Свойства ряда напряжения металлов
Каждая такая полуреакция характеризуется стандартным окислительно-восстановительным потенциалом Е0, (размерность - вольт, В). Чем больше Е0, тем сильнее окислительная форма как окислитель и тем слабее восстановленная форма как восстановитель, и наоборот.
За точку отсчета потенциалов принята полуреакция: 2H+ + 2ē ® H2, для которой Е0 =0
Для полуреакций Mn+ + nē ® M0, Е0 называется стандартным электродным потенциалом. По величине этого потенциала металлы принято располагать в ряд стандартных электродных потенциалов (ряд напряжений металлов):
Li, Rb, K, Ba, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H , Sb, Bi, Cu, Hg, Ag, Pd, Pt, Au |
Ряд напряжений характеризует химические свойства металлов:
1. Чем левее расположен металл в ряду напряжений, тем сильнее его восстановительная способность и тем слабее окислительная способность его иона в растворе (т.е. тем легче он отдает электроны (окисляется) и тем труднее его ионы присоединяют обратно электроны).
2. Каждый металл способен вытеснять из растворов солей те металлы, которые стоят в ряду напряжений правее его, т.е. восстанавливает ионы последующих металлов в электронейтральные атомы, отдавая электроны и сам превращаясь в ионы.
3. Только металлы, стоящие в ряду напряжений левее водорода (Н), способны вытеснять его из растворов кислот (например, Zn, Fe, Pb, но не Сu, Hg, Ag).
Каждые два металла, будучи погруженными в растворы их солей, которые сообщаются между собой посредством сифона, заполненного электролитом, образуют гальванический элемент. Пластинки металлов, погруженные в растворы, называются электродами элемента.
Если соединить наружные концы электродов (полюсы элемента) проволокой, то от металла, у которого величина потенциала меньше, начинают перемещаться электроны к металлу, у которого она больше (например, от Zn к Pb). Уход электронов нарушает равновесие, существующее между металлом и его ионами в растворе, и вызывает переход в раствор нового количества ионов – металл постепенно растворяется. В то же время электроны, переходящие к другому металлу, разряжают у его поверхности находящиеся в растворе ионы - металл выделяется из раствора. Электрод, на котором протекает окисление, называется анодом. Электрод, на котором протекает восстановление, называется катодом. В свинцово-цинковом элементе цинковый электрод является анодом, а свинцовый – катодом.
Таким образом, в замкнутом гальваническом элементе происходит взаимодействие между металлом и раствором соли другого металла, не соприкасающимися непосредственно друг с другом. Атомы первого металла, отдавая электроны, превращаются в ионы, а ионы второго металла, присоединяя электроны, превращаются в атомы. Первый металл вытесняет второй из раствора его соли. Например, при работе гальванического элемента, составленного из цинка и свинца, погруженных соответственно в растворы Zn(NO3)2 и Pb(NO3)2 у электродов происходят следующие процессы:
Суммируя оба процесса, получаем уравнение Zn + Pb2+ → Pb + Zn2+, выражающее происходящую в элементе реакцию в ионной форме. Молекулярное уравнение той же реакции будет иметь вид:
Zn + Pb(NO3)2 → Pb + Zn(NO3)2
Электродвижущая сила гальванического элемента равна разности потенциалов двух его электродов. При определении его всегда вычитают из большего потенциала меньший. Например, электродвижущая сила (Э.д.с.) рассмотренного элемента равна:
Э.д.с. = | -0,13 | – | (-0,76) | = 0,63 v |
EPb | EZn |
Такую величину она будет иметь при условии, что металлы погружены в растворы, в которых концентрация ионов равна 1 г-ион/л. При других концентрациях растворов величины электродных потенциалов будут несколько иные. Их можно вычислить по формуле:
E = E0 + (0,058 / n) • lgC
где E - искомый потенциал металла (в вольтах)
E0 - его нормальный потенциал
n - валентность ионов металла
С - концентрация ионов в растворе (г-ион/л)
Найти электродвижущую силу элемента (э. д. с.) образованного цинковым электродом, опущенным в 0,1 М раствор Zn(NO3)2 и свинцовым электродом, опущенным в 2 М раствор Pb(NO3)2.
Урок №48. Химические свойства металлов. Ряд активности (электрохимический ряд) металлов
Химические свойства металлов определяются их активностью. Простые вещества – металлы в химических реакциях всегда являются восстановителями . Положение металла в ряду активности характеризует то, насколько активно данный металл способен вступать в химические реакции (т. е. то, насколько сильно у него проявляются восстановительные свойства).
Среди металлов традиционно выделяют несколько групп.
благородные металлы (серебро, золото, платина, иридий);
щелочные металлы – I(A) группа ;
щелочноземельные металлы – II(A) группа , кроме Be, Mg.
Металлы встпают в реакции с простыми веществами – неметаллами (кислород, галогены, сера, азот, фосфор и др.) и сложными веществами (вода, кислоты, растворы солей)
Взаимодействие с простыми веществами-неметаллами
1. Металлы взаимодействуют с кислородом, образуя оксиды:
4Li + O 2 = обыч. усл . = 2Li 2 O
2Mg + O 2 = t, °C = 2MgO
Серебро, золото и платина с кислородом не реагируют
2. Металлы взаимодействуют с галогенами (фтором, хлором, бромом и йодом), образуя галогениды – Ме +n Г -1 n
2Na + Cl 2 = 2NaCl
3. Металлы взаимодействуют с серой, образуя сульфиды.
4. Активные металлы при нагревании реагируют с азотом, фосфором и некоторыми другими неметаллами.
3Na + P = t, °C = Na 3 P
Взаимодействие со сложными веществами
I. Взаимодействие воды с металлами
1). Взаимодействие с самыми активными металлами, находящимися в периодической системе в I(А) и II(А) группах (щелочные и щелочноземельные металлы) и алюминий . В результате образуются основание и газ водород .
Me + H 2 O = Me(OH) n + H 2 (р. замещения)
Внимание! Алюминий и магний ведут себя также:
Магний (в горячей воде):
2) Взаимодействие воды с менее активными металлами, которые расположены в ряду активности от алюминия до водорода.
Металлы средней активности, стоящие в ряду активности до (Н 2 ) – Be, Fe, Pb, Cr, Ni, Mn, Zn – реагируют с образованием оксида металла и водорода
Me + Н 2 О = Ме х О у + Н 2 (р. замещения)
Бериллий с водой образует амфотерный оксид:
Be + H 2 O = t°C = BeO + H 2
Раскалённое железо реагирует с водяным паром, образуя смешанный оксид — железную окалину Fe 3 O 4 и водород:
3) Металлы, стоящие в ряду активности после водорода, не реагируют с водой.
Cu + H 2 O ≠ нет реакции
II. Взаимодействие растворов кислот с металлами
Металлы, стоящие в ряду активности металлов левее водорода, взаимодействуют с растворами кислот ( раствор азотной кислоты – исключение ), образуя соль и водород.
Кислота (раствор) + Me до (Н2) = Соль + H 2 ↑
III. Взаимодействие кислот-окислителей с металлами
Металлы особо реагируют с серной концентрированной и азотной кислотами:
H 2 SO 4 (конц.) + Me = Сульфат + H 2 O + Х
HNO 3 + Me = Нитрат + H 2 O + Х
4Zn + 10HNO 3 (раствор горячий) = t˚C = 4Zn(NO 3 ) 2 + N 2 O + 5H 2 O
4Zn + 10HNO 3 (оч. разб. горячий) = t˚C = 4Zn(NO 3 ) 2 + NH 4 NO 3 + 3H 2 O
IV. С растворами солей менее активных металлов
Ме + Соль = Новый металл + Новая соль
Активность металла в реакциях с кислотами, водными растворами солей и др. можно определить, используя электрохимический ряд, предложенный в 1865 г русским учёным Н. Н. Бекетовым: от калия к золоту восстановительная способность (способность отдавать электроны) уменьшается, все металлы, стоящие в ряду левее водорода, могут вытеснять его из растворов кислот; медь, серебро, ртуть, платина, золото, расположенные правее, не вытесняют водород.
Электрохимический ряд напряжений металлов
Li. Rb. K. Ba. Sr. Ca. Na. Mg. Al. Mn. Zn. Cr. Fe. Cd. Co.
Ni. Sn. Pb. H... Sb. Bi. Cu. Hg. Ag. Pb. Pt. Au.
В соответствии с этим металлы подразделяются на три группы:
– активные, имеющие значения стандартных окислительно-восстановительных потенциалов от наиболее отрицательного (у лития) до потенциала алюминия (Li-Аl);
– средней активности (Аl-Н2);
– малоактивные (Н2-Аu).
Чем левее расположен металл в ряду напряжений, тем выше его восстановительная способность и тем слабее окислительная способность его катиона в растворе.
Металл способен вытеснять из растворов солей только те металлы (т.е. окисляться их катионом), которые стоят в этом ряду правее него.
Металлы, расположенные левее водорода, способны вытеснять его из растворов кислот, т.е. окисляться катионом водорода кислоты.
Наиболее распространенные окислители металлов:
– катион водорода (протон) в молекулах воды и «кислотах – неокислителях»: разбавленной H2SO4, галогеноводородных кислотах, Н3РО4, Н2S, НСΝ, органических кислотах и некоторых других;
– вода в щелочной среде;
– элементы в высших степенях окисления, входящие в состав «кислот – окислителей»: S +6 в концентрированной H2SO4, N +5 в HNO3 любой концентрации.
– катион менее активного металла в растворе его соли.
Реакции металлов с окислителями сопровождается образованием продуктов восстановления окислителей, состав которых зависит от природы реагирующих веществ (см. ниже таблицу 8.2. и раздел "Влияние на ОВР металлов поверхностных пленок").
При окислении металлов концентрированной H2SO4 и HNO3 любой концентрации образуется смесь продуктов восстановления частиц S +6 и N +5 , среди которых имеются преобладающие вещества (таблица 8.2).
Таблица 8.2 – Состав преобладающих продуктов восстановления окислителя в зависимости от природы металла и окислителя
Активность металла | Окислитель | Преобладающие продукты восстановления окислителя |
Активные металлы | H2O (при pH=7) | H2 |
С водой взаимодействуют только Li,K,Rb,Cs,Ba,Sr,Ca,Na, Mg (при нагр.) | ||
Be, Al, Zn | H2O (при pH>7) в щелочной среде | H2 |
Mg, Be, Al, Мn Zn (при норм. условиях) |
H + в составе кислот-неоки-
H2 | ||
N +5 в конц.HNO3 | NO2 | |
N +5 в разб HNO3 | N2 | |
N +5 в очень разб. HNO3 | NH3 (NH4NO3) | |
S +6 в конц. H2SO4 | H2S | |
Металлы средней активности а | H2O (при pH>7) в щелочной среде | H2 |
Sn, Pb, Ge | ||
Fe, Ni, Cr , Sn, Pb, Zn (при нагревании) | H + в кислотах-неокисли-телях | H2 |
конц. HNO3 | NO2 | |
разб.HNO3 | N2O | |
очень разб.HNO3 | N2 | |
конц. H2SO4 | S |
Неактивные металлы | конц. HNO3 разб. HNO3 очень. разб. HNO3 конц. H2SO4 | NO2 NO NO SO2 |
Взаимодействуют только Cu, Hg, Ag Взаимодействуют только Cu и Hg |
Металлы со стабильной высшей степенью окисления при окислении конц. HNO3 могут в качестве преобладающих продуктов реакции давать кислоты с высшей степенью окисления металла, например:
Общая схема реакции металлов с кислотами – окислителями:
Me + HNO3 → Me(NO3)x + H2O + преобладающий продукт восстановления
кислоты в зависимости от ее концентрации
Влияние на ОВР металлов поверхностных пленок:
1. В конц. H2SO4 устойчивы Al, Cr и Fe вследствие пассивации (реакция начинается, а затем прекращается из-за образования на поверхности инертного слоя).
2. В конц. HNO3 при нормальной температуре устойчивы из-за пассивации Al, Fe, Cо, Ni, Cr (они начинают реагировать, а затем окисление прекращается из-за образования на поверхности инертного слоя).
3. Не окисляется HNO3 любой концентрации:
– Au, Ru, Os, Pd, Pt, Rh, Jr вследствие их термодинамической устойчивости;
– Ti, Ta, Zr, Hf, Νb из-за пассивации (Ti не окисляется ни разб., ни конц. HNO3).
4. Разбавленная H2SO4 и HCl не окисляют Pb из-за пассивации нерастворимыми солями (реакция начинается, а затем прекращается).
5. На поверхности ряда металлов (Be, Al, Sn, Zn, Pb ) образуются нерастворимые амфотерные оксиды, поэтому они не окисляются H2O в нейтральной среде. Однако в щелочной среде эти металлы реагируют с водой, т.к. у образующихся амфотерных оксидов, а затем и гидроксидов преобладают кислотные свойства, вследствие чего они взаимодействуют со щелочью, образуя растворимые соли.
Электрохимический ряд напряжений металлов (ряд Бекетова)
Первоначально Бекетов предполагал, что способность одних металлов вытеснять из растворов солей другие металлы связана с их плотностью: более лёгкие металлы способны вытеснять металлы более тяжелые. Но опыты говорили о ином. Непонятно было и то, как связан “вытеснительный ряд” с рядом напряжений Алессандро Вольта. Со временем накапливалось всё больше экспериментальных данных того, что некоторые правила вытеснения нарушаются при определенных условиях. Бекетов обнаружил, что водород под давлением 10 атмосфер вытесняет серебро из раствора нитрата серебра. Английский химик Уильям Одлинг (1829-1921) описал множество случаев подобных аномалий. Например, медь вытесняет олово из концентрированного подкисленного раствора хлорида олова (II) и свинец – из кислого раствора хлорида свинца (II). Медь, олово и свинец находятся в ряду правее кадмия, однако могут вытеснять его из кипящего слабо подкисленного раствора хлорид кадмия.
Теоретическую основу ряда активности (и ряда напряжений) заложил немецкий физикохимик Вальтер Нернст (1864-1941). Вместо качественной характеристики – “склонности” металла и его иона к тем или иным реакциям – появилась точная количественная величина. Такой величиной стал стандартный электродный потенциал металла, а соответствующий ряд, выстроенный в порядке изменения потенциалов, называется рядом стандартных электродных потенциалов.
Электрохимический ряд напряжений металлов (ряд Бекетова) это последовательность расположения металлов и их ионов в порядке возрастания стандартных электродных потенциалов в растворах электролитов. Электродом сравнения обычно служит стандартный водородный электрод, электродный потенциал которого условно принимается равным нулю.
Восстановленная форма | Число отданных електронов | Окисленная форма | Стандартный электродный потенциал, В |
Li | 1e | Li + | -3,05 |
K | 1e | K + | -2,925 |
Rb | 1e | Rb + | -2,925 |
Cs | 1e | Cs + | -2,923 |
Ba | 2e | Ba 2+ | -2,91 |
Sr | 2e | Sr 2+ | -2,89 |
Ca | 2e | Ca 2+ | -2,87 |
Na | 1e | Na + | -2,71 |
Mg | 2e | Mg 2+ | -2,36 |
Al | 3e | Al 3+ | -1,66 |
Mn | 2e | Mn 2+ | -1,18 |
Zn | 2e | Zn 2+ | -0,76 |
Cr | 3e | Cr 3+ | -0,74 |
Fe | 2e | Fe 2+ | -0,44 |
Cd | 2e | Cd 2+ | -0,40 |
Co | 2e | Co 2+ | -0,28 |
Ni | 2e | Ni 2+ | -0,25 |
Sn | 2e | Sn 2+ | -0,14 |
Pb | 2e | Pb 2+ | -0,13 |
Fe | 3e | Fe 3+ | -0,04 |
H2 | 2e | 2H + | 0,00 |
Cu | 2e | Cu 2+ | 0,34 |
Cu | 1e | Cu + | 0,52 |
2Hg | 2e | Hg2 2+ | 0,79 |
Ag | 1e | Ag + | 0,80 |
Hg | 2e | Hg 2+ | 0,85 |
Pt | 2e | Pt 2+ | 1,20 |
Au | 3e | Au 3+ | 1,50 |
Место каждого элемента в ряду напряжений условно, т.к. величина электродного потенциала зависит от температуры и состава раствора, в который погружены электроды, в частности от концентрации ионов. Большое значение также имеет состояние поверхности электрода (гладкая, шероховатая). Стандартный электродный потенциал относится к водным растворам при температуре 25 °С, давлении газов 1 атмосфера и концентрации ионов 1 моль/л.
Из электрохимического ряда напряжений металлов вытекает ряд важных следствий:
- Каждый металл способен вытеснять (замещать) из растворов солей все другие металлы, стоящие правее данного металла;
- Все металлы, расположенные левее водорода, способны вытеснять его из кислот;
- Чем дальше расположены друг от друга два металла в ряду напряжений, тем большее напряжение может давать созданный из них гальванический элемент.
Восстановление водородом из оксидов
Металлы, которые водород не восстанавливает из их оксидов
Руководство по материалам электротехники для всех. Часть 12. Финальная
Последняя часть руководства. Внутри бонусные главы, немного новых фотографий, и главное — pdf с руководством которое можно скачать и поделиться с другом.
Доработки (доступны в pdf версии):
— Добавлены фото деструкции оптического поликарбоната, добавлены фото кварцевого стекла, фото проводящих углеродных композиций в конструкции ПДУ.
— Доработан раздел с изолентами, пришлось подождать посылок, но оно того стоило — теперь это самое полное описание изоляционных лент (добавлена полиэфирная, мастичная, тканевая и другие виды лент).
— Добавлена глава про электрические соединения — с ответом на вопрос почему нельзя.
— Ну и много мелких правок согласно комментариям.
Название я сменил, просто из соображений «легко запомнить-легко гуглить».
Электрические соединения
Популярная шутка говорит о том, что электротехника — это наука о контактах. И две основные неисправности — нет контакта там где он должен быть, и есть контакт там где его быть не должно.
На обложке этого руководства изображена скрутка двух проводов — медного и алюминиевого. Некоторых читателей такое зрелище возмутило, и не без оснований — так делать нельзя. Если попытаться разобраться в причинах этого «нельзя», то можно найти множество дискуссий на эту тему, практически в каждой из которых можно найти довод «всегда так делал, на даче такая скрутка работает уже 100500 лет». К сожалению, понимания причин запрета такой подход не привносит.
В чем же проблема соединить в контакт два произвольных металла? Дело в том, что в силу некоторых причин (о которых ниже) некоторые металлы образуют надежный контакт и работают практически безотказно, а некоторые образуют контакт, который тоже работает, но менее надежен и чаще приносит проблемы. Нужно понимать, что «чаще» не означает, что если вы сделали такое соединение, то оно откажет завтра с вероятностью 100%. Нет, вероятность отказа станет не 0,0001%, а к примеру 0,01%. Все такая же малая, но вас бы не устроила в 100 раз большая вероятность пожара?
Опыт эксплуатации различной техники привел инженеров к выводу, что определенные комбинации металлов обеспечивают приемлемую надежность контакта, а некоторые слишком низкую. Еще раз стоит отметить, что на надежность контакта сильно влияют условия эксплуатации, если соединение находится при постоянной температуре в сухом месте, то оно может быть вполне надежным, даже если пара металлов нежелательная.
Ряд электрохимической активности металлов
Первая причина нарушения контакта которую мы рассмотрим — электрохимическая коррозия. Некоторые из вас помнят со школы ряд активности металлов (неполный):
Li K Ba Sr Ca Na Mg Al Mn Cr Zn Fe Cd Co Ni Sn Pb H Sb Bi Cu Hg Ag Pd Pt Au
Металл | Электрохимический потенциал, Вольт |
---|---|
Литий (Li) | -3,0401 |
Калий (K) | -2,931 |
Барий (Ba) | -2,905 |
Стронций (Sr) | -2,899 |
Кальций (Ca) | -2,868 |
Натрий (Na) | -2,71 |
Магний (Mg) | -2,372 |
Алюминий (Al) | -1,700 |
Марганец (Mn) | -1,185 |
Хром (Cr) | -0,852 |
Цинк (Zn) | -0,763 |
Железо (Fe) | -0,441 |
Кадмий (Cd) | -0,404 |
Кобальт (Co) | -0,28 |
Никель (Ni) | -0,234 |
Олово (Sn) | -0,141 |
Свинец (Pb) | -0,126 |
Водород (H) | 0 |
Сурьма (Sb) | +0,240 |
Висмут (Bi) | +0,317 |
Медь (Cu) | +0,338 |
Ртуть (Hg) | +0,7973 |
Серебро (Ag) | +0,799 |
Палладий (Pd) | +0,98 |
Платина (Pt) | +0,963 |
Золото (Au) | +1,691 |
Для инженера этот ряд говорит следующее: В присутствии электролита (вода, влажность воздуха) в паре металлов будет разрушаться тот металл, что в ряду напряженности левее. Чем дальше друг от друга металлы в ряду, тем интенсивнее будет протекать коррозия. На базе
этого явления построена электрохимическая защита металлов, например оцинковка стали. При наличии воды, первым делом разрушается цинковое покрытие, и только после того как оно разрушилось начинается коррозия стали.
В случае электрических контактов, нам важнее не то, какой металл разрушится в паре, они нужны оба, а то, насколько интенсивно будет протекать процесс коррозии. И в этом плане потенциал создаваемый парой алюминий-медь 2,038 В очень большой, его достаточно чтобы разорвать молекулу воды в процессе электролиза! Но если разделить эти два металла стальной оцинкованной пластинкой, то образуется две пары: цинк-алюминий с потенциалом 0,937 В, и цинк-медь, с потенциалом 1,101 В. Это уже не такие большие потенциалы, поэтому процесс коррозии будет протекать медленнее.
Принимая во внимание, что основными металлами для изготовления проводников являются медь и алюминий, то заучивать таблицу и считать потенциалы не требуется, важно только помнить, что непосредственно соединять медь и алюминий в электрический контакт работающий на воздухе нельзя.
Тепловое расширение
Все тела при нагревании расширяются, и металлы не исключение. Для любого материала есть характеристика, такая как «коэффициент теплового расширения тел», который показывает, во сколько раз увеличится размер тела, при нагреве на 1 градус Цельсия. (В различных диапазонах температур значение теплового коэффициента расширения может различаться, кроме того для некоторых анизотропных материалов коэффициент может различаться в разных плоскостях. Для упрощения не будем учитывать эту разницу, воспользовавшись усредненными значениями) Вот небольшая табличка:
Материал | Тепловой коэффициент расширения α, (1/К) |
---|---|
Алюминий | |
Медь | |
Сталь | |
Стекло | |
Стекло термостойкое (боросиликатное) | |
Стекло кварцевое | |
Инвар (сплав) | |
Платина |
Из этой таблички видно, что соединение из двух материалов при нагревании будет расширяться по разному, провоцируя внутренние напряжения и деформации. Иногда это полезное свойство — оно используется в биметаллических пластинках в терморегуляторах, такие пластинки при нагреве изгибаются и разрывают контакт. Но в деле создания надежного электрического соединения такая разница в величине теплового расширения может ослабить контакт. Если соединение не обладает упругими свойствами, то спустя нескольких циклов нагрева и охлаждения, можно обнаружить что вместо плотного тугого контакта проводник болтается.
Если соединения разных материалов не избежать, то нужно помнить, что такое соединение потенциально может ослабнуть при изменениях температуры, и должно быть обслуживаемым и контролируемым. Замуровать соединение медного и алюминиевого проводника в стенке под слоем штукатурки — плохая идея.
Ползучесть
Некоторые материалы склонны проявлять явление «ползучести», когда к примеру проводник под небольшой механической нагрузкой, не достаточной для пластической деформации, тем не менее деформируется со временем. Величина этого явления зависит от нагрузки и от температуры, характеризуясь очень малой величиной. Пройдут тысячи часов, прежде чем размер тела изменится на доли процента. Тем не менее это явление достаточно важно в обеспечении надежного контакта. Ползучесть, наряду с тепловым расширением вносит вклад в то, что затянутая клемма спустя годы ослабевает и провод в ней болтается.
К сожалению алюминий (чистый) обладает значительно более интенсивной ползучестью, чем медь, что делает электрические контакты с его участием менее надежными и требующими регулярного обслуживания. Это стоит помнить при ремонте и обслуживании проводки из алюминиевого кабеля времен СССР. Производители современных алюминиевых кабелей легируют алюминий в токопроводящей жиле, добиваясь уменьшения ползучести до значений, сопоставимых с медью, пускай и ценой небольшого снижения электропроводности.
Так как же все-таки соединять провода?
Вопрос сложный тем, что ответ зависит от условий работы соединения и однозначно универсального способа нет.
Но про пару алюминий-медь было сказано столько плохого, что я просто обязан дать ответ на вопрос «как их соединять?».
Первый вариант — классический, при помощи стальной пластинки исключая непосредственный контакт меди и алюминия. Стальная пластинка предотвратит интенсивную электрохимическую коррозию (но не избавит от нее совсем), обеспечит приемлемое усилие на площади контакта проводников. Но такое соединение требует регламентных работ по обслуживанию: 1–2 раза в год необходимо проверять усилие затяжки проводников.
Второй вариант. Специализированные пружинные клеммы для алюминиевого проводника. (например клеммники WAGO серии 2273 с пастой). В такой клемме зачищенный проводник всё время прижимается пружинным контактом, предотвращая его ослабление вследствие ползучести.
Паста внутри клеммника предотвращает доступ влаги и воздуха к поверхности алюминия, препятствуя окислению проводника. (Важно отметить, клеммы должны быть качественные, а сечение проводника номинальным. Самолично наблюдал сгоревшие соединения выполненные клеммами, купленными в ближайшем киоске (вероятно поддельными).)
Третий вариант — Медно-алюминиевые гильзы. Этот вид соединения актуален для силовых линий на большие токи с сечением от 10 кв. мм. Медно-алюминиевые гильзы предназначены под опрессовку специальным инструментом. Соединенные в толще металлы обеспечивают надежный контакт большой площади, влага и электрохимическая коррозия могут лишь повредить нежную поверхность гильзы, не нарушив контакт в толще.
И помните, любое силовое электрическое соединение (тем более из разных металлов) должно быть доступно для обслуживания! Замурованная в стену скрутка — залог того, что вас будет вспоминать ремонтная бригада в различных матерных выражениях.
Заключение
Так как установка при написании данного пособия была на минимум брехни, я писал о том, что сам пощупал, использовал, с чем работал. Некоторые темы я не раскрыл, в силу малого опыта (или малого количества собранного материала) в этих областях, но их стоило бы раскрыть. Переписывать бездумно то, что описано в специализированной литературе я не стал, зачем искажать источник? Поэтому, если вы можете что-то рассказать по теме — я буду рад включить ваш текст в руководство.
Данное руководство распространяется свободно, вы можете скачать самую последнюю вер-
сию у меня в блоге совершенно бесплатно. Если вам понравилась моя работа, я буду рад услышать от вас пожелания и предложения, а также замечания и указания на допущенные ошибки.
Где скачать?
→ Руководство на GitHub вместе с исходником текста и фотографиями. Там же pdf с книгой.
→ Домашняя страничка руководства на моем сайте.
Если вы захотите бумажный экземпляр к себе на полку, то его можно приобрести (технология печати по требованию). Это не реклама — я выставил руководство по себестоимости — не заработаю ни копейки. К сожалению в бумажном виде иллюстрации будут черно-белые.
Благодарности
Выражаю признательность Алексею Gall Галахову за ценные дополнения руководства и помощь в верстке руководства.
Talion_amur за предоставленный образец ртутного счетчика времени наработки.
Спасибо всем кто написал комментарии, они дали ценную обратную связь.
Пользуясь случаем хочу передать привет Meklon DIHALT Milfgard lozga superhimik tnenergy BarsMonster — я с удовольствием читаю ваши посты и старался держать планку не ниже.
Ссылки на части руководства:
1: Проводники: Серебро, Медь, Алюминий.
2: Проводники: Железо, Золото, Никель, Вольфрам, Ртуть.
3: Проводники: Углерод, нихромы, термостабильные сплавы, припои, прозрачные проводники.
4: Неорганические диэлектрики: Фарфор, стекло, слюда, керамики, асбест, элегаз и вода.
5: Органические полусинтетические диэлектрики: Бумага, щелк, парафин, масло и дерево.
6: Синтетические диэлектрики на базе фенолформальдегидных смол: карболит (бакелит), гетинакс, текстолит.
7: Диэлектрики: Стеклотекстолит (FR-4), лакоткань, резина и эбонит.
8: Пластики: полиэтилен, полипропилен и полистирол.
9: Пластики: политетрафторэтилен, поливинилхлорид, полиэтилентерефталат и силиконы.
10: Пластики: полиамиды, полиимиды, полиметилметакрилат и поликарбонат. История использования пластиков.
11: Изоляционные ленты и трубки.
Так получилось, что у меня параллельно собирается материалы по нескольким темам, какая тема интереснее?
Читайте также: