Сульфиды каких металлов не растворяются в соляной кислоте

Обновлено: 22.01.2025

Основные химические свойства сульфидов представлены в таблице 4.

Таблица 4

Химические свойства сульфидов

Химические свойства

Тиосоли

Многие сульфиды растворяются в растворах сульфидов щелочных металлов, образуя тиосоли, например:

Полученное соединение называется тиоарсенат калия.

Этот процесс вполне аналогичен процессу образования солей кислородных кислот при соединении кислого и основного окислов:

Тисоли можно рассматривать также как соли, аналогичные солям кислородных кислот, но только содержащие вместо кислорода серу. Образование анионов тиосолей по аналогии с образованием анионов солей кислородных кислот можно представить следующими уравнениями:

Уравнение (16) показывает, что могут образовываться одновременно анаионы как тио-, так и кислородных кислот, а именно в том случае, когда сульфиды, растворимые в растворах щелочных сульфидов, обрабатывают щелочами.

При подкислении раствора большинство тиосолей распадается с выделением сероводорода и освобождением исходного сульфида, так как свободные тиокислоты, как правило, неустойчивы.

Тиосоли образуют платина, золото, германий, теллур, молибден, вольфрам, ванадий и углерод. Тиосоли всех этих элементов можно получить обработкой соответствующих сульфидов раствором сульфида щелочного металла. Еще ряд тиосолей можно приготовить сплавлением, однако относительно полученных таким способом соединений часто остается сомнение, действительно ли мы имеем дело с настоящими тиосолями, а не с двойными сульфидами.

Полисульфиды.

Растворы щелочных металлов способны растворять значительные количества серы, и при этом образуются окрашенные в цвета от желтого до коричнево-красного полисульфиды, т.е. соединения общей формулы M2Sn, где n обычно имеет значения от 2 до 5, но в некоторых случаях может принимать и еще большие значения. Известные полисульфиды щелочных металлов представлены в таблице 5.

Полисульфиды щелочных металлов образуются также при стоянии растворов щелочных сульфидов на воздухе вследствие медленного окисления гидросульфид-ионов кислородом воздуха:

Полисульфиды щелочных металлов получают также сплавлением сульфидов щелочных металлов с серой. Кроме того, их можно получить, сплавляя гидроокиси или карбонаты щелочных металлов с серой. Однако в последнем случае получающиеся полисульфиды бывают загрязнены одновременно образующимся тиосульфатом, а при доступе воздуха и сульфатом.

Кроме полисульфидов щелочных металлов, известны также полисульфиды щелочноземельных металлов. Самыми устойчивыми являются, по –видимому, полисульфиды с четырьмя атомами серы.

В таблице 5 представлены известные полисульфиды щелочных меаллов.

Известные полисульфиды щелочных металлов

Na2S2 K2S2 Rb2S2 Cs2S2
- K2S3 Rb2S3 Cs2S3
Na2S4 K2S4 Rb2S4 Cs2S4
Na2S5 K2S5 Rb2S5 Cs2S5
- K2S6 Rb2S6 Cs2S6

Гидролитическое расщепление полисульфидов происходит в значительно меньшей степени, чем обычных сульфидов. Например, в отличие от нормального сульфида аммония (NH4)2S полисульфиды аммония при обычных температурах устойчивы. Кислоты разлагают полисульфиды с отщеплением серы:

Получение и свойства сульфидов

Задача 851.
Почему сульфид цинка растворяется в соляной кислоте, а сульфид меди нет? В какой кислоте можно растворить сульфид меди?
Решение:
Взаимодействие сульфида цинка с соляной кислотой выражается уравнением:

ZnS(к) + 2HCl ↔ ZnCl2 + H2S(г)

ZnS + 2H + ↔ Zn 2+ + H2S

Присутствие в числе исходных веществ малорастворимого электролита ZnS, при образовании которого связываются ионы S 2- , обуславливает протекание реакции влево. С другой стороны, при образовании слабого электролита H2S также связываются ионы S 2- , способствующие протеканию реакции вправо. Таким образом, ионы S 2- участвуют в двух процессах, приводящих к установлению двух равновесий:

S 2- + Zn 2+ ↔ ZnS(к);
S 2- + 2Н + ↔ Н 2 S(г).

Протекание того или иного процесса зависит от того, какое из двух веществ – сероводород или сульфид цинка – в большей степени связывает ионы S 2- . Константа диссоциации H2S (K = K1 . K2 = 6 . 10 -22 ), произведение растворимости ZnS равно 1,3 . 10 -23 . Из чего вытекает, что связывание ионов S 2- в молекулы H2S происходит полнее, чем в ZnS. Поэтому рассматриваемая реакция протекает вправо – сульфид цинка растворяется в соляной кислоте. Аналогично два равновесия устанавливаются в системе CuS—HCl:

S 2- +Cu 2+ ↔ CuS(к);
S 2- + 2Н + ↔ Н2S(г).

Но произведение растворимости CuS равно 3,2 . 10 -38 , что меньше, чем 6 . 10 -22 . Поэтому связывание ионов S 2- в CuS происходит полнее, чем в молекулах H2S и, равновесие в системе:

сместится влево; сульфид меди не растворим в растворе соляной кислоты. Следовательно, сульфид меди растворится в растворе той кислоты, суммарная константа диссоциации которой будет иметь меньшее численное значение, чем ПР(CuS), например, ортокремниевая кислота H4SiO4 численное значение К = К1 . К2 . К3 . К4 = 8 . 10 -48 .

Задача 852.
Каковы продукты реакции взаимодействия хлорида железа (III): а) с сероводородом; б) с сульфидом аммония?
Решение:
а) Хлорид железа (III) и сероводород реагируют с образованием хлорида железа (II), серы и хлороводорода:

Данная реакция протекает по окислительно-восстановительному механизму, где роль окислителя играет FeCl3, а восстановителя – H2S.

б) Между хлоридом железа (III) и сульфидом аммония протекает реакция по обменному механизму с образованием сульфида железа (III) и хлорида аммония:

Задача 853.
Объяснить, почему ZnS и РbS можно получить обменной реакцией в водном растворе, а Al2S3 и Cr2S3 нельзя. Указать способ получения Al2S3 и Cr2S3.
Решение:
Малорастворимые сульфиды металлов можно осадить из растворов солей действием сероводорода или сульфида аммония:

Являясь солями слабой кислоты, растворимые сульфиды подвергаются гидролизу. Гидролиз сульфидов, содержащих элементы в высоких степенях окисления Al2S3 и Cr2S3 и др.), часто идет до конца, он необратим. Поэтому Al2S3 и Cr2S3 нельзя получить обменной реакцией в водном растворе. Обычно для их получения используют сплавление метала с серой в отсутствие кислорода и влаги:

2Al + 3S Al2S3;
2Cr + 3S Cr2S3.

Сульфид хрома поучают:
Сплавление оксида хрома(III) с сероводородом:

2Cr2O3 + 9S 2S3 + 3SO2

Пропускание сероводорода через нагретый оксид хрома(III):

Cr2O3 + 3H2S 2S3 + 3H2O

Задача 854.
Какова реакция среды в растворах: а) Na2S; 6) (NH4)2S; в) NaНS?
Решение:
а) Na2S – соль сильного основания и слабой кислоты, гидролизующаяся по аниону:

Na2S ↔ 2Na + + S 2- ;
S 2- + H2O ↔ HS - + OH - (ионно-молекулярная форма);
Na2S + H2O ↔ NaHS + NaOH (молекулярная форма).

Гидролиз преимущественно протекает по первой ступени, при этом образуется избыток ионов ОН - , которые придают раствору соли щелочную среду, рН > 7.

б) (NH4)2S – соль слабого однокислотного основания и слабой двухосновной кислоты, гидролизуется как по катиону, так и по аниону:

(NH4)2S ↔ 2NH4 + + S 2- ;
NH4 + + H2O ↔ NH4OH + H + (ионно-молекулярная форма);
S 2- + H2O ↔ HS - + NH4OH (ионно-молекулярная форма).

При гидролизе солей, образованных слабым основанием и слабой кислотой в растворе образуются в избытке как ионы Н + так и ионы ОН - , которые взаимодействуя друг с другом образуют Н2О:

Н + + ОН - ↔ Н2О

Казалось бы, реакция среды должна быть нейтральной по причине образования воды, но, на самом деле, реакция среды бывает или слабокислой, или слабощелочной, что зависит от силы кислоты и основания, образующие соль. Так, если КD основания меньше, чем KD кислоты, то гидролиз соли будет преимущественно протекать по катиону и, следовательно, в растворе будут незначительно преобладать ионы водорода Н + , что придаст раствору слабокислую среду, рН раствора будет незначительно меньше семи. Так как KD(H2S) < KD(NH4OH), то соль будет чуть больше гидролизоваться по аниону, следовательно, в растворе сульфида аммония преобладают ионы ОН - , что придаёт ему слабощелочную среду, рН > 7.

в) NaНS – кислая соль слабой кислоты и сильного основания, которая будет гидролизоваться по аниону:

NaHS ↔ Na + + HS - ;
HS - + H2O ↔ H2S + OH - (ионно-молекулярная форма);
NaHS + H2O ↔ H2S + NaOH (молекулярная форма).

При гидролизе гидросульфида натрия образуется избыток ионов ОН - , которые придают раствору соли щелочную среду, рН > 7.

Сероводород. Водородные соединения серы, селена и теллура

Задача 847.
Объяснить, почему сероводород не осаждает сульфид марганца, но осаждает сульфид меди. Можно ли осадить сульфид марганца из водного раствора его соли?
Решение:
Сульфиды, как электролиты диссоциируют в водных растворах:

МnS ↔ Mn 2+ + S 2- ;
CuS ↔ Cu 2+ + S 2- .

При пропускании сероводорода через раствор МnS происходит его диссоциация:

Таким образом, в смеси будут присутствовать ионы Mn 2+ , H + , S 2- . Ионы S 2- могут участвовать в двух конкурирующих процессах, приводящих к установлению двух равновесий:

S 2- + Mn 2+ ↔ MnS;
S 2- + 2H + ↔ H2S.

Произведение растворимости МnS равно 7 . 10 -17 , а суммарная константа диссоциации Н2S (К = К1 . К2 = 6 . 10 -22 . Так как 7 . 10 -17 значительно больше, чем 6 . 10 -22 , то связывание ионов S 2- в молекулы Н2S происходит полнее, чем в молекулы MnS. Поэтому сульфид марганца в присутствии сероводорода будет растворяться.

В растворе сульфида меди в присутствии сероводорода будут присутствовать ионы Сu 2+ , H + , S 2- . Произведение растворимости CuS равно 7 . 10 -17 , а суммарная константа диссоциации Н2S (К = К1 . К2 = 6 . 10 -22 . Так как 3,2 . 10 -38 значительно меньше, чем 6 . 10 -22 , то связывание ионов S 2- в молекулы СuS происходит полнее, чем в молекулы H2S. Поэтому сульфид меди в присутствии сероводорода не будет растворяться.

Задача 848.
Указать лабораторный способ получения сероводорода. Как можно получить селеноводород и теллуроводород?
Решение:
В лаборатории сероводород можно получить действием на сульфиды металлов, например, на сульфид железа (II) разбавленным раствором соляной кислоты:

Селеноводород и теллуроводород тоже можно получить действуя на селениды и теллуриды разбавленными растворами сильных кислот:

Задача 849.
Какие водородные соединения образует сера? Как они получаются? Каково их строение? Какие степени окисленности проявляет сера в этих соединениях?
Решение:
В обычных условиях сера с водородом не взаимодействует. Лишь при высокой температуре сера взаимодействует с водородом, образуя сероводород:

H2 + S

Cероводород можно получить действием на сульфиды металлов, например, на сульфид железа (II) разбавленным раствором соляной кислоты:

В промышленности его получают как обычный продукт при очистке нефти, природного и коксового газа. В природе сероводород содержится в нефти, природном газе, воде минеральных источников. Он выделяется при извержении вулканов и разложения белковых тел.

Достаточно высокой прочностью связи S—S объясняется существование полисульфидов водорода – сульфанов H2S2, H2S3, H2S4 и т. п., а также их солей - полисульфидов. Молекулы сульфанов и полисульфид-ионы имеют цепочечное строение:

Степень окисления серы в полисульфанах и полисульфидах тем ближе к нулю, чем больше число атомов серы в цепи. Степень окисления серы в сероводороде и сульфидах равна -2.

Задача 850.
Сравнить взаимодействие Sb2S3 с растворами (NH4)2S и (NH4)2S2.
Решение:
При взаимодействии Sb2S3 с растворами (NH4)2S и (NH4)2S2 происходят следующие реакции:
1). При взаимодействии Sb2S3 с раствором (NH4)2S последний растворяется с образованием растворимого комплексного соединения:

При этом (Sb 3+ ) увеличивает свою степень с +3 до +4 (Sb 5+ ), т.е. (NH4)2S2 окислитель, а Sb2S3 — восстановитель.

Растворимость сульфидов

Соединения серы с более электроположительными элементами называются сульфидами. Большинство сульфидов, а именно сульфиды металлов, по способу образования и химическому поведению следует рассматривать как соли сероводородной кислоты. Сера в этих соединениях имеет отрицательную степень окисления –2.

Сульфиды щелочных и щелочноземельных металлов бесцветны.

Сульфидов тяжелых металлов имеют следующие окраски:

розовый – MnS; белый – ZnS.

Многие сульфиды при нагревании без доступа воздуха не претерпевают разложения. Но некоторые из них теряют серу. Так, например, пирит FeS2 уже при сильном нагревании распадается на сульфид железа (II) и серу; сульфид олова (IV) распадается при нагревании на сульфид олова (II) и серу. Устойчивые к нагреванию сульфиды в большинстве случаев можно нагревать в токе водорода: при этом они не изменяются. Напротив, при нагревании в токе кислорода или воздуха («обжиге») большинство сульфидов переходит в окислы, а иногда частично и в сульфаты. Сульфиды , выпавшие из водного раствора, уже при обычных температурах в значительной степени подвергаются окислению, если они во влажном состоянии долгое время находятся в контакте с током воздуха. При этом происходит или выделение серы или образование сульфата:

Легко окисляются и растворенные сульфиды; при этом они действуют как сильные восстановители.

Сильное восстановительное сероводорода и сульфидов в растворе обусловлено незначительным сродством образования ионов S 2- . В гальваническом элементе, составленном из нормального водородного электрода и платиновой фольги, погруженной в раствор сульфида, «серный электрод» вследствие тенденции ионов S 2- разряжаться, становится отрицательным, а водородный электрод- положительным полюсом.

Распространение сульфидов металлов в природе представлено в таблице 1.

Распространение сульфидов в природе

Колчеданы – светлые с металлическим блеском; блески – темные с металлическим отливом; обманки – темные без металлического блеска или чаще светлые, прозрачные.

Методы получения сульфидов

1. Взаимодействие гидроокисей с сероводородом

Эти методом получают в первую очередь растворимые в воде сульфиды, т.е. сульфиды щелочных металлов. Для этого необходимо: сначала насытить раствор гидроокиси щелочного металла сероводородом. При этом получается кислый сульфид (гидросульфид). Затем прибавляют равное количество щелочи для его перевода в нормальный сульфид:

2.Восстановление сульфатов прокаливанием с углем.

Этот метод является основным для получения сульфида натрия и сульфидов щелочноземельных металлов.

3. Непосредственное соединение элементов

Соединение металлов с серой протекает в большинстве случаев очень легко, часто с большим выделением тепла. Однако оно редко приводит к образованию совершенно чистого продукта:

4. Взаимодействие солей в водном растворе с сероводородом или сульфидом аммония.

Этим методом получают в первую очередь нерастворимые в воде сульфиды.

Физико-химические свойства сульфидов металлов

Физико-химические свойства сульфидов представлены в таблице 2.

Таблица 2

М, г/моль

Растворимость сульфидов

Поскольку сероводород является двухосновной кислотой, от него производятся два ряда сульфидов: кислые сульфиды или гидросульфиды MHS и нормальные сульфиды M2S. Все кислые сульфиды очень легко растворимы в воде. Из нормальных сульфидов также легко растворимы сульфиды щелочных металлов. В водном растворе они очень сильно гидролизуются (в 1 Н. растворе примерно на 90%) по уравнению:

Na2S + HOH Û NaOH + NaHS или S” + HOH Û OH + HS (7)

Поэтому их растворы имеют сильно щелочную реакцию. Нейтральные сульфиды щелочноземельных металлов как таковые в воде не растворяются. Однако при действии воды они претерпевают гидролитическое расщепление, например,

а образующийся при этом кислый сульфид переходит в раствор. При кипячении раствора он также разлагается:

Еще легче гидролизуются сульфиды некоторых многовалентных металлов, например сульфид алюминия AI2S3, сульфид хрома, сульфид кремния Cr2S3 SiS2 . Кислоты разлагают все эти сульфиды с выделение сероводорода.

Большинство сульфидов тяжелых металлов настолько мало растворимы в воде, что гидролитическое расщепление их не происходит. Некоторые сульфиды, разбавленные сильными кислотами не разлагаются. Произведение растворимости этих сульфидов настолько мало, что даже при понижении концентрации ионов S 2- в растворе за счет прибавления ионов H + концентрация ионов металла в растворе, находящемся в равновесии с сульфидом (донной фазой), очень незначительна. Поэтому, при пропускании сероводорода такие сульфиды будут выпадать в осадок даже из очень кислых растворов.

На том, что одна часть тяжелых металлов осаждается сероводородом из кислого раствора, а другая выпадает в осадок только из аммиачных растворов при действии на них раствора сульфида аммония, основано применение этих реактивов для разделения катионов при систематическом анализе.

Из кислого раствора сероводород осаждает следующие элементы в виде их сульфидов:

1) Мышьяк, сурьму и олово;

2) Серебро, ртуть, свинец, висмут, медь и кадмий;

При действии сульфида аммония осаждаются следующие элементы: цинк, марганец, кобальт, никель, железо, хром и алюминий. Два последних элемента выпадают в виде гидроокисей, так как их сульфиды гидролизуются водой.

Сульфиды элементов, приведенных под 1), отличаются тем, что они способны растворяться в желтом полисульфиде аммония, образуя при этом тиосоли, тогда как сульфиды элементов группы 2) в этом реактиве не растворяются.

Произведение растворимости ряда сульфидов приведено в таблице 3. Эти величины вычислены на основании соотношения

AF n = - RT*2,3026 *log L (10),

где L – произведение растворимости, AF n – нормальное сродство реакции

Таблица 3

Произведение растворимости кристаллических сульфидов металлов при 25 0 С

Читайте также: