Светло серый тугоплавкий металл

Обновлено: 23.01.2025

W, химический элемент VI группы периодической системы Менделеева, порядковый номер 74, атомная масса 183,85; тугоплавкий тяжёлый металл светло-серого цвета. Природный В. состоит из смеси пяти стабильных изотопов с массовыми числами 180, 182, 183, 184 и 186. В. был открыт и выделен в виде вольфрамового ангидрида WO3 в 1781 шведским химиком К. Шееле из минерала тунгстена, позднее назван Шеелитом. В 1783 испанские химики братья д’Элуяр выделили WO3 из минерала вольфрамита и, восстановив WO3 углеродом, впервые получили сам металл, названный ими В. Минерал же вольфрамит был известен ещё Агриколе (16 в.) и назывался у него «Spuma lupi» — волчья пена (нем. Wolf — волк, Rahm — пена) в связи с тем, что В., всегда сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»). В США и некоторых других странах элемент назывался также «тунгстен» (по-шведски — тяжёлый камень). В. долго не находил промышленного применения. Лишь во 2-й половине 19 в. начали изучать влияние добавок В. на свойства стали.

В. мало распространён в природе; его содержание в земной коре 1·10 -4 % по массе. В свободном состоянии не встречается, образует собственные минералы, главным образом вольфраматы (см. Вольфраматы природные), из которых промышленное значение имеют Вольфрамит (Fe, Mn) WO4 и шеелит CaWO4 (см. Вольфрамовые руды).

Физические и химические свойства. В. кристаллизуется в объёмноцентрированной кубической решётке с периодом а = 3,1647Å; плотность 19,3 г/см 3 , tпл 3410 ± 20°С, tkип 5900°С. Теплопроводность (кал/см·сек·°С) 0,31 (20°С); 0,26 (1300°С). Удельное электросопротивление (ом·см·10 -6 ) 5,5 (20°С); 90,4 (2700°С). Работа выхода электронов 7,21·10 -19 дж (4,55 эв), мощность энергии излучения при высоких температурах (вт/см 2 ): 18,0 (1000°С); 64,0 (2200°С); 153,0 (2700°С); 255,0 (3030°С). Механические свойства В. зависят от предшествующей обработки. Предел прочности при растяжении (кгс/мм 2 ) для спечённого слитка 11, для обработанного давлением от 100 до 430; модуль упругости (кгс/мм 2 ) 35 000—38 000 для проволоки и 39 000—41 000 для монокристаллической нити; твёрдость по Бринеллю (кгс/мм 2 ) для спечённого слитка 200—230, для кованого слитка 350—400 (1 кгс/мм 2 ≈ 10 Мн/мм 2 ). При комнатной температуре В. малопластичен (см. Тугоплавкие металлы).

В обычных условиях В. химически стоек. При 400—500°С компактный металл заметно окисляется на воздухе до WO3. Пары воды интенсивно окисляют его выше 600°С до WO2. Галогены, сера, углерод, кремний, бор взаимодействуют с В. при высоких температурах (фтор с порошкообразным В. — при комнатной). С водородом В. не реагирует вплоть до температуры плавления; с азотом выше 1500°С образует нитрид. При обычных условиях В. стоек к соляной, серной, азотной и плавиковой кислотам, а также к царской водке; при 100°С слабо взаимодействует с ними; быстро растворяется в смеси плавиковой и азотной кислот. В растворах щелочей при нагревании В. растворяется слегка, а в расплавленных щелочах при доступе воздуха или в присутствии окислителей — быстро; при этом образуются Вольфраматы. В соединениях В. проявляет валентность от 2 до 6, наиболее устойчивы соединения высшей валентности.

В. образует четыре окисла: высший — трёхокись WO3 (вольфрамовый ангидрид), низший — двуокись WO2 и два промежуточных W10O29 и W4O11. Вольфрамовый ангидрид — кристаллический порошок лимонно-жёлтого цвета, растворяющийся в растворах щелочей с образованием вольфраматов. При его восстановлении водородом последовательно образуются низшие окислы и В. Вольфрамовому ангидриду соответствует вольфрамовая кислота H2WO4 жёлтый порошок, практически не растворимый в воде и в кислотах. При её взаимодействии с растворами щелочей и аммиака образуются растворы вольфраматов. При 188°С H2WO4 отщепляет воду с образованием WO3. С хлором В. образует ряд хлоридов и оксихлоридов. Наиболее важные из них: WCl6 (tпл 275°С, tkип 348°С) и WO2Cl2 (tпл 266°С, выше 300°С сублимирует), получаются при действии хлора на вольфрамовый ангидрид в присутствии угля. С серой В. образует два сульфида WS2 и WS3. Карбиды вольфрама WC (tпл 2900°C) и W2C (tпл 2750°C) — твёрдые тугоплавкие соединения; получаются при взаимодействии В. с углеродом при 1000—1500°С.

Получение и применение. Сырьём для получения В. служат вольфрамитовые и шеелитовые концентраты (50—60% WO3). Из концентратов непосредственно выплавляют ферровольфрам (сплав железа с 65—80% В.), используемый в производстве стали; для получения В., его сплавов и соединений из концентрата выделяют вольфрамовый ангидрид. В промышленности применяют несколько способов получения WO3. Шеелитовые концентраты разлагают в автоклавах раствором соды при 180—200°С (получают технический раствор вольфрамата натрия) или соляной кислотой (получают техническую вольфрамовую кислоту):

Вольфрамитовые концентраты разлагают либо спеканием с содой при 800—900°С с последующим выщелачиванием Na2WO4 водой, либо обработкой при нагревании раствором едкого натра. При разложении щелочными агентами (содой или едким натром) образуется раствор Na2WO4, загрязнённый примесями. После их отделения из раствора выделяют H2WO4. (Для получения более грубых, легко фильтруемых и отмываемых осадков вначале из раствора Na2WO4 осаждают CaWO4, который затем разлагают соляной кислотой.) Высушенная H2WO4 содержит 0,2—0,3% примесей. Прокаливанием H2WO4 при 700—800°С получают WO3, а уже из него — твёрдые сплавы. Для производства металлического В. H2WO4 дополнительно очищают аммиачным способом — растворением в аммиаке и кристаллизацией паравольфрамата аммония 5(NH4)2O·12WO3·nH2O. Прокаливание этой соли даёт чистый WO3.

Порошок В. получают восстановлением WO3 водородом (а в производстве твёрдых сплавов — также и углеродом) в трубчатых электрических печах при 700—850°С. Компактный металл получают из порошка металлокерамическим методом (см. Порошковая металлургия), т. е. прессованием в стальных прессформах под давлением 3—5 тс/см 2 и термической обработкой спрессованных заготовок-штабиков. Последнюю стадию термической обработки — нагрев примерно до 3000°С проводят в специальных аппаратах непосредственно пропусканием электрического тока через штабик в атмосфере водорода. В результате получают В., хорошо поддающийся обработке давлением (ковке, волочению, прокатке и т.д.) при нагревании. Из штабиков методом бестигельной электроннолучевой зонной плавки (См. Зонная плавка) получают монокристаллы В.

В. широко применяется в современной технике в виде чистого металла и в ряде сплавов, наиболее важные из которых — легированные стали, твёрдые сплавы на основе карбида В., износоустойчивые и жаропрочные сплавы (см. Вольфрамовые сплавы). В. входит в состав ряда износоустойчивых сплавов, используемых для покрытия поверхностей деталей машин (клапаны авиадвигателей, лопасти турбин и др.). В авиационной и ракетной технике применяют жаропрочные сплавы В. с другими тугоплавкими металлами. Тугоплавкость и низкое давление пара при высоких температурах делают В. незаменимым для нитей накала электроламп, а также для изготовления деталей электровакуумных приборов в радиоэлектронике и рентгенотехнике. В различных областях техники используют некоторые химические соединения В., например, Na2WO4 (в лакокрасочной и текстильной промышленности), WS2 (катализатор в органическом синтезе, эффективная твёрдая смазка для деталей трения).

Лит.: Смителлс Дж., Вольфрам, пер. с англ., М., 1958; Агте К., Вацек И., Вольфрам и молибден, пер. с чеш., М., 1964; Зеликман А. Н., Крейн О. Е., Самсонов Г. В., Металлургия редких металлов, 2 изд., М., 1964; Химия и технология редких и рассеянных элементов, под ред. К. А. Большакова, т. 1, М., 1965; Справочник по редким металлам, пер. с англ., М., 1965; Основы металлургии, т. 4, Редкие металлы, М., 1967.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Вольфрам

Словари

Толковый словарь русского языка. Поиск по слову, типу, синониму, антониму и описанию. Словарь ударений.

Герой древнегреческой мифологии, осужденный богами вечно томиться голодом и жаждой, несмотря на близость земных плодов и воды.

ТАНТА́Л, тантала, мн. нет, муж. (лат. tantalum) (хим.). Очень твердый, тугоплавкий и ковкий металл серого цвета, встречающийся редко и только в некоторых минералах. (Названо по имени Тантала, героя греческой мифологии, в связи с трудностью добычи этого металла; ср. Танталовы муки.)

ТАНТА́Л, -а, муж. Тяжёлый тугоплавкий металл светло-серого цвета.

| прил. танталовый, -ая, -ое. Танталовые руды.

ТАНТАЛ - муж. один из открытых химиками металлов.

ТАНТА́Л, -а, м

Химический элемент, светло-серый очень тугоплавкий металл.

Тантал получил широкое применение в электровакуумной технике, при изготовлении химической аппаратуры, в медицине используется для костного протезирования как биосовременный материал.

ТАНТА́Л -а; м. [греч. Tantalos] Химический элемент (Та), твёрдый тугоплавкий металл серо-стального цвета (используется в медицине и технике).

◊ Муки Танта́ла. Мучения, вызываемые созерцанием желанной цели и сознанием невозможности её достичь. ● Герой древнегреческой мифологии, осуждённый богами на вечные мучения: страдать от голода и жажды, несмотря на близость воды и плодов.

◁ Танта́ловый, -ая, -ое. Т. сплав. Т-ая руда. Т-ая нить. Танта́лов, -а, -о. Танталовы муки.

Танта́л - в греческой мифологии лидийский или фригийский царь, обречённый богами на вечные муки («танталовы муки»); стоя по горло в воде и видя свисающие с дерева плоды, Тантал не мог утолить жажду и голод, так как вода уходила из-под его губ, а ветвь с плодами отстранялась.

танта́л (лат. Tantalum), химический элемент V группы периодической системы. Назван по имени Тантала. Светло-серый с синеватым отливом металл, тяжёлый и тугоплавкий; плотность 16,6 г/см 3 , tпл 3014°C. Химически стоек. В природе встречается совместно с Nb. Используется в металлургии (компонент коррозионностойких, жаропрочных и твердых сплавов), в ядерной энергетике, химическом машиностроении, электронике, медицине (наложение швов, скрепление костей и сосудов), ювелирном деле (вместо платины).

1. (с прописной буквы).

Герой древнегреческой мифологии, осужденный богами на вечные мучения: страдать от голода и жажды, несмотря на близость воды и плодов.

2. Химический элемент, твердый тугоплавкий металл серо-стального цвета.

мучения, вызываемые созерцанием желанной цели и сознанием невозможности ее достичь.

ТАНТАЛ - в греческой мифологии, царь Сипила в Лидии (или Фригии), сын Зевса и отец Пелопа. Он был допущен Зевсом на Олимп, однако злоупотребил дружбой богов. О его преступлении рассказывается по-разному: 1) он попытался обмануть богов, угостив их на пиру мясом своего сына Пелопа; 2) он похитил у них нектар и амброзию; 3) он выбалтывал тайны богов; 4) он отрицал, что знает о местонахождении золотой собаки, похищенной из святилища Зевса. Наказание, которому он был подвергнут в Тартаре, вошло в поговорку ("танталовы муки"). Томимый жаждой, он стоял в озере по горло в воде, но вода отступала, когда он делал попытку напиться. Над его головой склонялись ветви, усеянные плодами, но ветром их сносило всякий раз, как он к ним тянулся.

танта́л, -а (металл)

Танта́л, -а: му́ки Танта́ла

танта́л, танта́лы, танта́ла, танта́лов, танта́лу, танта́лам, танта́лом, танта́лами, танта́ле, танта́лах

сущ., кол-во синонимов: 4

Сын Зевса, царь города Сипила близ Смирны (Малая Азия), отец Ниобы и Пелопа. Тантал известен благодаря своему наказанию в аду: находясь по горло в воде, он не может утолить жажду, так как вода отступает от губ; над ним висят ветки с плодами, но ветки отодвигаются, когда он протягивает к ним руки. Отсюда выражение «танталовы муки». Преступления Тантала многочисленны, а самые серьезные из них - воровство нектара и амброзии, разглашение людям секретов богов и убийство собственного сына Пелопа. Для того чтобы узнать, всеведущи ли боги, он приготовил мясо убитого сына и предложил его на пиру богам. Боги вернули Пелопа к жизни, прокляв весь род Тантала.

ТАНТАЛ (лат. Tantalus, греч. Tantalos). В мифологии: царь фригийский, допущенный Юпитером к столу богов, но за разглашение божеских тайн в преисподнем царстве наказанный тем, что висящие над ним плоды и доходящая до его подбородка вода, как скоро он их ловил, удалялись от него и сверх того летящая на него скала беспрерывно грозила низвергнуться на него; отсюда выражение: «испытывает муки Тантала» - говорится про человека, который, приближаясь к цели своих желаний, никогда не достигает их осуществления.

- Металл или мифический мученик.

- Химический элемент, Ta.

- Древнегреческий герой, мучившийся голодом.

- Этот фригийский царь был сыном Зевса, делил с богами трапезу на Олимпе и возомнил себя богоравным, за что и был жестоко наказан.

- Кто, стоя по горло в воде, не мог утолить жажду, видя над собой плоды, не мог сорвать их - ветви отклонялись и вода утекала?

- Обнаруженный и выделенный шведским химиком Андерсем Экебергом в 1802 г. окисел неизвестного металла никак не мог «насытиться кислотами» и именно из-за этой поистине мифологической неудовлетворенности этот металл и получил своё название.

- Персонаж в древнегреческой мифологии.

- Сын Зевса, угощавший богов мясом своего убитого сына.

- Этот элемент получил свое название из-за трудностей его получения в чистом виде.

ТАНТАЛ (в мифологии) - ТАНТА́Л, в греческой мифологии сын Зевса (см. ЗЕВС) (или Тмола (см. ТМОЛ)) и Плуто, царь страны, находившейся в окрестностях горы Сипила в южной Фригии (см. ФРИГИЯ) . Он был любимцем богов, женат на дочери бога реки Пактол (одно из древнейших разведанных месторождений золота). Боги нередко спускались на землю в богатые чертоги Тантала и пировали там, но Тантал отплатил им черной неблагодарностью: он разглашал их тайны, а по некоторым мифам угощал смертных похищенными у богов нектаром и амброзией. Еще более тяжкое прегрешение совершил он, укрыв похищенную на Крите золотую собаку Зевса и вероломно поклявшись, что он не знает, где пес.

Однако Зевс все прощал своему сыну, но Тантал, желая испытать всеведение богов, накормил их мясом своего сына Пелопса (см. ПЕЛОПС) . Боги воскресили юношу, а Тантал был обречен богами на вечные муки («танталовы муки»): стоя по горло в воде и видя спускающиеся с дерева плоды, Тантал не мог утолить жажду и голод, т. к. вода уходила из-под его губ, а ветвь с плодами отстранялась. Над ним же вечно нависала скала, грозя обвалиться каждое мгновенье. Цепь преступлений и братоубийственной розни не прерывалась в потомстве Тантала до искупления Ореста.

ТАНТАЛ, в древнегреческой мифологии лидийский или фригийский царь, обреченный богами на вечные муки ("танталовы муки"); стоя по горло в воде и видя свисающие с дерева плоды, Тантал не мог утолить жажду и голод, т.к. вода уходила от его губ, а ветвь с плодами отстранялась.

ТАНТАЛ (Tantalum), Ta, химический элемент V группы периодической системы, атомный номер 73, атомная масса 180,9479; металл, tпл 3014°C. Используют в химическом машиностроении, медицине для костного протезирования (биосовместимый материал) и др. Тантал открыт шведским химиком А. Экебергом в 1802.

ТАНТАЛ (химический элемент) - ТАНТА́Л (лат. Tantalum, по имени мифического Тантала (см. ТАНТАЛ (в мифологии))), Та (читается «тантал»), химический элемент с атомным номером 73, атомная масса 180,9479. Природный тантал состоит из стабильного изотопа 181 Ta (99,988 % по массе) и радиоактивного 180 Ta (0,0123%, Т1/2 10 13 лет). Конфигурация двух внешних электронных слоев 5s 2 p 6 d 3 6s 2 . Степень окисления +5, реже +4, +3, +2 (валентность V, IV, III и II). Расположен в группе VВ, в 6 периоде периодической системы элементов.

Радиус атома 0,146 нм, радиус ионов (координационное число 6) Та 5+ - 0,078 нм, Та 4+ - 0,082 нм, иона Та 3+ - 0,086 нм. Энергии последовательной ионизации 7,89, 16,2 эВ. Работа выхода электронов 4,12 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,5.

История открытия

Открыт в 1802 шведским химиком А. Экебергом (см. ЭКЕБЕРГ Андерс Густав). До 1844 тантал считали разновидностью колумбия, когда немецкий химик Г. Розе (см. РОЗЕ (немецкие ученые, братья)) установил, что речь идет о двух разных, близких по свойствам элементах.

Металлический тантал впервые получил в 1903-1905 В. фон Болтону.

Нахождение в природе

Промышленное получение тантала начинается с обогащения сырья. Приготовленные танталитовые (колумбитовые) или пирохлоровые концентраты с суммарным содержанием Та2О5 и Nb2O5 до 50% далее растворяют в плавиковой кислоте и затем получают фтортанталат K2TaF7 и фторниобат K2NbF7 Эти соли затем разделяют многократной дробной кристаллизацией. В последнее время для разделения ниобия и тантала все более широко используют экстракцию.

Для получения металла из K2TaF7 применяют натрийтермию:

Полученный порошкообразный тантал далее спекают в вакууме в электродуговых или электроннолучевых печах.

Физические и химические свойства

Блестящий серебристо-серый металл, с кубической объемно-центрированной решеткой типа a-Fe (а=0,3296 нм). Температура плавления 3014°C, кипения 5500°C, плотность 16,60 кг/дм 3 . Характеризуется высокой химической инертностью, тяжелый металл. При комнатной температуре не реагирует с кислородом (см. КИСЛОРОД), галогенами (см. ГАЛОГЕНЫ), кислотами (см. КИСЛОТЫ) и щелочами (см. ЩЕЛОЧИ). Окисляется кислородом только при температуре выше 300°C, образуя оксид Та2О5.

При сплавлении Та2О5 с различными оксидами получают танталаты - соли гипотетических мета-НТаО3, орто-Н3ТаО4 и политанталовых кислот Н2О·хТа2О5.

Кроме оксида Та2О5, тантал образует также диоксид ТаО2.

С галогенами тантал при нагревании образует пентагалогениды ТаHal5. Восстановлением ТаHal5 (Hal=Cl, Br или I) получают тетрагалогениды ТаHal4. Пентагалогениды тантала (кроме пентафторида) легко гидролизуются водой. Уже при температурах выше 200-250°C эти пентагалогениды сублимируют.

В присутствии паров воды и кислорода ТаCl5 образует оксихлорид ТаOCl3.

Вcаимодействуя с графитом, образует карбиды Та2C и ТаC - твердые, химически стойкие и очень жаропрочные соединения. В системе Тl - С установлены три фазы переменного состава. Сходным образом ведет себя тантал в системах с фосфором,азотом и мышьяком. При взаимодействии тантала с серой синтезированы сульфиды: ТаS2 и ТаS3.

Из тантала изготовляют теплообменники, нагреватели, тигли для вакуумной плавки металлов. Применяют при изготовлении электролитических конденсаторов и ответственных деталей электронных приборов.

Благодаря хорошей биосовместимости с живыми тканями человека, используют для костного протезирования. Из нитрида тантала TaN возможно создание устойчивых к истиранию покрытий. Служит легирующей добавкой к некоторым сталям (см. СТАЛЬ). Танталат лития - хороший сегнетоэлектрик (см. СЕГНЕТОЭЛЕКТРИКИ).

вольфрам

Вольфрам — самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент — углерод. При стандартных условиях химически стоек. Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием лат. Spuma lupi («волчья пена») или нем. Wolf Rahm (“волчьи сливки”, “волчий крем”). Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

СТРУКТУРА

структура вольфрама

Кристалл вольфрама имеет объемноцентрированную кубическую решетку. Кристаллы вольфрама на холоду отличаются малой пластичностью, поэтому в процессе прессования порошка они практически почти не изменяют своей основной формы и размеров и уплотнение порошка происходит главным образом путем относительного перемещения частиц.

В объемно-центрированной кубической ячейке вольфрама атомы располагаются по вершинам и в центре ячейки, т.е. на одну ячейку приходится два атома. ОЦК-структура не является плотнейшей упаковкой атомов. Коэффициент компактности равен 0,68. Пространственная группа вольфрама Im3m.

СВОЙСТВА

кольцо из вольфрама

Вольфрам — блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя — время существования сиборгия очень мало). Температура плавления — 3695 K (3422 °C), кипит при 5828 K (5555 °C). Плотность чистого вольфрама составляет 19,25 г/см³. Обладает парамагнитными свойствами (магнитная восприимчивость 0,32·10−9). Твердость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C — 55·10−9 Ом·м, при 2700 °C — 904·10−9 Ом·м. Скорость звука в отожжённом вольфраме 4290 м/с. Является парамагнетиком.

Вольфрам является одним из наиболее тяжелых, твердых и самых тугоплавких металлов. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддается ковке и может быть вытянут в тонкую нить.

ЗАПАСЫ И ДОБЫЧА

вольфрам

Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т (0,00013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных — 0,1, основных — 0,7, средних — 1,2, кислых — 1,9.

Процесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре около 700 °C. Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток. Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

ПРОИСХОЖДЕНИЕ

вольфрам

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 * mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1—2 %.

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее. Мировое производство вольфрама составляет 49—50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия. Главные импортёры: США, Япония, Германия, Великобритания.
Также есть месторождения вольфрама в Армении и других странах.

ПРИМЕНЕНИЕ

продукция из вольфрама

Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.
Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).

Вольфрам используют в качестве электродов для аргоно-дуговой сварки. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей. Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.

Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам. ( Р18, Р6М5. от rapid – быстрый, скорость).

Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка. Некоторые соединения вольфрама применяются как катализаторы и пигменты. Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.

Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К). Искусственный радионуклид 185 W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184 W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Читайте также: