Строение металлов в жидком состоянии
В последнее время строение жидких металлов и сплавов описывают с помощью квазиполикристаллической кластерной модели. Автор справедливо предостерегает от чрезмерного увлечения понятием кристалличности при описании металлических расплавов и показывает, что понятие полиморфного перехода неприменимо к жидким металлам и сплавам. [3]
Такое представление о строении жидкого металла , по-видимому, может быть справедливо при небольших степенях перегрева. При увеличении перегрева цельность металлической решетки должка нарушаться, на отдельных участках могут сохраняться группировки относительно закономерно построенных атомов. Эти группировки в силу энергетических условий не могут быть устойчивыми, поэтому систематически будет происходить их разрушение в одном месте и образование в другом. Размер и устойчивость этих группировок должны зависеть от степени отклонения от равновесных энергетических условий - от равновесной температуры плавления. [5]
Рентгенографическим, нейтронографичееким и другими методами исследования установлено квазианизотропное строение жидких металлов . Плавление некоторых металлов, в частности висмута и галлия, сопровождается образованием структуры с более плотной упаковкой атомов. [6]
Очевидно, что для выяснения условий появления этих центров надо ясно представить строение исходного жидкого металла . [8]
Очевидно, что для выяснения условий появления этих цстпроЬ надо ясно представить строение исходного жидкого металла . [10]
Очевидно, что для выяснения условий появления этих центров надо ясно представить строение исходного жидкого металла . [11]
Строение жидкого металла определяется той решеткой, размазывая которую получают наилучшее совпадение теоретической и экспериментальной кривых распределения. [12]
Сплавы в твердом состоянии - это растворы легирующих элементов и примесей в металле-основе, смеси твердых растворов с упрочняющими фазами ( гетерогенные структуры), а также эвтектические ( или эвтектоидные) смеси. В современных моделях строения жидких металлов в той или иной степени развиваются представления о квазикристаллической структуре жидкости. Экспериментально установлено, что в расплаве железа ( при его перегреве на 30 - - 40 С) сохраняются микрообласти с ОЦК и ГЦК решетками, а в расплаве чугуна - с ГЦК и ромбической ( Fe3C) решетками. [13]
Проведенные исследования в этой области дали положительные результаты для определения упругих постоянных латуни, сплавов железа и алюминия, монокристаллов германия и кремния, никеля, твердых растворов меди и поликристаллического сплава магний - кадмий. Ультразвуковые методы позволяют определять модули Юнга и сдвига на одном и том же образце, что открывает большие возможности для исследования упругих постоянных экспериментальных сплавов и установления для них взаимосвязей модулей с другими характеристиками межатомного взаимодействия. Так же как и при контроле жидкостей, скорость распространения ультразвука в жидких металлах в основном определяется величиной коэффициента адиабатической сжимаемости, а последний относится к числу физических величин, которые в значительной степени зависят от строения жидких металлов . [14]
Строение ряда неметаллов рассмотрено в предыдущих главах. Основное внимание уделено структурам металлов в твердом состоянии, преимущественно модификациям, устойчивым при атмосферном давлении. Из многочисленных полиморфных модификаций высокого давления упомянуты лишь те, которые представляют особый интерес. О строении жидких металлов известно немного. В тех немногочисленных случаях, когда удалось выполнить дифракционные исследования, информация о строении ограничивается установлением числа соседей в определенном интервале расстояний. В парах многих металлов присутствуют двухатомные молекулы. Энергия диссоциации таких молекул приведена в разд. [15]
Строение и свойства жидких металлов | 09.05.2012
Существует четыре основных состояния вещества: жидкое, твердое, газообразное и плазма, из которых к литейным процессам следует отнести два первых.
В обычных условиях структура металла представляет собой кристаллическую решетку. Кристалл рассматривают как правильную совокупность атомов, которые не обязательно имеют одинаковую природу. Всякий атом занимает свое место, определяемое характером его геометрической взаимосвязи с кристаллической решеткой и характеризующее собой среднее положение центра этого атома (рисунок 1).
Рисунок 1 – Кристаллическая решетка железа
В действительности атом совершает тепловые колебания в пространстве между соседними атомами. При нагревании в определенный момент тепловые колебания становятся настолько сильными, что дальний порядок между атомами нарушается и металл переходит в жидкое состояние.
Жидкие металлы, как и другие жидкости, незначительно перегретые над точкой начала кристаллизации, гораздо ближе по структуре и свойствам к твердому телу, нежели к газам. На это указывает ряд факторов:
- При плавлении термодинамические функции состояния вещества (изменение энтальпии Δ Н и изменение энтропии Δ S) изменяются на порядок меньше, чем соответствующие функции состояния при сублимации (непосредственный переход из твердого состояния в газообразное) или при испарении (переход из жидкого состояния в газообразное).
- Физические свойства при плавлении металлов изменяются значительно меньше, чем при сублимации или испарении. Так, например, удельный объем большинства металлов увеличивается при плавлении на 5-10 %, в то же время при испарении он увеличивается в тысячи раз. Твердые металлы при температуре, близкой к температуре плавления, имеют некоторую текучесть, например, при их прокатке, а жидкости характерны сопротивляемость сдвигу (или срезу), но в обычных условиях она недостаточно заметна из-за высокой текучести. Газы практически не сопротивляются формоизменению. Такие свойства как магнитная проницаемость, электропроводность, теплопроводность и др., при плавлении металлов хотя и изменяются, но лишь на несколько процентов.
- С помощью рентгеноструктурных исследований расплавленных легкоплавких металлов, перегретых над точкой ликвидуса лишь на несколько градусов, установлено, что частицы в жидкостях расположены не беспорядочно. Их расположение в жидкости близко к тому, которое характерно для твердого тела вблизи его плавления.
Строение жидких металлов
Современные теории жидкостей в какой-то мере объединяют две ранее существовавшие крайние точки зрения на природу жидкостей и учитывают те двойственные черты их поведения, которые вытекают из промежуточного положения жидкого агрегатного состояния вещества.
Металлофизики, например, Б.Чалмерс, считают, что жидкость представляет собой совокупность атомов и молекул, колеблющихся со средней энергией
3 kТ/ 2 (К постоянная Больцмана = 1,38 . 10 – 23 Дж/ град) и со средней частотой ν . Всякий атом входит в то или иное кристаллоподобное образование (кластер), которые ориентированы беспорядочно. Часть пространства между ними остается незаполненной атомами. Кластеры (рисунок 2) очень быстро возникают и тут же распадаются из-за перехода атомов от одного из них к другому через вакансии - промежуточные пустоты. Вероятность появления и число микрозародышей твердой фазы определяются законами статистической физики. В любой данный момент в жидкости существует значительный ближний порядок, когда всякий атом связан с каким-то другим и даже со многими другими соседями точно так же, как это бывает в кристалле.
Рисунок 2 – Кластер
В соответствии с теорией флуктуации в жидкости спонтанно возникают локальные отклонения от ее средней концентрации, энергии и плотности, число и вероятность которых диктуются законами статистической механики.
Для объяснения определенных свойств жидких расплавов используется теория Стюарта и Бенца, согласно которой в жидкостях непрерывно разрушаются и создаются группировки элементарных частиц, называемых роями или сиботаксисами. Эти группировки являются нестойкими образованиями и не имеют четких границ раздела.
Согласно кластерной модели Архарова и Новохатского расплав представляет собой сочетание кластеров и разупорядоченной зоны. Кластеры характеризуются определенной упорядоченностью строения центральной части и нестабильностью периферийных частей. При повышении температуры кластеры распадаются на более мелкие, при охлаждении металла укрупняются.
Основной смысл общепринятой в настоящее время теории Я.И. Френкеля состоит в том, что переход из твердого в жидкое состояние обусловлен скачкообразным увеличением количества вакансий. Это вызывает большую подвижность частиц и жидкости в целом, а также объясняет скачек растворимости многих веществ, при расплавлении растворителя. Необходимый избыток энергии обеспечивается флуктуациями. Вакансии (дырки) имеют размер порядка 10 –10 м. По Томпсону работа образования сферической полости в жидкости радиусом r равна:
Работа ΔZ соизмерима с теплотой испарения. Важен тот факт, что для превращения жидкости в кристаллическое состояние необходимо при температуре превращения отвести тепло, соответствующее скрытой теплоте плавления. При этом атомы переводятся в позиции с меньшей потенциальной энергией, чем в жидкости. Однако в обоих случаях каждый атом имеет минимальную свободную энергию, но в жидкости эти минимумы выше, чем в кристалле.
В большинстве случаев плотность расплава меньше, чем у кристалла. Кристаллы же германия, кремния, галлия и висмута менее плотные своих расплавов и упругие свойства обеспечиваются исключительно упорядочением атомов.
Есть и другие теории жидкого состояния, но ни одна из них не позволяет по параметрам элементарных частиц жидкости высчитать ее микроскопические свойства. Не дают они объяснения многим явлениям, которые наблюдаются в жидкости, например, возможности значительного переохлаждения.
Свойства жидких металлов
Сходство жидкого и кристаллического состояния заключается, главным образом, в характере межчастичного взаимодействия и в термодинамических свойствах, но существует принципиальное различие в строении жидких и твердых тел. Известная хаотичность в расположении частиц в жидкости и большая их подвижность, роднящие жидкость с газами, сочетаются с сильным межчастичным взаимодействием, как и в твердом теле. Этим сочетанием обусловлен комплекс свойств, характерный только для жидкого состояния вещества.
Плотность
По плотности металла судят о разрыхленности его структуры. Плотность - одна из основных физических характеристик расплава, непосредственно связанная с поверхностным натяжением, теплоемкостью, динамической вязкостью, теплотами растворения и др. Жидкая фаза имеет лишь немного меньшую плотность, чем твердое вещество, но она на несколько порядков выше плотности газа. Самый легкий металл литий имеет плотность 0,53 г/см 3 , а самый тяжелый иридий плотностью 22,4 г/см 3 . Плотность железа 7,87 г/см 3 . У большинства металлов при нагреве от комнатной температуры до температуры плавления плотность уменьшается на 3-5 %, у железа она снижается до 7,35 г/см 3 . В процессе плавления плотность большинства металлов снижается на несколько %, у железа – до 7,02 г/см 3 . А плотность галлия, висмута, сурьмы, германия и кремния при плавлении увеличивается, как у воды, для которой это увеличение составляет около 11 %.
При нагреве жидких металлов, как и в твердом состоянии, плотность уменьшается. С достаточной для практики точностью используется соотношение:
Подбором состава сплавов обеспечивают заданную его плотность и коэффициент линейного расширения. Это важно, например, для армированных (выполненных из разнородных материалов) изделий, служащих при изменяющихся в широких пределах температурах
Практическое значение изменения плотности металла до начала и в процессе кристаллизации состоит в том, что оно предопределяет объемную усадку (или рост), с которой связаны усадочные раковины, рыхлость, напряжения в наружных и внутренних участках слитков, заготовок и отливок (рисунок 3).
Рисунок 3 - Усадочная раковина в слитке
Температура плавления
Температура плавления – это единственная температура, при которой кристаллическая твердая фаза сосуществует в равновесии с жидкостью. Для чистого элемента или чистого соединения эта величина постоянная и лишь незначительно зависит от давления.
Обычно разливаемый металл перегревается выше температуры плавления на 100 и более градусов. Исходя из этой температуры, выбирается материал литейной формы и футеровки разливочных ковшей. Из часто используемых металлов ртуть имеет самую низкую температуру плавления – минус 39 0 С, а самая высокая она у вольфрама – 3410 0 С. Чистое железо плавится при 1539 0 С, медь - при 1083 0 С, алюминий – при 660 0 С. Титановые сплавы 1580-1720 0 С.
Сталь 1420-1520 0 С
Чугун 1150-1250 0 С
Бронзы 1000-1150 0 С
Латуни 900- 950 0 С
Алюминиевые сплавы 580- 630 0 С
Магниевые сплавы 600- 650 0 С
Цинковые сплавы 390- 420 0 С
Так как фазовые превращения сопровождаются тепловыми эффектами, объемными изменениям и фазовыми напряжениями, то их учитывают, задавая оптимальные режимы охлаждения слитков, заготовок и отливок, а также при рассмотрении процессов структурообразования и ликвации.
Вязкость
Вязкость металлического расплава является наиболее характерным структурно-чувствительным свойством и определяется межчастичным взаимодействием. Поэтому этот показатель позволяет оценить строение расплава, природу и силы взаимодействия между компонентами в сплавах, а также связь между твердым и жидким состоянием.
Для характеристики вязкости жидкости принят коэффициент вязкости или внутреннего трения ?, называемый динамической вязкостью. Он численно равен силе трения между двумя слоями с площадью, равной единице при градиенте скорости, равной единице.
У металлов динамическая вязкость повышается с увеличением температуры их плавления. Для всех металлов она уменьшается с повышением температуры нагрева. У сплавов эвтектического состава обычно пониженные значения вязкости. Изменение вязкости от состава сплавов меняется неоднозначно, сложным образом и зависит от сил межчастичного взаимодействия. Загрязнение расплавов взвешенными частицами шлака или оксидов сопровождается заметным возрастанием вязкости.
Сравнительные данные вязкости (Па . с):
Вода (25 0 С) – 0,00089;
Сталь (1600 0 С) – 0,0050 – 0,0085;
Железо (1600 0 С) – 0,0045 – 0,0050.
Поверхностное натяжение
Поверхностное натяжение численно равно количеству свободной поверхностной энергии, приходящейся на единицу поверхности раздела между рассматриваемым веществом и вакуумом. Поверхностное натяжение стали обуславливает смачиваемость и адгезию, влияет на характер струи и степень вторичного окисления металла во время выпуска из плавильного агрегата и разливки. В период кристаллизации поверхностные явления влияют на поверхностные и объемные концентрации компонентов, существенно изменяют структурообразование, кинетику капиллярного массопереноса, зарождения, коагуляции и всплывания неметаллических включений. Межфазное натяжение на границе металл-шлак в значительной степени определяет ассимиляцию неметаллических включений, образующихся при раскислении, обработке металла синтетическими шлаками и разливке под защитными средами.
С увеличением температуры плавления металла поверхностное натяжение, как правило, увеличивается. Так, для ртути, железа и вольфрама оно соответственно равно, Н/ м: 0,45; 1,8 и 2,5. Перегрев жидкого металла на 100 0 С понижает поверхностное натяжение примерно на 2-4 % .
Поверхностно активные добавки, которые в металле – основе растворяются в очень малых количествах и резко отличаются от основы по своим свойствам, существенно снижают поверхностное натяжение расплавов. Так, 0,1 % кислорода снижает поверхностное натяжение железа до 1,1 Н / м, 0,1 % калия снижает поверхностное натяжение ртути в 2 раза.
Литейные свойства
Свойства, непосредственно влияющие на получение слитков и отливок требуемого качества, называются литейными. Они зависят от комплекса физико-химических свойств, проявляющихся в образующихся фазах при охлаждении расплава, но полностью ими не определяются. К литейным свойствам относят жидкотекучесть и заполняемость литейных форм, усадку и связанные с ней процессы образования различных дефектов, склонность к образованию дефектов на базе неметаллических и газовых включений, активность взаимодействия с окружающей средой и контактирующими материалами, первичную и вторичную кристаллизацию, литейные напряжения и трещиноустойчивость, химическую и структурную неоднородность. Лучшим сочетанием литейных свойств обладают сплавы с большим количеством эвтектики. Литейные свойства чугуна значительно выше литейных свойств стали.
Вся продукция имеет необходимые сертификаты соответствия,
сертификаты качества изделия и технические паспорта.
Процесс кристаллизации металлов
При температуре Тп величины свободных энергий жидкого и твердого состояния равны. Процесс кристаллизации протекает при температуре, меньшей Тп. Для начала затвердевания необходимо переохлаждение (разность энергий). Переохлаждение тем больше, чем больше скорость изменения.
Процесс кристаллизации происходит в два этапа: образование зародышей кристаллов; рост образовавшихся кристаллов.
В реальных металлах центрами кристаллизации являются тугоплавкие частицы и стенки литейной формы.
В чистых металлах центрами кристаллизации служат области с дальним порядком расположения атомов (кластеры), т.е. их строение близко к строению кристаллической решетки.
Чем больше скорость охлаждения (степень переохлаждения), тем более мелкозернистая структура образуется. Если скорость охлаждения порядка 10 5 -10 6 градусов в секунду, получается аморфная структура.
5.Строение металлического слитка. Особенности строения литого и деформированного металла.
Кристаллизация стального слитка идет в три стадии. Сначала на поверхности слитка образуется зона мелких кристаллов за счет влияния холодных стенок формы, которые обеспечивают в начальный момент времени высокую скорость охлаждения. Затем растут большие кристаллы, вытянутые по направлению отвода теплоты (столбчатые кристаллы). В середине слитка, где наблюдается наименьшая степень переохлаждения, образуются большие равновесные кристаллы. При некоторых условиях (перегретый жидкий металл, малое содержание примесей) зона крупных равновесных кристаллов почти исчезает. Структура слитка состоит практически из одних столбчатых кристаллов - транскристаллическая.
Зона столбчатых кристаллов обладает наибольшей плотностью, но в местах стыка столбчатых кристаллов собираются нерастворимые примеси, и такие слитки часто расьтрескиваются при обработке давлением.
В верхней части слитка, затвердевающей в последнюю очередь, концентрируется усадочная раковина. Там содержится много количества усадочных пор. Слиток имеет неоднородный состав. По направлению от поверхности к центру и снизу вверх увеличивается концентрация углерода и вредных примесей: серы и фосфора. Химическая неоднородность по отдельным зонам слитка называется зональной ликвацией. Она отрицательно влияет на механические свойства.
Пластическая деформация металлов и сплавов как тел поликристаллических, имеет некоторые особенности по сравнению с пластической деформацией монокристалла. Деформация поликристаллического тела складывается из деформации отдельных зерен и деформации в приграничных объемах.
Плоскости скольжения зерен произвольно ориентированны в пространстве, поэтому под влиянием внешних сил напряжения в плоскостях скольжения отдельных зерен будут различны. Деформация начинается в отдельных зернах, в плоскостях скольжения которых возникают максимальные касательные напряжения. Соседние зерна будут разворачиваться и постепенно вовлекаться в процесс деформации. Деформация приводит к изменению формы зерен: зерна получают форму, вытянутую в направлении наиболее интенсивного течения металла (поворачиваются осями наибольшей прочности вдоль направления деформации.
Металл приобретает волокнистое строение. Волокна с вытянутыми вдоль них неметаллическими включениями являются причиной неодинаковости свойств вдоль и поперек волокон. Одновременно с изменением формы зерен в процессе пластической деформации происходит изменение ориентировки в пространстве их кристаллической решетки.
Деформированный металл находится в неравновесном состоянии. Переход к равновесному состоянию связан с уменьшением искажений в кристаллической решетке, снятием напряжений, что определяется возможностью перемещения атомов.
При повышении температуры металла в процессе нагрева после пластической деформации диффузия атомов увеличивается и начинают действовать процессы разупрочнения, приводящие металл в более равновесное состояние – возврат и рекристаллизация.
Возврат. Небольшой нагрев вызывает ускорение движения атомов, снижение плотности дислокаций, устранение внутренних напряжений и восстановление кристаллической решетки
Рекристаллизация – процесс зарождения и роста новых недеформированных зерен при нагреве наклепанного металла до определенной температуры.
Нагрев металла до температур рекристаллизации сопровождается резким изменением микроструктуры и свойств. Нагрев приводит к резкому снижению прочности при одновременном возрастании пластичности. Также снижается электросопротивление и повышается теплопроводность.
1 стадия – первичная рекристаллизация (обработки) заключается в образовании центров кристаллизации и росте новых равновесных зерен с неискаженной кристаллической решеткой. Новые зерна возникают у границ старых зерен и блоков, где решетка была наиболее искажена. Количество новых зерен постепенно увеличивается и в структуре не остается старых деформированных зерен.
Движущей силой первичной рекристаллизации является энергия, аккумулированная в наклепанном металле. Система стремится перейти в устойчивое состояние с неискаженной кристаллической решеткой.
2 стадия – собирательная рекристаллизация заключается в росте образовавшихся новых зерен.
Движущей силой является поверхностная энергия зерен. При мелких зернах поверхность раздела большая, поэтому имеется большой запас поверхностной энергии. При укрупнении зерен общая протяженность границ уменьшается, и система переходит в более равновесное состояние.
Основными факторами, определяющими величину зерен металла при рекристаллизации, являются температура, продолжительность выдержки при нагреве и степень предварительной деформации
С повышением температуры происходит укрупнение зерен, с увеличением времени выдержки зерна также укрупняются. Наиболее крупные зерна образуются после незначительной предварительной деформации 3…10 %. Такую деформацию называют критической. И такая деформация нежелательна перед проведением рекристаллизационного отжига.
Практически рекристаллизационный отжиг проводят дпя малоуглеродистых сталей при температуре 600…700 o С, для латуней и бронз – 560…700 o С, для алюминевых сплавов – 350…450 o С, для титановых сплавов – 550…750 o С.
Жидкий металл: структура, свойства
Сегодня уже поколебалось привычное представление о том, что металл в обычном состоянии – вещество твердое. Долгое время считалось, что единственное исключение из этого утверждения – ртуть, которая в жидком состоянии остается до -39° C. Ответ на вопрос о том, какой металл жидкий, не так однозначен.
Жидкие металлы в природе
На самом деле ртуть не является единственным в мире жидким металлом. Известны еще галлий, цезий и франций, которые находятся в жидком состоянии до +30° C.
Галлий очень широко применяется, например, в электронике. Кроме того, что он плавится при низких температурах, галлий, и это главное его достоинство, закипает при температуре не ниже 2230° C. Необычайно широкий интервал расплава дает возможность использовать этот элемент в работе атомных реакторов.
Не менее востребованным элементом является цезий, несмотря на то что его в земной коре крайне мало и добыча его затруднена.
А вот радиоактивный элемент франций, период полураспада которого составляет чуть больше 22 минут, образуется при распаде актиния, и до сих пор неизвестно, как он выглядит. Даже ученые о нем знают очень мало, и знания эти накапливаются по крупицам. Научные лаборатории проводят исследования этого элемента на образцах массой в одну десятимиллионную долю грамма, которая каждые двадцать две с небольшим минуты уменьшается вдвое.
То есть при температурах, немногим отличающихся от комнатной, жидкими металлами можно назвать четыре элемента периодической таблицы Менделеева, включая ртуть.
Строение металлов
В металлах атомы располагаются в строгом геометрическом порядке и образуют кристаллическую решетку. Их виды в разных металлах и сплавах различаются в зависимости от количества и расположения атомов.
В расплавленных металлах атомы находятся в хаотическом движении, и связи между ними нарушаются.
Обычный расплавленный жидкий металл из мартена – это всего лишь материал с кристаллической решеткой и обычными свойствами твердого тела при нормальной температуре.
При охлаждении жидкого металла начинается процесс кристаллизации, скорость которого возрастает с понижением температуры. Связи между атомами восстанавливаются, и образовывается кристаллическая решетка. Нарушение целостности металла, например, образование ржавчины или трещин, происходит именно на границах между кристаллами. То есть если не существует четких границ между кристаллами, меняются не только механические, но и электрические, и магнитные свойства металла.
Свойства жидких металлов
Ученые утверждают, что аморфные материалы могут быть прочнее кристаллических аналогов в десять раз, а их электрическое сопротивление выше в пять раз. Причем при нормальной температуре они способны сохранять свойства более ста лет, но высокую температуру переносят плохо.
Если жидкий металл из мартена охладить настолько быстро, что связи между атомами и кристаллами не успеют восстановиться, то получится вещество в аморфном состоянии, соединяющее в себе свойства металлов и жидкостей.
Оно обладает поверхностным натяжением и вязкостью жидкостей, а сжимается и отражает электромагнитные волны, как всякий металл. Структура жидких металлов – это хаотическое скопление атомов без жестких связей между ними.
Поскольку отсутствует кристаллическая структура, такие вещества обладают замечательными магнитными свойствами, высокими показателями прочности на растяжение и ударной вязкости.
Жидкий металл прочнее титана более чем в два раза, не ржавеет и может отливаться в форму, даже самую сложную, как любой пластический материал. При этом после отливки дополнительно обрабатывать изделие не нужно – у него четкие очертания и идеально гладкая поверхность.
Жидкие металлы на основе галлия
Сплавы на основе легкоплавких металлов, а их в мировой промышленности используется около тридцати, имеют температуру плавления меньше 70° С. Большинство из них химически активны и токсичны. Сплавы на основе галлия, в которые в разных пропорциях входят индий, олово и цинк, плавятся при низких температурах, меньше 40° С, и не являются ни токсичными, ни химически активными. В промышленности их используется всего восемь, но вариаций может быть значительно больше, в зависимости от процентного соотношения компонентов.
Температура плавления, °С
Эти сплавы жидкими металлами и являются. Они не токсичны, но специалисты рекомендуют при работе с ними соблюдать меры предосторожности и работать в резиновых или хлопчатобумажных перчатках.
Способы получения жидких металлов
Если не говорить о жидких металлах на основе галлия, то в первую очередь ученые искали возможность быстрого охлаждения расплавленного металла. Существует способ распыления металла с помощью устройства, напоминающего пульверизатор, тонким слоем на очень холодную поверхность. Метод носит название "ионно-плазменное распыление". Используется и нанесение жидкого металла на вращающийся диск. В любом случае такими способами можно было получить узкие полоски металла, которые нельзя соединить между собой горячими методами, обычными для кристаллических веществ.
Следующим этапом было создание сплавов из металлов, которые друг с другом сочетаются плохо. Специалисты Калифорнийского технологического института разработали сплав с названием Liquidmetal. В состав жидкого металла входят титан, медь, никель, цирконий и бериллий. При остывании такого сплава кристаллизация происходит очень медленно, так как атомы металлов очень отличаются по размерам.
Применение жидких металлов
Жидкие металлы на основе галлия используются в системах пожарной сигнализации, в качестве теплоносителя в системах охлаждения с высокими рабочими температурами.
В период, когда сплав "жидкий металл" получали в виде узких ленточек, применение ему нашли при создании кодовой маркировки, предназначенной для борьбы с хищениями и использования в покрытии буровых труб для увеличения срока их службы.
Когда был создан Liquidmetal, его начали применять при изготовлении клюшек для гольфа. Расчеты показали, что такая клюшка передает мячу более мощное энергетическое усилие, чем обычная.
Специалисты Liquidmetal Technologies участвуют в разработках ведущих производителей лыж и бейсбольных бит.
В оборонной промышленности Liquidmetal может заменить обедненный уран в снарядах, пробивающих броню.
В России из жидкого металла, полученного из расплава, охлажденного на вращающемся диске, стали изготавливать элементы и микропровода для особо чувствительной и точной аппаратуры, в медицинском приборостроении и электронной технике, фильтры для защиты ценных бумаг и банкнот от подделок и многое другое.
Жидкие металлы в качестве термоинтерфейса
В измерительной технике, радиоэлектронных устройствах и бытовых компьютерах широко используется термоинтерфейс.
Термоинтерфейс – это термопроводящее вещество, которое наносится тонким слоем между поверхностью, которую необходимо охлаждать, и устройством, предназначенным для отвода тепла.
К нему предъявляются высокие требования:
- постоянная консистенция, которая не изменяется при работе или хранении;
- стабильность характеристик в рабочем диапазоне температур;
- нетоксичность и негорючесть;
- легкость нанесения и удаления с поверхности;
- минимальное тепловое сопротивление.
Наиболее распространенным видом термоинтерфейса является теплопроводная паста, или, проще говоря, термопаста. Жидкий металл с высоким коэффициентом теплопроводности и другими свойствами как нельзя лучше соответствует предъявляемым к термопастам требованиям.
В компьютерах на печатных платах процессоров выделяется большое количество тепла. Поверх процессора устанавливается охлаждающий механизм (радиатор). Чтобы повысить эффективность отвода тепла и убрать воздушную прослойку между кулером и процессором, используются термопасты.
Продукты компании Coollaboratory
Компанией Coollaboratory был разработан продукт, полностью состоящий из жидких металлов, без твердых частиц и неметаллических добавок.
Жидкий металл Coollaboratory Liquid Pro - теплопроводящий материал с высокой теплопроводностью, внешне напоминающий ртуть, но нетоксичный, характеризуется высокой способностью к смачиванию многих материалов.
Coollaboratory Liquid Ultra в виде пасты легко наносится кисточкой на теплораспределительную крышку процессора.
Coollaboratory Liquid Metal Pad представляет собой теплопроводящую прокладку, которая легко наносится на поверхность и плавится только при нагреве процессора.
Все эти жидкие металлы не могут работать при контакте с алюминием - радиатор должен быть выполнен из меди с никелевым покрытием. Производитель заявляет об уникальных показателях теплопроводности Coollaboratory Liquid Metal. Правда, на этот жидкий металл отзывы неоднозначны, и многие пользователи выказывают сомнения в заявленных характеристиках.
Применение жидкого металла производителями смартфонов
В настоящее время в американской версии iPhone комплектуется инструментом для извлечения SIM-карты, говоря иначе, i-Скрепкой из жидкого металла.
Но такое уникальное вещество с возможностью принимать при незначительной массе любые формы, антикоррозионными свойствами и особенно высокой прочностью, повышенной износостойкостью, высоким коэффициентом восстановления можно использовать и для изготовления корпусов смартфонов, флешек и часов. В планах Apple – изготовление клавиши Home и сенсорной поверхности из жидкого металла.
Компания HTC тоже планирует использовать LiquidMetal при изготовлении корпусов смартфонов. Но эти данные являются неофициальными.
Зато компания Turing Robotics Industries (TRI) при создании уникального Android-смартфона Turing Phone использует для каркаса корпуса и рамки-окантовки дисплея сверхпрочный сплав из циркония, меди, алюминия, никеля и серебра, который в описаниях компонентов смартфона носит название liquidmorphium. Этот сплав значительно прочнее титана и эффективно выдерживает удары и особым образом отражает свет.
Трехмерная печать с применением жидкого металла
Специалисты Университета Северной Каролины подобрали такой сплав галлия и индия, который держит форму после печати. Тонкая пленка оксида удерживает напечатанную структуру из шариков и нитей, которая внутри остается жидкой. Используя технологию трехмерной печати, можно изготавливать эластичные гибкие провода, выдерживающие многократные растяжения и сжатия.
Ранее австралийские ученые для создания металлических объектов, которые должны восстанавливать форму, использовали сплав галлистан на основе галлия, олова и индия с температурой плавления 19 °С и специальное порошковое покрытие.
Краски "жидкий металл"
Краски с таким названием, строго говоря, жидким металлом не являются.
Жидкий металл - краска из металлических пигментов, тонкоизмельченных порошков цветных металлов и сплавов алюминия, меди, цинка, бронзы. К металлическим пигментам относятся золотистая бронза, медный порошок, алюминиевая и цинковая пудра. Такие краски отличаются хорошим сцеплением с любыми поверхностями: пластиками, металлами, тканями, стеклом, гипсом, керамикой, деревом. Равномерно распыляются соплом от 0,2 мм и закрепляются лаками на водной основе.
Краска "жидкий металл" марки Maimeri ("Маймери") на основе смолы разбавляется спиртом и служит для декорирования тонких поверхностей – бумаги, картона, дерева. Характеризуется дополнительной устойчивостью к износу и окислению.
Жидкий металл Viva ("Вива") разбавляется водой и предназначен для росписи фарфора, фаянса, керамики, гончарных изделий.
Специальная краска была разработана специалистами Mercedes Benz для купе CL 65 AMG на основе тончайших алюминиевых пигментов. Такое покрытие хорошо отражает свет и интенсивно блестит.
В заключение можно сделать вывод, что понятие «жидкий металл из мартена» не является всеобъемлющим. Что еще можно отнести к данной категории материалов? «Жидкий металл» - название такое носят также искусственные сплавы и вещества в аморфном состоянии, обладающие свойствами металлов, в том числе цветом и блеском.
Читайте также: