводов.

    Характерным свойством меди является ее высокая электропроводность, поэтому она находит широкое применение в электротехнике. Однофазные – латуни используются для изготовления деталей деформированием в холодном состоянии. Изготавливают ленты, гильзы патронов, радиаторные трубки, проволоку.

    Из двухфазных латуней изготавливают листы, прутки и другие заготовки, из которых последующей механической обработкой изготавливают детали. Литейные оловянные бронзы, БрО3Ц7С5Н1, БрО4Ц4С17, применяются для изготовления пароводяной арматуры и для отливок антифрикционных деталей типа втулок, венцов червячных колес, вкладышей подшипников. Из деформируемых бронз изготавливают прутки, трубы, ленту, проволоку. Свинецприменяется для изготовления труб, аккумуляторных пластин, а также для получения подшипниковых сплавов.

    Читайте также: