Таблица тока проводимости металлов
Электропроводность (электрическая проводимость) и электрическое сопротивление нержавейки разных марок.
Под удельной электропроводностью металлов подразумевается способность стали проводить электрический ток (измеряется в Ом/м).
Также это физическая величина, характеризующая эту способность и обратная электрическому сопротивлению.
Все нержавеющие сплавы являются проводниками, но сопротивление у разных сплавов разная, некоторые из них проводят электрический ток хуже, некоторые – лучше.
Удельное электрическое сопротивление металла значительно зависит и от температуры. При увеличении температуры стали увеличивается частота и амплитуда колебаний атомов кристаллической решетки, это увеличивает сопротивление материала и затрудняет прохождение электрического тока. Поэтому, с ростом температуры сопротивление металла увеличивается.
В этой таблице можно посмотреть как проводимость, так и сопротивление нержавеющих сплавов и не только.
Пояснения по терминам в конце таблицы.*
Материалы | Проводимость * (% IACS) | Проводимость * (сименс/м) | Сопротивление * (Ом*м) |
---|
Железо и чугун | |||
Железо чистое | 18.00 | 1.044*10 7 | 9.579*10 -8 |
В слитке Iron Ingot (непр.назв.ignot) (99.9% Fe) | 15.60 | 9.048*10 6 | 1.105*10 -7 |
Низкоуглеродистый белый чугун | 3.25 | 5.300*10 -7 | |
Мартенситное хромо-никелевое (стое) железо /martensitic nickel-chromium iron | 2.16 | 8.000*10 -7 | |
Высококремнистый чугун / high-silicon iron | 3.45 | 5.000*10 -7 | |
Железо-никелевые сплавы/ h igh-nickel iron | 1.0-1.2 | 1.4*10 -6 –1.7*10 -6 | |
Хромо-никелевое кремнистое железо / nickel-chromium-silicon iron | 1.0-1.2 | 1.5*10 -6 –1.7*10 -6 | |
Алюминиево-железные сплавы/ high-aluminum iron | 0.72 | 2.400*10 -6 | |
Кремнистый чугун/ medium-silicoon ductile iron | 2.0-3.0 | 5.8*10 -7 –8.7*10 -7 | |
Ниель-железные сплавы / high-nickel ductile (20% Ni) | 1.69 | 1.020*10 -6 | |
Углеродистые и низколегированные стали. AISI | |||
1008 (Отожженная) | 11.81 | 1.460*10 -7 | |
1010 | 12.06 | 1.430*10 -7 | |
1015 (Отожженная) | 10.84 | 1.590*10 -7 | |
1016 (Отожженная) | 10.78 | 1.600*10 -7 | |
1018 (Отожженная) | 10.84 | 1.590*10 -7 | |
1020 | 10.84 | 1.590*10 -7 | |
1022 (Отожженная) | 10.84 | 1.590*10 -7 | |
1025 (Отожженная) | 10.84 | 1.590*10 -7 | |
1029 (Отожженная) | 10.78 | 1.600*10 -7 | |
1030 (Отожженная) | 10.39 | 1.660*10 -7 | |
1035 (Отожженная) | 10.58 | 1.630*10 -7 | |
1040 (Отожженная) | 10.78 | 1.600*10 -7 | |
1042 (Отожженная) | 10.08 | 1.710*10 -7 | |
1043 (Отожженная) | 10.58 | 1.630*10 -7 | |
1045 (Отожженная) | 10.64 | 1.620*10 -7 | |
1046 | 10.58 | 1.630*10 -7 | |
1050 (Отожженная) | 10.58 | 1.630*10 -7 | |
1055 | 10.58 | 1.630*10 -7 | |
1060 | 9.58 | 1.800*10 -7 | |
1065 | 10.58 | 1.630*10 -7 | |
1070 | 10.26 | 1.680*10 -7 | |
1078 (Отожженная) | 9.58 | 1.800*10 -7 | |
1080 | 9.58 | 1.800*10 -7 | |
1095 | 9.58 | 1.800*10 -7 | |
1137 | 10.14 | 1.700*10 -7 | |
1141 | 10.14 | 1.700*10 -7 | |
1151 | 10.14 | 1.700*10 -7 | |
1524 | 8.29 | 2.080*10 -7 | |
1524 (Отожженная) | 10.78 | 1.600*10 -7 | |
1552 | 10.58 | 1.630*10 -7 | |
4130 (Закаленная и отпущенная) | 7.73 | 2.230*10 -7 | |
4140 (Закаленная и отпущенная) | 7.84 | 2.200*10 -7 | |
4626 (Нормализованная и отпущенная) | 8.62 | 2.000*10 -7 | |
4815 | 6.63 | 2.600*10 -7 | |
5132 | 8.21 | 2.100*10 -7 | |
5140 (Закаленная и отпущенная) | 7.56 | 2.280*10 -7 | |
Холоднодеформированные нержавеющие стали отожженные AISI | |||
201 | 2.50 | 6.900*10 -7 | |
202 | 2.50 | 6.900*10 -7 | |
301 | 2.39 | 7.200*10 -7 | |
302 | 2.39 | 7.200*10 -7 | |
302B | 2.39 | 7.200*10 -7 | |
303 | 2.39 | 7.200*10 -7 | |
304 | 2.39 | 7.200*10 -7 | |
302Cu | 2.39 | 7.200*10 -7 | |
304N | 2.39 | 7.200*10 -7 | |
304 | 2.50 | 1.450*10 6 | 6.897*10 -7 |
304 | 2.50 | 1.450*10 6 | 6.897*10 -7 |
305 | 2.39 | 7.200*10 -7 | |
308 | 2.39 | 7.200*10 -7 | |
309 | 2.21 | 7.800*10 -7 | |
310 | 2.21 | 7.800*10 -7 | |
314 | 2.24 | 7.700*10 -7 | |
316 | 2.33 | 7.400*10 -7 | |
316N | 2.33 | 7.400*10 -7 | |
316 | 2.30 | 1.334*10 6 | 7.496*10 -7 |
317 | 2.33 | 7.400*10 -7 | |
317L | 2.18 | 7.900*10 -7 | |
321 | 2.39 | 7.200*10 -7 | |
329 | 2.30 | 7.500*10 -7 | |
330 | 1.69 | 1.020*10 -6 | |
347 | 2.36 | 7.300*10 -7 | |
347 | 2.40 | 1.392*10 6 | 7.184*10 -7 |
384 | 2.18 | 7.900*10 -7 | |
405 | 2.87 | 6.000*10 -7 | |
410 | 3.02 | 5.700*10 -7 | |
414 | 2.46 | 7.000*10 -7 | |
416 | 3.02 | 5.700*10 -7 | |
420 | 3.13 | 5.500*10 -7 | |
429 | 2.92 | 5.900*10 -7 | |
430 | 2.87 | 6.000*10 -7 | |
430F | 2.87 | 6.000*10 -7 | |
431 | 2.39 | 7.200*10 -7 | |
434 | 2.87 | 6.000*10 -7 | |
436 | 2.87 | 6.000*10 -7 | |
439 | 2.74 | 6.300*10 -7 | |
440A | 2.87 | 6.000*10 -7 | |
440C | 2.87 | 6.000*10 -7 | |
444 | 2.78 | 6.200*10 -7 | |
446 | 2.57 | 6.700*10 -7 | |
PH 13-8 Mo | 1.69 | 1.020*10 -6 | |
15-5 PH | 2.24 | 7.700*10 -7 | |
17-4 PH | 2.16 | 8.000*10 -7 | |
17-7 PH | 2.08 | 8.300*10 -7 | |
Холоднодеформированные и спеченные суперсплавы (супераллои, супералои) | |||
Elgiloy | 1.73 | 9.950*10 -7 | |
Hastelloy Хастеллой “A” | 1.40 | 8.120*10 5 | 1.232*10 -6 |
Hastelloy Хастеллой”B” и “C” | 1.30 | 7.540*10 5 | 1.326*10 -6 |
Hastelloy Хастеллой”D” | 1.50 | 8.700*10 5 | 1.149*10 -6 |
Hastelloy Хастеллой”X” | 1.50 | 8.700*10 5 | 1.149*10 -6 |
Haynes 150 | 2.13 | 8.100*10 -7 | |
Haynes 188 | 1.87 | 9.220*10 -7 | |
Haynes 230 | 1.38 | 1.250*10 -6 | |
Incoloy 800 Инкаллой | 1.74 | 9.890*10 -7 | |
Incoloy 825 | 1.53 | 1.130*10 -6 | |
Incoloy 903 | 2.83 | 6.100*10 -7 | |
Incoloy 907 | 2.47 | 6.970*10 -7 | |
Incoloy 909 | 2.37 | 7.280*10 -7 | |
Inconel 600 Инконель | 1.70 | 9.860*10 5 | 1.014*10 -6 |
Inconel 600 | 1.67 | 1.030*10 -6 | |
Inconel 601 | 1.45 | 1.190*10 -6 | |
Inconel 617 | 1.41 | 1.220*10 -6 | |
Inconel 625 | 1.34 | 1.290*10 -6 | |
Inconel 690 | 11.65 | 1.480*10 -7 | |
Inconel 718 | 1.38 | 1.250*10 -6 | |
Inconel X750 | 1.41 | 1.220*10 -6 | |
L-605 | 1.94 | 8.900*10 -7 | |
M-252 | 1.58 | 1.090*10 -6 | |
MP35N | 1.71 | 1.010*10 -6 | |
Nimonic? 263 | 1.50 | 1.150*10 -6 | |
Nimonic 105 | 1.32 | 1.310*10 -6 | |
Nimonic 115 | 1.24 | 1.390*10 -6 | |
Nimonic 75 | 1.39 | 1.240*10 -6 | |
Nimonic 80A | 1.36 | 1.270*10 -6 | |
Nimonic 90 | 1.46 | 1.180*10 -6 | |
Nimonic PE.16 | 1.57 | 1.100*10 -6 | |
Nimonic PK.33 | 1.37 | 1.260*10 -6 | |
Rene 41 | 1.32 | 1.308*10 -6 | |
Stellite 6B Стеллит, стелит | 1.89 | 9.100*10 -7 | |
Udimet 500 | 1.43 | 1.203*10 -6 | |
Waspaloy | 1.39 | 1.240*10 -6 |
Электропроводимость (% IACS)
(International Annealed Copper Standard)
Это сокращение от «Международного стандарта по отожженной меди» = , это единица измерения проводимости, используемая для сравнения электрических проводников с традиционными медными. Проводимость указывается в процентах от стандартной.100% IACS соответствует проводимости 58 мегасименсов на метр. Что соответствует 1/58 ом на каждый метр провода поперечным сечением в 1 квадратный миллиметр.
Электропроводимость (сименс/м)
Siemens – единица измерения электрической проводимости в системе СИ, величина обратная ому.
Иными словами, проводимость в сименсах – это просто единица, делённая на сопротивление в омах.
См = 1 / Ом = А / В = кг-1·м-2·с³А²
Сопротивление (Ом*м)
Физический смысл удельного сопротивления: материал имеет удельное сопротивление один Ом·см, если изготовленный из этого материала куб со стороной 1 сантиметр имеет сопротивление 1 Ом при измерении на противоположных гранях куба.
В технике чаще применяется единица Ом·мм²/м. Удельное сопротивление однородного куска проводника длиной 1 метр и площадью токоведущего сечения 1 мм² равно 1 Ом·мм²/м, если его сопротивление равно 1 Ом.
Химический состав сплава и электропроводность
Разный состав сплавов и процент содержания в них легирующих добавок очень сказывается на величине электрического сопротивления. Углеродистые и низколегированные стали в несколько раз лучше проводят электрический ток, чем высоколегированные и жаропрочные, которые имеют высокое содержание никеля и хрома.
Углеродистый сплав
Углеродистый сплав при комнатной температуре, имеет низкое удельное электросопротивление за счет высокого содержания железа. При 20°С значение их удельного сопротивления находится в диапазоне от 13·10 -8 (для стали 08КП) до 20·10 -8 Ом·м (для У12).
При нагревании до температур более 1000°С способность углеродистого сплава проводить электрический ток заметно снижается. Сопротивление возрастает на порядок и может достигать значения 130·10 -8 Ом·м.
Низколегированный сплав
Низколегированный сплав способен сильнее сопротивляться прохождению электричества, чем углеродистый. Его удельное электросопротивление составляет (20…43)·10 -8 Ом·м при комнатной температуре.
Внимание, сплавы этого типа, которые очень плохо проводят электрический ток — это 18Х2Н4ВА и 50С2Г. Однако при высоких температурах, способность проводить электрический ток у сталей, приведенных в таблице, практически не различается.
Хромистая нержавеющая сталь
Хромистый нержавеющий сплав имеет высокую концентрацию атомов хрома, что повышает удельное сопротивление — токопроводимость такой нержавеющей стали мала. При обычных температурах ее сопротивление составляет (50…60)·10 -8 Ом·м.
Марка сплава | 20 | 100 | 300 | 500 | 700 | 900 | 1100 | 1300 |
---|
Х13 | 50,6 | 58,4 | 76,9 | 93,8 | 110,3 | 115 | 119 | 125,3 |
2Х13 | 58,8 | 65,3 | 80 | 95,2 | 110,2 | — | — | — |
3Х13 | 52,2 | 59,5 | 76,9 | 93,5 | 109,9 | 114,6 | 120,9 | 125 |
4Х13 | 59,1 | 64,6 | 78,8 | 94 | 108 | — | — | — |
Хромоникелевая нержавеющая аустенитная сталь
Хромоникелевый аустенитный сплав также являются нержавеющими, но из-за добавки никеля имеет удельное сопротивление в полтора раза выше, чем у хромистого — оно достигает величины (70…90)·10-8 Ом·м.
12Х18Н9 | — | 74,3 | 89,1 | 100,1 | 109,4 | 114 | — |
12Х18Н9Т | 72,3 | 79,2 | 91,2 | 101,5 | 109,2 | — | — |
17Х18Н9 | 72 | 73,5 | 92,5 | 103 | 111,5 | 118,5 | — |
Х18Н11Б | — | 84,6 | 97,6 | 107,8 | 115 | — | — |
Х18Н9В | 71 | 77,6 | 91,6 | 102,6 | 111,1 | 117,1 | 122 |
4Х14НВ2М (ЭИ69) | 81,5 | 87,5 | 100 | 110 | 117,5 | — | — |
1Х14Н14В2М (ЭИ257) | — | 82,4 | 95,6 | 104,5 | 112 | 119,2 | — |
1х14Н18М3Т | — | 89 | 100 | 107,5 | 115 | — | — |
36Х18Н25С2 (ЭЯ3С) | — | 98,5 | 105,5 | 110 | 117,5 | — | — |
Х13Н25М2В2 | — | 103 | 112,1 | 118,1 | 121 | — | — |
Х7Н25 (ЭИ25) | — | — | 109 | 115 | 121 | 127 | — |
Х2Н35 (ЭИ36) | 87,5 | 92,5 | 103 | 110 | 116 | 120,5 | — |
Н28 | 84,2 | 89,1 | 99,6 | 107,7 | 114,2 | 118,4 | 122,5 |
FAQ Электропроводность нержавеющих сплавов
Что такое электропроводность?
Это способность стали проводить электрический ток (измеряется в Ом/м). Также это физическая величина, характеризующая эту способность и обратная электрическому сопротивлению.
Влияет ли температура на электропроводность?
Влияет ли химический состав сплава и электропроводность?
Разные составы сплавов и процент содержания в них легирующих добавок сказывается на величине электрического сопротивления. Углеродистые и низколегированные стали в несколько раз лучше проводят электрический ток, чем высоколегированные и жаропрочные, которые имеют высокое содержание никеля и хрома.
Удельная проводимость металлов таблица
Электрическое сопротивление, одно из составляющих закона Ома, выражается в омах (Ом). Следует заметить, что электрическое сопротивление и удельное сопротивление — это не одно и то же. Удельное сопротивление является свойством материала, в то время как электрическое сопротивление — это свойство объекта.
Электрическое сопротивление резистора определяется сочетанием формы и удельным сопротивлением материала, из которого он сделан.
Например, проволочный резистор, изготовленный из длинной и тонкой проволоки имеет большее сопротивление, нежели резистор, сделанный из короткой и толстой проволоки того же металла.
В тоже время проволочный резистор, изготовленный из материала с высоким удельным сопротивлением, обладает большим электрическим сопротивлением, чем резистор, сделанный из материала с низким удельным сопротивлением. И все это не смотря на то, что оба резистора сделаны из проволоки одинаковой длины и диаметра.
В качестве наглядности можно провести аналогию с гидравлической системой, где вода прокачивается через трубы.
- Чем длиннее и тоньше труба, тем больше будет оказано сопротивление воде.
- Труба, заполненная песком, будет больше оказывать сопротивление воде, нежели труба без песка
Проводимость и сопротивление
У.с. показывает способность вещества препятствовать прохождению тока. Но в физике есть и обратная величина — проводимость. Она показывает способность проводить электрический ток. Выглядит она так:
σ=1/ρ, где ρ – это и есть удельное сопротивление вещества.
Если говорить о проводимости, то она определяется характеристиками носителей зарядов в этом веществе. Так, в металлах есть свободные электроны. На внешней оболочке их не больше трех, и атому выгоднее их «отдать», что и происходит при химических реакциях с веществами из правой части таблицы Менделеева. В ситуации же, когда мы располагаем чистым металлом, он имеет кристаллическую структуру, в которой эти наружные электроны общие. Они-то и переносят заряд, если приложить к металлу электрическое поле.
В растворах носителями заряда являются ионы.
Если говорить о таких веществах, как кремний, то по своим свойствам он является полупроводником и работает несколько по иному принципу, но об этом позже. А пока разберемся, чем же отличаются такие классы веществ, как:
Читать также: Фото лесоруба с бензопилой
Проводники и диэлектрики
Есть вещества, которые ток почти не проводят. Они называются диэлектриками. Такие вещества способны поляризоваться в электрическом поле, то есть их молекулы могут поворачиваться в этом поле в зависимости от того, как распределены в них электроны. Но поскольку электроны эти не являются свободными, а служат для связи между атомами, ток они не проводят.
Проводимость диэлектриков почти нулевая, хотя идеальных среди них нет (это такая же абстракция, как абсолютно черное тело или идеальный газ).
Условной границей понятия «проводник» является ρ
Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Эта величина выражается в Ом-метр (Ом⋅м). Символ, обозначающий удельное сопротивление, является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.
Сопротивление провода
Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:
где: R — сопротивление провода (Ом) ρ — удельное сопротивление металла (Ом.m) L — длина провода (м) А — площадь поперечного сечения провода (м2)
В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м. Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:
R=1,1*10-6*(1,5/0,000000196) = 8,4 Ом
Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.
Какое сопротивление меди и алюминия
Алюминий — это легкий металл, который легко поддается обработке и литью. Обладает высокой электропроводностью: он стоит на 4 месте после серебра, меди и золота.
Важно! Несмотря на ряд достоинств (невысокую стоимость, малый вес, простоту обработки и другие) в долгосрочной перспективе алюминиевые провода менее выгодны, чем медные.
В электротехнике значение имеют 2 термина:
- Электропроводность: отвечает за передачу тока от одной точки к другой. Чем выше проводимость металла, тем лучше он передает электричество. При +20 градусах проводимость меди составляет 59,5 миллионов сименс на метр (См/м), алюминия — 38 миллионов См/м. Проводимость медного кабеля практически не зависит от температуры.
- Электросопротивление: чем выше это понятие, тем хуже вещество будет пропускать ток. Удельное сопротивление меди составляет 0,01724-0,0180 мкОм/м, алюминия — 0,0262-0,0295.
Вам это будет интересно Особенности мощности постоянного тока
Алюминиевые кабели востребованы не меньше медных
Иными словами, медь обладает более высокой проводимостью и меньшим сопротивлением, чем алюминий.
Свойства резистивных материалов
Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.
Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект. Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.
Много различных материалов и сплавов используются в производстве резисторов. Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов. Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко поддается пайке и имеет более низкий температурный коэффициент.
Удельное сопротивление металлов, электролитов и веществ (Таблица)
Удельное сопротивление металлов и изоляторов
В справочной таблице даны значения удельного сопротивления р некоторых металлов и изоляторов при температуре 18—20° С, выраженные в ом·см. Величина р для металлов в сильной степени зависит от примесей, в таблице даны значения р для химически чистых металлов, для изоляторов даны приближенно. Металлы и изоляторы расположены в таблице в порядке возрастающих значений р.
Таблица удельное сопротивление металлов
Чистые металлы | 104 ρ (ом·см) | Чистые металлы | 104 ρ (ом·см) |
Серебро | 0,016 | Хром | 0,131 |
Медь | 0,017 | Тантал | 0,146 |
Золото | 0,023 | Бронза 1) | 0,18 |
Алюминий | 0,029 | Торий | 0,18 |
Дюралюминий | 0,0335 | Свинец | 0,208 |
Магний | 0,044 | Платинит 2) | 0,45 |
Кальций | 0,046 | Сурьма | 0,405 |
Натрий | 0,047 | Аргентан | 0,42 |
Марганец | 0,05 | Никелин | 0,33 |
Иридий | 0,063 | Манганин | 0,43 |
Вольфрам | 0,053 | Константан | 0,49 |
Молибден | 0,054 | Сплав Вуда 3) | 0,52 (0°) |
Родий | 0,047 | Осмий | 0,602 |
Цинк | 0,061 | Сплав Розе 4) | 0,64 (0°) |
Калий | 0,066 | Хромель | 0,70-1,10 |
Никель | 0,070 | ||
Кадмий | 0,076 | Инвар | 0,81 |
Латунь | 0,08 | Ртуть | 0,958 |
Кобальт | 0,097 | Нихром 5) | 1,10 |
Железо | 0,10 | Висмут | 1,19 |
Палладий | 0,107 | Фехраль 6) | 1,20 |
Платина | 0,110 | Графит | 8,0 |
Олово | 0,113 |
Таблица удельное сопротивление изоляторов
Изоляторы | ρ (ом·см) | Изоляторы | ρ (ом·см) |
Асбест | 108 | Слюда | 1015 |
Шифер | 108 | Миканит | 1015 |
Дерево сухое | 1010 | Фарфор | 2·1015 |
Мрамор | 1010 | Сургуч | 5·1015 |
Целлулоид | 2·1010 | Шеллак | 1016 |
Бакелит | 1011 | Канифоль | 1016 |
Гетинакс | 5·1011 | Кварц _|_ оси | 3·1016 |
Алмаз | 1012 | Сера | 1017 |
Стекло натр | 1012 | Полистирол | 1017 |
Стекло пирекс | 2·1014 | Эбонит | 1018 |
Кварц || оси | 1014 | Парафин | 3·1018 |
Кварц плавленый | 2·1014 | Янтарь | 1019 |
Удельное сопротивление чистых металлов при низких температурах
В таблице даны значения удельного сопротивления (в ом·см) некоторых чистых металлов при низких температурах (0°С).
Чистые металлы | t (°С) | Удельное сопротивление, 104 ρ (ом·см) |
Висмут | -200 | 0,348 |
Золото | -262,8 | 0,00018 |
Железо | -252,7 | 0,00011 |
Медь | -258,6 | 0,00014 1 |
Платина | -265 | 0,0010 |
Ртуть | -183,5 | 0,0697 |
Свинец | -252,9 | 0,0059 |
Серебро | -258,6 | 0,00009 |
Отношение сопротивлении Rt/Rq чистых металлов при температуре Т °К и 273° К.
В справочной таблице дано отношение Rt/Rq сопротивлений чистых металлов при температуре Т °К и 273° К.
Чистые металлы | Т (°К) | RT/R0 |
Алюминий | 77,7 | 1,008 |
20,4 | 0,0075 | |
Висмут | 77,8 | 0,3255 |
20,4 | 0,0810 | |
Вольфрам | 78,2 | 0,1478 |
20,4 | 0,0317 | |
Железо | 78,2 | 0,0741 |
20,4 | 0,0076 | |
Золото | 78,8 | 0,2189 |
20,4 | 0,0060 | |
Медь | 81,6 | 0,1440 |
20,4 | 0,0008 | |
Молибден | 77,8 | 0,1370 |
20,4 | 0,0448 | |
Никель | 78,8 | 0,0919 |
20,4 | 0,0066 | |
Олово | 79,0 | 0,2098 |
20,4 | 0,0116 | |
Платина | 91,4 | 0,2500 |
20,4 | 0,0061 | |
Ртуть | 90,1 | 0,2851 |
20,4 | 0,4900 | |
Свинец | 73,1 | 0,2321 |
20,5 | 0,0301 | |
Серебро | 78,8 | 0,1974 |
20,4 | 0,0100 | |
Сурьма | 77,7 | 0,2041 |
20,4 | 0,0319 | |
Хром | 80,0 | 0,1340 |
20,6 | 0,0533 | |
Цинк | 83,7 | 0,2351 |
20,4 | 0,0087 |
Удельное сопротивление электролитов
В таблице даны значения удельного сопротивления электролитов в ом·см при температуре 18° С. Концентрация растворов с дана в процентах, которые определяют число граммов безводной соли или кислоты в 100 г раствора.
c (%) | NH4Cl | NaCl | ZnSO4 | CuSO4 | КОН | NaOH | H2SO4 |
5 | 10,9 | 14,9 | 52,4 | 52,9 | 5,8 | 5,1 | 4,8 |
10 | 5,6 | 8,3 | 31,2 | 31,3 | 3,2 | 3,2 | 2,6 |
15 | 3,9 | 6,1 | 24,1 | 23,8 | 2,4 | 2,9 | 1,8 |
20 | 3,0 | 5,1 | 21,3 | — | 2,0 | 3,0 | 1,5 |
25 | 2,5 | 4,7 | 20,8 | — | 1,9 | 3,7 | 1,4 |
_______________
Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, — М.: 1960.
Состав и структура железа
Железо – типичный металл, причем химически активный. Вещество вступает в реакцию при нормальной температуре, а нагрев или повышение влажности значительно увеличивают его реакционноспособность. Железо корродирует на воздухе, горит в атмосфере чистого кислорода, а в виде мелкой пыли способно воспламениться и на воздухе.
Чистому железу присуща ковкость, однако в таком виде металл встречается очень редко. На деле под железом подразумевают сплав с небольшими долями примесей – до 0,8%, которому присущи мягкость и ковкость чистого вещества. Значение для народного хозяйства имеет сплавы с углеродом – сталь, чугун, нержавеющая сталь.
Железу присущ полиморфизм: выделяют целых 4 модификации, отличающиеся структурой и параметрами решетки:
При высоком давлении, а также при легировании металла некоторыми добавками образуется ε- фаза с гексагонической плотноупакованной решеткой.
Температура фазовых переходов заметно изменяется при легировании тем же углеродом. Собственно, сама способность железа образовать столько модификаций служит основой обработки стали в разных температурных режимах. Без таких переходов металл не получил бы столь широкого распространения.
Электропроводность: объяснение, формулы, единица измерения, таблица
Почему медь проводит электричество лучше, чем вода? Прочитав эту статью, вы больше не будете задавать себе больше этот вопрос. Далее мы обсудим электропроводность и рассмотрим формулы, которые описывают это понятие. Наконец, вы можете проверить свои знания на двух примерах.
Простое объяснение.
Электропроводность – это физическая величина, которая описывает насколько хорошо определенный материал проводит электричество.
Формулы
Существует три различных формульных обозначения удельной электропроводности σ (греч. сигма), k (каппа) и γ (гамма). В дальнейшем мы будем использовать σ. Формула электропроводности, также называемой удельной электропроводностью, описывается формулой:
σ = 1 / ρ .
Здесь ρ называется удельным сопротивлением. Вы можете рассчитать электрическое сопротивление R проводника с учетом его параметров следующим образом: R = ( ρ * l ) / S .
Таким образом, сопротивление R равно удельному сопротивлению ρ , умноженному на длину проводника l, деленному на площадь поперечного сечения S. Если теперь вы хотите выразить эту формулу через удельную электропроводность σ = 1 / ρ , полезно знать, что электрическая проводимость G проводника выражается следующим образом: G = 1 / R .
Если в верхнюю формулу подставить удельную электропроводность σ и электрическую проводимость G, то получится следующее: 1 / G = ( 1 / σ ) * ( l / S ) .
Путем дальнейшего преобразования можно получить выражение: G = σ * S / l .
С помощью электропроводности можно также описать важную зависимость между плотностью электрического тока и напряженностью электрического поля с помощью выражения: J = σ * E .
Единица измерения
Единицей удельной электропроводности σ в СИ является: [ σ ] = 1 См/м ( Сименс на метр ).
Эти единицы определяются по формуле G = σ * S / l . Если решить эту формулу в соответствии с σ, то получим σ = G * l / S .
Единица измерения электрической проводимости G задается как: [ G ] = 1 / σ = 1 См ( Сименс, международное обозначение: S ).
Если теперь ввести в формулу все единицы измерения, то получится:
[ σ ] = 1 См * 1 м / м 2 = 1 См / м .
Вы также будете чаще использовать единицы измерения См / см , м / Ом * мм 2 или См * м / мм 2 . Вы можете преобразовать отдельные измеряемые переменные так: См / см = См / 10 -2 м и так: м / Ом * мм 2 = См * м / мм 2 = См * м / 10 -3 м * 10 -3 м = 10 6 См / м .
Электропроводность металлов
В зависимости от количества свободно перемещающихся электронов один материал проводит лучше, чем другой. В принципе, любой материал является проводящим, но в изоляторах, например, протекающий электрический ток ничтожно мал, поэтому здесь мы говорим о непроводниках.
В металлических связях валентные электроны, т.е. крайние электроны в атоме, свободно подвижны. Они расположены в так называемой полосе проводимости. Находящиеся там электроны образуют так называемый электронный газ. Соответственно, металлы являются сравнительно хорошими проводниками. Если теперь подать электрическое напряжение на металл, валентные электроны медленно движутся к положительному полюсу, потому что он их притягивает.
Рис. 1. Движение электронов в металле
На рисунке 1 видно, что некоторые электроны не могут быть притянуты непосредственно к положительному полюсу, потому что на пути стоит, так сказать, твердое атомное ядро. Там они замедляются и в некоторой степени отклоняются. Именно поэтому электроны не могут ускоряться в металле бесконечно, и именно так возникает удельное сопротивление или электропроводность.
Теперь вы также можете измерить удельную электропроводность в металле с помощью следующей формулы: σ = ( n * e 2 * τ ) / m .
В этой формуле n означает число электронов, e – заряд электрона, m – массу электрона, а τ – среднее время полета электрона между двумя столкновениями.
Таблица удельной электропроводности
Для большинства веществ уже известны значения удельной электропроводности. Некоторые из них вы можете найти в следующей таблице ниже. Все значения в этой таблице действительны для комнатной температуры, т.е. 25°C.
Вещество | Удельная электропроводность в См / м |
Серебро | 62 · 10 6 |
Медь | 58 · 10 6 |
Золото | 45,2 · 10 6 |
Алюминий | 37,7 · 10 6 |
Вольфрам | 19 · 10 6 |
Латунь | 15,5 · 10 6 |
Железо | 9,93 · 10 6 |
Нержавеющая сталь (WNr. 1,4301) | 1,36 · 10 6 |
Германий (легирование | 2 |
Кремний (легирование | 0,5 · 10 -3 |
Морская вода | примерно 5 |
Водопроводная вода | примерно 0,05 |
Дистиллированная вода | 5 · 10 -6 |
Изолятор | обычно |
Удельная электропроводность сильно зависит от температуры, поэтому указанные значения применимы только при 25°C. При повышении температуры вибрация решетки в веществе становится выше. Это нарушает поток электронов, и поэтому электропроводность уменьшается с ростом температуры.
Из таблицы видно, что медь имеет вторую по величине электропроводность, поэтому медные кабели очень часто используются в электротехнике. Серебро обладает еще более высокой проводимостью, но стоит намного дороже меди.
Интересно также сравнение между морской и дистиллированной водой. Здесь электропроводность возникает благодаря растворенным в воде ионам. Морская вода имеет очень высокую долю соли, которая растворяется в воде. Эти ионы передают электрический ток. В дистиллированной воде нет растворенных ионов, поэтому в ней практически не может протекать электрический ток. Поэтому электропроводность морской воды намного выше, чем дистиллированной.
Примеры задач
Для более детального рассмотрения приведём два примера расчетов.
В первой задаче представьте, что у вас есть провод длиной 2 м с поперечным сечением 0,5 мм 2 . Электрическое сопротивление провода при комнатной температуре составляет 106 мОм. Из какого материала изготовлен провод?
Решение данной задачи можно найти с помощью формулы: R = ( 1 / σ ) * ( l / S ). Из этой формулы найдём σ = l / ( S * R ) .
Теперь вы можете вставить заданные значения, убедившись, что вы перевели сечение в м 2 .
σ = l / ( S * R ) = 2 м / ( ( 0,5 * 10 -6 м 2 ) * ( 1 / 106 * 10 -3 Ом ) ) = 37, 7 * 10 6 См / м .
Наконец, вы ищите в таблице, какой материал имеет удельную электропроводность σ = 37, 7 * 10 6 См / м и приходите к выводу, что провод сделан из алюминия.
В задаче 2 вам дано только удельное сопротивление образца с 735 * 10 -9 Ом * м. Из какого материла изготовлен образец?
Вы можете использовать формулу σ = 1 / ρ для расчёта удельной электропроводности. После подстановки значений в эту формулу вы получите: σ = 1 / ρ = 1 / 735 * 10 -9 Ом * м = 1,36 * 10 6 См / м .
Если вы снова заглянете в таблицу, то обнаружите, что образец должен быть изготовлен из нержавеющей стали.
Электрический ток в металлах: подробное объяснение
Электрический ток в металлах представляет собой упорядоченное движение свободных электронов. Более подробно об этом читайте далее в нашей статье.
Важно знать
Как известно, электрический ток – это упорядоченный поток носителей электрического заряда. Носители – это заряженные частицы, способные свободно перемещаться во всем объеме тела.
В случае металлов этими частицами являются электроны, которые высвобождаются при образовании связи между атомами металла.
Известно, что металлы в твердом состоянии имеют кристаллическую структуру. Частицы в кристаллах расположены в определенном порядке, образуя пространственную решетку (кристалл).
Наконец, кристаллическая решетка металла образована положительными ионами, погруженными в “облако” хаотически движущихся так называемых свободных электронов, также называемых электронами проводимости. В зависимости от валентности атомов металла, один атом может освободить от одного до трех электронов при образовании металлических связей. Число таких высвобожденных электронов непосредственно переводится в число носителей заряда. Это является одним из факторов, влияющих на способность металла проводить электрический ток.
Доказательством того, что ток в металлах вызывается электронами, послужили эксперименты наших отечественных физиков Леонида Исааковича Мандельштама и Николая Дмитриевича Папалекси, а также американских физиков Бальфура Стюарта и Роберта Толмана.
Способность металла проводить электрический ток может быть описана физической величиной, называемой удельным электрическим сопротивлением. Эта физическая величина обозначается греческой буквой ρ (читается как “ро”). Единицей измерения удельного сопротивления является Ом · м, т.е. произведение Ом на метр. Удельное сопротивление – это константа, которая характеризует материал и имеет различные значения для разных материалов. Например, удельное сопротивление меди составляет 1.72*10 -8 Ом · м. Это означает, что электрическое сопротивление медного проводника длиной 1 метр и площадью поперечного сечения 1 м равно 1.72*10 -8 Ом . В целом, чем ниже удельное сопротивление материала, тем лучше он проводит электрический ток.
В таблице ниже приведены некоторые примеры удельного сопротивления часто используемых металлов.
Металл | Удельное сопротивление (Ом · м) |
Серебро | 1.59*10 -8 |
Медь | 1.72*10 -8 |
Алюминий | 2.82*10 -8 |
Вольфрам | 5.6*10 -8 |
Железо | 10*10 -8 |
Удельное электрическое сопротивление может быть связано с микроскопическими свойствами материала. В частности, он зависит от концентрации носителей заряда и их подвижности.
Движение свободных электронов в металлах не является полностью “свободным”, поскольку во время их движении они взаимодействуют с другими электронами, и прежде всего с ионами кристаллической решетки. Специфика этого движения описывается так называемой классической моделью проводимости.
Основные предположения и выводы этой модели представлены в большом упрощении ниже.
Классическая модель проводимости
Без внешнего электрического поля электроны совершают тепловые хаотические движения, сталкиваясь друг с другом, а также сталкиваясь с ионами кристаллической решетки. В результате такого движения среднее положение электронов практически не меняется (см. рис. 1.).
Рис. 1. Пример траектории электрона во время его хаотического теплового движения в металле
Из-за квантовых эффектов, и в частности из-за принципа запрета Паули, который не позволяет всем электронам занимать самое низкое энергетическое состояние, средняя скорость электронов в металлах, связанная с их хаотическим тепловым движением, больше, чем скорость частиц в классическом идеальном газе той же температуры. Она составляет порядка 10 м/с.
Если электрическое напряжение U приложено к концам проводника длиной L в нем появится электрическое поле с напряженностью E = U / L
Под действием этого внешнего поля, согласно второму закону динамики, электроны ускоряются: a = F / m,
где F = e*E – сила, с которой электрическое поле действует на электрон с зарядом e. Таким образом, ускорение электрона составляет: a = e*E / m .
Ускоренное движение электрона длится лишь довольно короткое время, пока он не столкнется с ионом
кристаллической решетки. В результате такого столкновения электрон теряет практически всю свою кинетическую энергию. Однако замедленный электрон не остается в состоянии покоя – он снова ускоряется под действием электрического поля, снова сталкивается с одним из ионов из ионы кристаллической решетки и т.д. Этот эффект добавляет к скорости тепловых движений дополнительную направленную среднюю скорость u, которая из-за отрицательного заряда электрона имеет направление, противоположное напряженности внешнего электрического поля. Эта скорость называется средней скоростью дрейфа (рис. 2).
Рис. 2. Дрейф электрона под действием внешнего электрического поля
В проводнике начинает течь электрический ток с силой тока I (см. рисунок 3).
Рис. 3. Дрейфующие электроны сталкиваются с ионами кристаллической решетки
Предполагая, что движение электрона равномерно ускоряется между столкновениями с ионами решетки, с ускорением a = e*E / m , и предполагая, что в результате столкновения электрон передает всю свою кинетическую энергию кристаллической решетке, мы можем вычислить скорость, которую развивает электрон в своем свободном движении: v = a*τ . В этой формуле τ – средний интервал времени между последующими столкновениями дрейфующего электрона с ионами кристаллической решетки.
Поскольку при равномерно ускоренном движении без начальной скорости средняя скорость является средним арифметическим начальной (равной нулю) и конечной скоростью, то получаем: u = v / 2 = e*E*τ / 2*m .
Из полученной формулы следует, что скорость дрейфа, помимо внешнего электрического поля, определяется средним интервалом времени между столкновениями электронов с ионами решетки. Этот параметр зависит от многих факторов (включая температуру, кристаллическую структуру металла, дефекты кристаллической структуры, примеси) и, как выясняется, существенно влияет на электрическое сопротивление материала.
Средняя дрейфовая скорость электронов составляет порядка 10 -4 м/с. Она очень мала по сравнению со скоростью теплового движения, которая составляет порядка 10 6 м/с.
Классическая теория проводимости достаточно хорошо описывает явление электропроводности в металлах. Однако эта теория не может объяснить экспериментально наблюдаемую зависимость электрического сопротивления от температуры.
Причина упомянутой неудачи классической теории проводимости заключается в том, что она не учитывает влияние ионов решетки на движение электронов между столкновениями. Более близкие к реальности результаты дает квантовая теория проводимости, которая описывает электроны как частицы, подверженные квантовой статистике, движущиеся в периодическом электрическом поле, создаваемом положительными ионами решетки.
Выводы простым языком
Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решётки. Поэтому в обычных условиях металл электрически нейтрален. Свободные электроны в нём движутся беспорядочно. Но если в металле создать электрическое поле, то свободные электроны начнут двигаться направленно под действием электрических сил. Возникнет электрический ток. Беспорядочное движение электронов при этом сохраняется, подобно тому как сохраняется беспорядочное движение в стайке мошкары, когда под действием ветра она перемещается в одном направлении.
« Скорость движения самих электронов в проводнике под действием электрического поля невелика – несколько миллиметров в секунду, а иногда и ещё меньше. Но как только в проводнике возникает электрическое поле, оно с огромной скоростью, близкой к скорости света в вакууме (300 000 км/c), распространяетcя по всей длине проводника. »
Перышкин А. В. Физика 8. – М.: Дрофа, 2010
Как пример, электрический сигнал, посланный, например, по проводам из Москвы во Владивосток (s = 8000 км), приходит туда примерно через 0,03 с.
Одновременно с распространением электрического поля все электроны начинают двигаться в одном направлении по всей длине проводника. Так, например, когда цепь электрической лампы замкнута, электроны в спирали лампы также движутся упорядоченно.
Сравнение электрического тока с потоком воды в водопроводной системе и распространения электрического поля с распространением давления воды поможет нам понять это. Когда вода поднимается в резервуар для воды, давление (напор) воды очень быстро распространяется по всей системе водоснабжения. Когда мы включаем кран, вода уже находится под давлением и сразу же начинает течь. Но вода, которая была в кране, течет, а вода из башни достигает крана гораздо позже, потому что вода движется с меньшей скоростью, чем распространяется давление.
Когда говорят о скорости распространения электрического тока в проводнике, то имеют в виду скорость распространения по проводнику электрического поля.
Удельное сопротивление для распространенных материалов: таблица
Приведенная ниже таблица удельного электрического сопротивления содержит значения удельного сопротивления для многих веществ, широко используемых в электрике и электронике. В частности, она включает в себя удельное сопротивление меди, алюминия, нихрома, стали, никеля и так далее.
Удельное электрическое сопротивление особенно важно, поскольку оно определяет электрические характеристики и, следовательно, пригодность материала для использования во многих электрических компонентах. Например, можно увидеть, что удельное сопротивление меди, удельное сопротивление алюминия, а также нихрома, никеля, серебра, золота и т.д. определяет, где эти металлы используются.
Для того чтобы сравнить способность различных материалов проводить электрический ток, используются показатели удельного сопротивления.
Что означают показатели удельного сопротивления?
Для того чтобы иметь возможность сравнивать удельное сопротивление различных материалов, от таких изделий, как медь и алюминий, до других металлов и веществ, включая висмут, латунь и даже полупроводники, необходимо использовать стандартное измерение.
Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м.
Единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м 2 , изготовленный из этого вещества, имеет сопротивление, равное 1 Ом. Соответственно, удельное сопротивление произвольного вещества, выраженное в единицах СИ, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 м 2
[1]
Таблица удельного сопротивления для распространенных проводников
В таблице ниже приведены показатели удельного сопротивления для различных материалов, в частности металлов, используемых для электропроводности.
Показатели удельного сопротивления приведены для таких “популярных” материалов, как медь, алюминий, нихром, сталь, свинец, золото и других.
Материал | Удельное сопротивление, ρ, при 20 °C (Ом·м) | Источник |
---|---|---|
Латунь | ~0.6 – 0.9 x 10 -7 | |
Серебро | 1.59×10 −8 | [3][4] |
Медь | 1.68×10 −8 | [5][6] |
Обожжённая медь | 1.72×10 −8 | [7] |
Золото | 2.44×10 −8 | [3] |
Алюминий | 2.65×10 −8 | [3] |
Кальций | 3.36×10 −8 | |
Вольфрам | 5.60×10 −8 | [3] |
Цинк | 5.90×10 −8 | |
Кобальт | 6.24×10 −8 | |
Никель | 6.99×10 −8 | |
Рутений | 7.10×10 −8 | |
Литий | 9.28×10 −8 | |
Железо | 9.70×10 −8 | [3] |
Платина | 1.06×10 −7 | [3] |
Олово | 1.09×10 −7 | |
Тантал | 1.3×10 −7 | |
Галлий | 1.40×10 −7 | |
Ниобий | 1.40×10 −7 | [8] |
Углеродистая сталь (1010) | 1.43×10 −7 | [9] |
Свинец | 2.20×10 −7 | [2][3] |
Галинстан | 2.89×10 −7 | [10] |
Титан | 4.20×10 −7 | |
Электротехническая сталь | 4.60×10 −7 | [11] |
Манганин (сплав) | 4.82×10 −7 | [2] |
Константан (сплав) | 4.90×10 −7 | [2] |
Нержавеющая сталь | 6.90×10 −7 | |
Ртуть | 9.80×10 −7 | [2] |
Марганец | 1.44×10 −6 | |
Нихром (сплав) | 1.10×10 −6 | [2][3] |
Углерод (аморфный) | 5×10 −4 – 8×10 −4 | [3] |
Углерод (графит) параллельно-базальная плоскость | 2.5×10 −6 – 5.0×10 −6 | |
Углерод (графит) перпендикулярно-базальная плоскость | 3×10 −3 | |
Арсенид галлия | 10 −3 to 10 8 | |
Германий | 4.6×10 −1 | [3][4] |
Морская вода | 2.1×10 −1 | |
Вода в плавательном бассейне | 3.3×10 −1 – 4.0×10 −1 | |
Питьевая вода | 2×10 1 – 2×10 3 | |
Кремний | 2.3×10 3 | [2][3] |
Древесина (влажная) | 10 3 – 10 4 | |
Деионизированная вода | 1.8×10 5 | |
Стекло | 10 11 – 10 15 | [3][4] |
Углерод (алмаз) | 10 12 | |
Твердая резина | 10 13 | [3] |
Воздух | 10 9 – 10 15 | |
Древесина (сухая) | 10 14 – 10 16 | |
Сера | 10 15 | [3] |
Плавленый кварц | 7.5×10 17 | [3] |
ПЭТ | 10 21 | |
Тефлон | 10 23 – 10 25 |
Видно, что удельное сопротивление меди и удельное сопротивление латуни оба низкие, и с учетом их стоимости, относительно серебра и золота, они становятся экономически эффективными материалами для использования для многих проводов. Удельное сопротивление меди и простота ее использования привели к тому, что она также используется крайне часто в качестве материала для проводников на печатных платах.
Изредка алюминий и особенно медь используются из-за их низкого удельного сопротивления. Большинство проводов, используемых в наши дни для межсоединений, изготовлены из меди, поскольку она обеспечивает низкий уровень удельного сопротивления при приемлемой стоимости.
Удельное сопротивление золота также важно, поскольку золото используется в некоторых критических областях, несмотря на его стоимость. Часто золотое покрытие встречается на высококачественных слаботочных разъемах, где оно обеспечивает самое низкое сопротивление контактов. Золотое покрытие очень тонкое, но даже в этом случае оно способно обеспечить требуемые характеристики разъемов.
Серебро имеет очень низкий уровень удельного сопротивления, но оно не так широко используется из-за его стоимости и из-за того, что оно тускнеет, что может привести к более высокому сопротивлению контактов.
Однако оно используется в некоторых катушках для радиопередатчиков, где низкое удельное электрическое сопротивление серебра снижает потери. При использовании в таких целях серебро обычно наносилось только на существующий медный провод. Покрытие провода серебром позволило значительно снизить затраты по сравнению с цельным серебряным проводом без существенного снижения производительности.
Другие материалы в таблице удельного электрического сопротивления могут не иметь такого очевидного применения. Тантал фигурирует в таблице, поскольку используется в конденсаторах – никель и палладий используются в торцевых соединениях многих компонентов поверхностного монтажа, таких как конденсаторы.
Кварц находит свое основное применение в качестве пьезоэлектрического резонансного элемента. Кварцевые кристаллы используются в качестве частотоопределяющих элементов во многих осцилляторах, где высокое значение Q позволяет создавать очень стабильные по частоте схемы. Аналогичным образом они используются в высокоэффективных фильтрах. Кварц имеет очень высокий уровень удельного сопротивления и не является хорошим проводником электричества, то есть его относят к категории диэлектрикам.
Читайте также: