Свойства при растяжении металлов
Поведение металла под нагрузкой определяется его механическими свойствами (прочностью, пластичностью, твердостью, упругостью, жесткостью, вязкостью). Методы испытаний механических свойств в зависимости от характера действия нагрузки делят на три группы: статические, когда нагрузка возрастает медленно (плавно); динамические – нагрузка возрастает с большой скоростью (мгновенно) – удар; циклические – при повторно-переменных нагрузках, когда нагрузка многократно изменяется по величине и знаку (испытания на усталость).
Механические свойства металлов при статическом нагружении.В результате испытаний определяют следующие характеристики металлов: прочность, пластичность, твердость, упругость, жесткость.
Прочность – свойство металла сопротивляться пластической деформации и разрушению под действием внешних сил. В зависимости от способа статического нагружения различают прочность при растяжении, сжатии и изгибе.
Испытания на растяжение. Для испытаний применяют специальные цилиндрические или плоские образцы. Расчетная длина образца равна десяти- или пятикратному диаметру. Образец закрепляют в испытательной машине и нагружают. Результаты испытаний отражают на диаграмме растяжения.
На диаграмме растяжения пластичных металлов (рис. 13, а) можно выделить три участка: ОА – прямолинейный, соответствующий упругой деформации; АВ – криволинейный, соответствующий упругопластической деформации при возрастании нагрузки; ВС – соответствующий упругопластической деформации при снижении нагрузки. В точке С происходит разрушение образца с разделением его на две части.
От начала деформации (точка О) до точки А образец деформируется пропорционально приложенной нагрузке. Участок ОА – прямая линия. Максимальное напряжение, не превышающее предела пропорциональности, практически вызывает только упругую деформацию, поэтому его часто называют пределом упругости металла.
|
Рис. 13. Диаграмма растяжения пластичных металлов:
а – с площадкой текучести; б – без площадки текучести
При испытании пластичных металлов на кривой растяжения образуется площадка текучести АА¢. В этом случае напряжение, отвечающее этой площадке, sт называют физическим пределом текучести. Физический предел текучести – это наименьшее напряжение, при котором металл деформируется (течет) без заметного изменения нагрузки.
Напряжение, вызывающее остаточную деформацию, равную 0,2 % от первоначальной длины образца, называют условным пределом текучести (σ0,2).
Участок А¢В (см. рис 13, а) соответствует дальнейшему повышению нагрузки и более значительной пластической деформации во всем объеме металла образца. Напряжение, соответствующее наибольшей нагрузке (точка В), предшествующей разрушению образца, называют временным сопротивлением, или пределом прочности при растяжении σв. Это характеристика статической прочности:
где Рmax – наибольшая нагрузка (напряжение), предшествующая разрушению образца, МПа;
F0 – начальная площадь поперечного сечения образца, м 2 .
У пластичных металлов, начиная с напряжения σв, деформация сосредоточивается (локализуется) в одном участке образца, где появляется сужение, так называемая шейка. В результате развития множественного скольжения в шейке образуется множество вакансий и дислокаций, возникают зародышевые несплошности. Сливаясь, они образуют трещину, которая распространяется в поперечном направлении растяжению, и образец разрушается (точка С). Кривая растяжения образца без площадки текучести показана на рис. 13, б.
Пластичность – свойство металла пластически деформироваться, не разрушаясь под действием внешних сил. Это одно из важных механических свойств металла, которое в сочетании с высокой прочностью делает его основным конструкционным материалом. Для определения пластичности не требуется образцов и оборудования. После испытания металла на растяжение эти же образцы измеряют и определяют характеристики пластичности. Показатели пластичности – относительное удлинение δ и относительное сужение ψ.
Относительным удлинением δ называется отношение абсолютного удлинения, т. е. приращения расчетной длины образца после разрыва (l – l0), к его первоначальной расчетной длине l0, выраженное в процентах:
где l0 – первоначальная длина образца, мм;
l – длина образца после разрыва, мм.
Относительным сужением y называется отношение абсолютного сужения, т. е. уменьшения площади поперечного сечения образца после разрыва (Fо – F), к первоначальной площади его поперечного сечения, выраженное в процентах:
где F0 – первоначальная площадь поперечного сечения образца, мм 2 ;
F – площадь поперечного сечения образца после разрыва, мм 2 .
Твердость – свойство металла сопротивляться внедрению в него другого более твердого тела. Для определения твердости часто не требуется изготовления специальных образцов, испытания проводятся без разрушения металла.
Твердость металла можно определять прямыми и косвенными методами: вдавливанием, царапаньем, упругой отдачей, магнитным методом. Прямые методы состоят в том, что в металл вдавливают твердый наконечник (индентор) различной формы из закаленной стали, алмаза или твердого сплава (шарик, конус, пирамида). После снятия нагрузки на индентор в металле остается отпечаток, размер которого характеризует твердость.
Существует множество методов определения твердости металлов. Но лишь некоторые из них нашли широкое применение в машиностроении. Все они названы в честь своих создателей.
Метод Бринелля. В плоскую поверхность металла вдавливается стальной закаленный шарик диаметром 10; 5 или 2,5 мм (рис. 14, а). После снятия нагрузки в металле остается отпечаток (лунка). Диаметр отпечатка d измеряют специальным микроскопом с точностью 0,05 мм. На практике пользуются специальной таблицей, в которой каждому диаметру отпечатка соответствует определенное число твердости НВ.
Метод Бринелля не рекомендуется применять для металлов с твердостью более НВ450, так как шарик может деформироваться и получится искаженный результат. Этот метод в основном используется для измерения твердости неупрочненного металла заготовок и полуфабрикатов.
Метод Роквелла. Твердость определяют по глубине отпечатка. Наконечником служит стальной закаленный шарик диаметром 1,58 мм для мягких металлов или алмазный конус с углом при вершине 120° – для твердых и сверхтвердых (более HRC70) металлов (рис. 14, б).
Шарик и конус вдавливаются в металл нагрузкой 60, 100 или 150 кг. Отсчет результатов измерений определяется по показанию стрелки на шкале индикатора твердомера (рис. 15, а). После включения нагрузки стрелка перемещается по шкале индикатора твердомера (рис. 15, б) и указывает значение твердости (рис. 15, в).
Рис. 15. Показания индикатора прибора ТК
При вдавливании стального шарика нагрузка – 100 кг (отсчет по внутренней (красной) шкале индикатора), твердость обозначают как НRВ. При вдавливании алмазного конуса отсчет твердости осуществляется по показанию стрелки на наружной (черной) шкале индикатора (см. рис. 15, в). Нагрузка 150 кг – для твердых металлов. Это основной метод измерения твердости закаленных сталей. Обозначение твердости – НRC. Для очень твердых металлов, а также мелких деталей нагрузка – 60 кг, обозначение твердости – НRА.
Определение твердости по Роквеллу дает возможность испытывать мягкие и твердые металлы, а отпечатки от шарика или конуса очень малы, поэтому можно измерять твердость готовых деталей. Измерения не требуют никаких вычислений – число твердости читается на шкале индикатора твердомера. Поверхность для испытания должна быть шлифованной.
Метод Виккерса. В испытуемую поверхность (шлифованную или полированную) вдавливается четырехгранная алмазная пирамида под нагрузкой 5, 10, 20, 30, 50, 100 кг. В металле остается квадратный отпечаток. Специальным микроскопом твердомера измеряют величину диагонали отпечатка (рис. 16). Зная нагрузку на пирамиду и величину диагонали отпечатка, по таблицам определяют твердость металла, обозначаемую как HV.
Этот метод универсальный. Его можно использовать для определения твердости деталей малой толщины и тонких поверхностных слоев большой твердости (после азотирования, нитроцементации и т. п.). Чем тоньше металл, тем меньше должна быть нагрузка на пирамиду, но чем больше нагрузка, тем точнее получаемый результат.
Прочность при динамическом нагружении(испытания на ударную вязкость – на удар).В процессе эксплуатации многие детали машин испытывают динамические (ударные) нагрузки. Для определения стойкости металла к удару и одновременной оценки его склонности к хрупкому разрушению проводят испытания на ударный изгиб. В результате определяют ударную вязкость – характеристику динамической прочности.
Для определения ударной вязкости применяют 20 типов образцов (обычно размером 10 ´ 10 ´ 55 мм) с U- или V-образным надрезом. Надрез посередине образца называется концентратором. Испытания проводят на маятниковом копре 1 (рис. 17, а). Маятник 2, падая с определенной высоты, разрушает образец 3, свободно установленный на двух опорах копра (рис. 17, б). Работа удара К (Дж или кгс×м), затраченная на излом (разрушение) образца, фиксируется стрелкой на шкале копра и определяется из разности энергии маятника в положении его до и после удара. Ее можно определить по формуле:
К = G (h1 – h2), (6)
где G – вес маятника, Н;
h1 – высота подъема маятника до разрушения образца, м;
h2 – высота подъема маятника после разрушения, м.
Ударная вязкость обозначается КС (прежнее обозначение – aн) и подсчитывается как отношение работы, затраченной на разрушение образца К, к площади поперечного сечения образца в месте надреза F, МДж/м 2 :
КС (aн) = К / F. (7)
Если образец имеет U-образный надрез, то в обозначение ударной вязкости добавляется буква U (КСU), а если V-образный, то добавляется буква V (КСV). Например, KCU = 1 кгс×м/см 2 = 98 кДж/м 2 .
|
Определение ударной вязкости является наиболее простым и показательным способом оценки способности металлов, имеющих объемно центрированную кубическую решетку, к хрупкости при работе в условиях низких температур, называемой хладноломкостью.
Практически хладноломкость определяют при испытании на удар серии образцов при нескольких понижающихся значениях температуры (от комнатной до минус 100°С). Результаты испытаний наносят на график в координатах «ударная вязкость – температура испытания». Температура, при которой происходит падение ударной вязкости, называется критической температурой хрупкости, или порогом хладноломкости. Порог хладноломкости – отрицательная температура, при которой металл переходит из вязкого состояния в хрупкое.
Прочность при циклическом нагружении(испытания на усталость). Многие детали (валы, рессоры, рельсы, шестерни) в процессе работы подвергаются повторно-переменным нагрузкам. Разрушение таких деталей при эксплуатации происходит в результате циклического нагружения при напряжении, значительно меньшем, чем временное сопротивление металла. Процесс постепенного накопления напряжения в металле при действии циклических нагрузок, приводящий к образованию трещин и разрушению, называется уста-лостью. Свойство металла выдерживать большое число циклов переменных напряжений, т. е. противостоять усталости, называется выносливостью, или циклической (усталостной) прочностью.
Усталостная прочность – способность металла сопротивляться упругим и пластическим деформациям при переменных нагрузках. Она характеризуется наибольшим напряжением s-1, которое выдерживает металл при бесконечно большом числе циклов нагружения не разрушаясь и называется пределом усталости, или пределом выносливости. Для углеродистой конструкционной стали предел усталости принимается равным (0,4 – 0,5) sв.
Значение предела выносливости зависит от целого ряда факторов: степени загрязненности металла неметаллическими включениями, макро- и микроструктуры металла, состояния поверхности, формы и размеров детали и др.
Разрушение металлов при усталости отличается от разрушения при однократных нагрузках особым видом излома. При знакопеременной нагрузке происходит постепенное накопление напряжения, обусловленное движением дислокаций. Поверхность детали, как наиболее нагруженная часть сечения, претерпевает микродеформацию, и в наклепанной (упрочненной деформацией) зоне возникают микротрещины. Из множества микротрещин развитие получает только та, которая имеет наиболее острую вершину и наиболее благоприятно расположена по отношению к действующему напряжению.
Пораженная трещиной часть сечения детали не несет нагрузки, и она перераспределяется на оставшуюся часть, которая непрерывно уменьшается, пока не произойдет мгновенное разрушение. Таким образом, для усталостного излома характерно, как минимум, наличие зоны прогрессивно растущей трещины 1 и зоны долома 2 (рис. 18).
Важной характеристикой конструктивной прочности (надежности) металла является живучесть при циклическом нагружении.
Живучесть – это способность металла работать в поврежденном состоянии после образования трещины. Она измеряется числом циклов нагружения до разрушения или скоростью развития трещины усталости при данном напряжении. Живучесть является самостоятельным свойством, которое не зависит от других свойств металла. Живучесть имеет важное значение для оценки работоспособности деталей, работа которых контролируется различными методами дефектоскопии. Чем меньше скорость развития трещины усталости, тем легче ее обнаружить.
Для повышения усталостной прочности деталей желательно в поверхностных слоях металла создавать напряжение сжатия методами поверхностного упрочнения (механическими, термическими или химико-термическими).
3. металлические сплавы
Чистые металлы в большинстве случаев не обеспечивают требуемого комплекса механических и технологических свойств, поэтому для изготовления деталей машин наибольшее распространение получили металлические сплавы – вещества, обладающие металлическими свойствами, представляющие собой сочетание какого-либо металла (основа сплава) с другими металлами или неметаллами. Например, латунь – сплав меди (металл) с цинком (металл), сталь – сплав железа (металл) с углеродом (неметалл). Большинство сплавов получают путем сплавления, т. е. соединения компонентов сплава в жидком состоянии. Есть и другие способы образования сплавов. Так, металлокерамические сплавы образуются путем спекания из порошков.
Механические свойства металлов
Как и зачем проводятся испытания материалов на растяжение
Опыт применения материалов в машиностроении показывает, что их поведение в конструкциях зависит от целого ряда факторов – скорости и способа приложения нагрузок, температуры, формы изделия, его структуры и т.д. Поэтому проведение механических испытаний материалов позволяет определить его поведение в условиях эксплуатации. Проводя такие испытания, стремятся имитировать условия, возможно более близкие к реальным. Испытание на растяжение – одно из важнейших, поскольку именно в условиях растягивающих усилий большинство материалов обладает наименьшей прочностью.
- Цель испытаний
- Предел прочности при растяжении
- Закон Гука
- Модуль упругости
- Предел текучести
- Метод смещения
- Альтернативные методы
- Деформация
Цель испытаний
Испытание на растяжение проводят для конструкционных сталей, цветных металлов и их сплавов. Стандартом установлена методика статических испытаний, целью которых является определение следующих механических характеристик:
- Предела пропорциональности;
- Константы упругости;
- Предела текучести – условного и физического;
- Временного сопротивления;
- Истинного сопротивления на разрыв;
- Относительного сужения и удлинения образца после его разрыва.
В ряде случаев исследуются и дополнительные показатели, например, длительная прочность (ползучесть) конструкции.
Указанные параметры исследуются на стандартных образцах круглого или призматического поперечного сечения, форма и размеры которых определяет ГОСТ 7564-97. Для хрупких материалов форма образцов исключает резкие перепады в сечениях. Образцы получают штамповкой, литьём или механической обработкой (последнее - для материалов повышенной хрупкости).
Предел прочности при растяжении
Данный параметр определяют на разрывных машинах и механическим или – чаще – гидравлическим приводом. Лабораторные установки снабжаются записывающим устройством, которое представляет зависимость «напряжение-деформация/перемещение» в виде графика.
Записанные диаграммы различаются характером перехода необратимых деформаций в деформации разрушения. Постепенный переход от одного участка к другому характерен для пластичных материалов, к которым относится большинство металлов и сплавов. При этом остаточные деформации сравнительно велики, и образуют перед разрывом образца так называемую площадку текучести, когда деформация увеличивается, а прикладываемое усилие практически не изменяется.
Хрупкие материалы разрушаются при малых остаточных деформациях, а площадка текучести отсутствует. К таким материалам относят закалённую и не отпущенную сталь, серый чугун, стекло, бетон и др.
Таким образом, пределом прочности (или временным сопротивлением) называют условное напряжение, которое рассчитывается относительно силы, действующей на образец к к изначальной площади его поперечного сечения. Предел прочности соответствует максимальной нагрузке, которая предшествовала разрушению и определяется в МПа. Визуальной мерой временного сопротивления считается появление местного сужения образца, называемого шейкой. Именно в области шейки растяжение образца происходит наиболее интенсивно.
Испытание на растяжение ГОСТ 1497-84 является обязательным для всех видов конструкционных материалов.
Закон Гука
Это – основной закон, устанавливающий зависимость между напряжениями и деформациями в упругом теле. Закон Гука справедлив для начальных деформаций, которые пропорциональны прикладываемым к телу напряжениям.
Для продольного растяжения критерием пропорциональности вышеуказанных физических величин является показатель упругости, который называется модулем Юнга. Для подавляющего большинства конструкционных материалов модуль Юнга – постоянная величина, характеризующая жёсткость.
В более точных расчётах иногда принимают во внимание температурную зависимость константы упругости, которая, однако, проявляет себя лишь при температурах от 88 К.
Закон Гука справедлив лишь при напряжениях и деформациях, которые не превышают пределов, свойственных данному материалу. На применении этого закона основаны все вычисления, принятые в сопротивлении материалов.
Модуль упругости
Модуль упругости – это характеристика сопротивления материала упругой деформации. Он равен отношению напряжения к вызванной им упругой деформации.
Различают модуль упругости при осевом растяжении (уже описанный ранее модуль Юнга) и модуль упругости при сдвиге, характеризующий касательные напряжения в материале. Иногда, в условиях всестороннего сжатия говрят о модуле объёмной упругости.
Модуль нормальной упругости и модуль сдвига зависят от материала образца. Они важны при расчётах на прочность, жёсткость, устойчивость, а также являются мерой силы межатомной связи. Чем больше модуль упругости, тем меньшую деформацию получает металл при одинаковой нагрузке. Рассматриваемая величина измеряется в МПа или ГПа. Для металлов значение модуля сдвига обычно выше, чем модуля продольной упругости.
Предел текучести
Метод испытания на растяжение не является единственной технологией экспериментального определения эксплуатационных показателей. Важным параметром считается также предел текучести – напряжение, отвечающее нижнему положению площадки текучести в диаграмме растяжения.
Предел текучести является границей, которая разделяет зоны упругого и упруго-пластического деформирования, которые наблюдались в исследованном образце. Выше этого параметра даже незначительное увеличение напряжений или нагрузок вызывает значительные (и необратимые) деформации образца.
Для материалов, которые не имеют на диаграмме чётко выраженной площадки текучести, принимают так называемый условный предел текучести. Под ним понимают удельную нагрузку, когда необратимые изменения формы превышают установленный максимум. Этот максимум обычно устанавливается техническими условиями на материал и обязательно должен превышать те показатели, которые известны относительно предела упругости.
Критерием остаточной деформации считается удлинение образца на 0,2 %.
Метод смещения
Испытания на постоянное смещение - иногда также называемые испытаниями на постоянную деформацию, используются при оценке ползучести, когда режим нагружения определяет степень релаксации материала. Используются изогнутые в форме буквы U образцы, в которых релаксация менее значительна (только внешние волокна могут подвергаться значительному напряжению). Нижележащий упруго напряженный материал сопротивляется деформации только внешних волокон. Таким образом, ползучесть может быть ограничена, в отличие от испытания на растяжение, где постоянно наблюдается смещение зон образца.
Испытание со смещением на обратный U-образный изгиб в настоящее время разрабатывается как стандарт ISO. Оно используется преимущественно в ядерной промышленности.
Альтернативные методы
Альтернативные методы непрямых испытаний на растяжение включают:
- Тестирование на разрыв полых эластичных образцов;
- Испытание на изгиб балки;
- Модифицированные испытания на растяжение по методу Франклина-Дюссо.
Устройства для таких испытаний используют раздельные захваты, фиксирующие образец. Применяются для оценки прочности горных пород, а также в механике разрушения, при выяснении трещиностойкости конструкций.
Деформация
ГОСТ 1497-84 предусматривает установление двух деформационных характеристик – остаточного сужения образца и и его абсолютного удлинения. Оба показателя оцениваются в процентах или относительных единицах. Являются механическими характеристиками материала, и принимаются во внимание при оценке его способности выполнять поставленные эксплуатационные задачи.
Параметры деформации приводятся для комнатных температур испытывавшихся образцов.
Механические свойства металлов и сплавов
К основным механическим свойствам металлов относятся прочность , вязкость , пластичность , твердость , выносливость, ползучесть, износостойкость. Они являются главными характеристиками металла или сплава .
Рассмотрим некоторые термины, применяемые при характеристике механических свойств. Изменения размеров и формы, происходящие в твердом теле под действием внешних сил, называются деформациями, а процесс, их вызывающий,— деформированием. Деформации, исчезающие при разгрузке, называются упругими, а не исчезающие после снятия нагрузки — остаточными или пластическими.
Напряжением называется величина внутренних сил, возникающих в твердом теле под влиянием внешних сил.
Под прочностью материала понимают его способность сопротивляться деформации или разрушению под действием статических или динамических нагрузок. О прочности судят по характеристикам механических свойств, которые получают при механических испытаниях. К статическим испытаниям на прочность относятся растяжение, сжатие, изгиб, кручение, вдавливание. К динамическим относятся испытания на ударную вязкость, выносливость и износостойкость. Эластичностью называется способность материалов упруго деформироваться, а пластичностью — способность пластически деформироваться без разрушения.
Вязкость — это свойство материала, которое определяет его способность к поглощению механической энергии при постепенном увеличении пластической деформации вплоть до разрушения материала. Материалы должны быть одновременно прочными и пластичными.
Твердость — это способность материала сопротивляться проникновению в него других тел.
Выносливость — это способность материала выдерживать, не разрушаясь, большое число повторно-переменных нагрузок.
Износостойкость — это способность материала сопротивляться поверхностному разрушению под действием внешнего трения.
Ползучесть — это способность материала медленно и непрерывно пластически деформироваться (ползти) при постоянном напряжении (особенно при высоких температурах).
Поведение некоторых металлов (например, отожженной стали) при испытании на растяжение показано на рис. 3 . При увеличении нагрузки в металле сначала развиваются процессы упругой деформации, удлинение образца при этом незначительно. Затем наблюдается пластическое течение металла без повышения напряжения, этот период называется текучестью. Напряжение, при котором продолжается деформация образца без заметного увеличения нагрузки, называют пределом текучести. При дальнейшем повышении нагрузки происходит развитие в металле процессов наклепа (упрочнения под нагрузкой). Наибольшее напряжение, предшествующее разрушению образца, называют пределом прочности при растяжении.
Рис. 3. Диаграмма деформации при испытании металлов на растяжение.
Напряженное состояние — это состояние тела, находящегося под действием уравновешенных сил, при установившемся упругом равновесии всех его частиц. Остаточные напряжения — это напряжения, остающиеся в теле, после прекращения действия внешних сил, или возникающие при быстром нагревании и охлаждении, если линейное расширение или усадка слоев металла и частей тела происходит неравномерно.
Внутренние напряжения образуются при быстром охлаждении или нагревании в температурных зонах перехода от пластического к упругому состоянию металла. Эти температуры для стали соответствую 400—600°. Если образующиеся внутренние напряжения превышают предел прочности, то в деталях образуются трещины, если они превышают предел упругости, то происходит коробление детали.
Предел прочности при растяжении в кг/мм2 определяется на разрывной машине как отношение нагрузки Р в кГ, необходимой для разрушения стандартного образца ( рис. 4, а ), к площади поперечного сечения образца в мм 2 .
Рис. 4. Методы испытания прочности материалов: а - на растяжение; б - на изгиб; в - на ударную вязкость; г - на твёрдость
Предел прочности при изгибе в кГ/мм2 определяется разрушением образца, который устанавливаете» на двух опорах ( рис. 4, б ), нагруженного по середине сосредоточенной нагрузкой Р.
Для установления пластичности материала определяют относительное удлинение δ при растяжении или прогиб ƒ при изгибе.
Относительное удлиненней δ в % определяется на образцах, испытуемых на растяжение. На образец наносят деления (рис. 4, а) и измеряют между ними расстояние до испытания (l0) и после разрушения (l) и определяют удлинение
δ = l-l o / l o · 100%
Прогиб при изгибе в мм определяется при помощи прогибомера машины, указывающего прогиб ƒ, образующийся на образце в момент его разрушения (рис. 4, б).
Ударная вязкость в кГм/см 2 определяется на образцах ( рис. 4, в ), подвергаемых на копре разрушению ударом отведенного в сторону маятника. Для этого работу деформации в кГм делят на площадь поперечного сечения образца в см 2 .
Твердость по Бринелю (НВ) определяют на зачищенной поверхности образца, в которую вдавливают стальной шарик ( рис. 4, г ) диаметром 5 или 10 мм под соответствующей нагрузкой в 750 или 3000 кГ и замеряют диаметр d образовавшейся лунки. Отношение нагрузки в кГ к площади лунки πd2 / 4 в мм 2 дает число твердости.
Показатели для механических свойств для основных сплавов приведены в табл. 1 .
Читайте также: