Стандартные окислительно восстановительные потенциалы металлов
1 Окислительно – восстановительный потенциал характеризует окислительно – восстановительную систему, состоящую из окисленной формы вещества (Ох), восстановленной формы (Red) и электронов. Принято записывать окислительно-восстановительные системы в виде обратимых реакций восстановления:
Механизм возникновения электродного потенциала. Механизм возникновения электродного или окислительно-восстановительного потенциала поясним на примере металла, погруженного в раствор, содержащий его ионы. Все металлы имеют кристаллическое строение. Кристаллическая решетка металла состоит из положительно заряженных ионов Me n + и свободных валентных электронов (электронный газ). В отсутствие водного раствора выход катионов металла из решетки металла невозможен, т.к. этот процесс требует больших энергетических затрат. При погружении металла в водный раствор соли, содержащей в своем составе катионы металла, полярные молекулы воды, соответственно ориентируясь у поверхности металла (электрода), взаимодействуют с поверхностными катионами металла (рис. 9.1).
В результате взаимодействия происходит окисление металла и его гидратированные ионы переходят в раствор, оставляя в металле электроны:
Ме (к) + m Н2Оокисление Ме n+ *m Н2О(р)+ nе-
Металл становится заряженным отрицательно, а раствор - положительно. Положительно заряженные ионы из раствора притягиваются к отрицательно заряженной поверхности металла (Ме). На границе металл - раствор возникает двойной электрический слой (рис.9.2). Разность потенциалов, возникающая между металлом и раствором, называется электродным потенциалом или окислительно-восстановительным потенциалом электрода φМе n + /Ме (φOx/Red в общем случае). Металл, погруженный в раствор собственной соли, является электродом (раздел 10.1). Условное обозначение металлического электрода Ме/Ме n + отражает участников электродного процесса.
По мере перехода ионов в раствор растет отрицательный заряд поверхности металла и положительный заряд раствора, что препятствует окислению (ионизации) металла.
Параллельно с процессом окисления протекает обратная реакция - восстановление ионов металла из раствора до атомов (осаждение металла) с потерей гидратной оболочки на поверхности металла:
Ме n+ * m Н2О(р) + nе- восстановление Ме(к) + m Н2О.
С увеличением разности потенциалов между электродом и раствором скорость прямой реакции падает, а обратной реакции растет. При некотором значении электродного потенциала скорость процесса окисления будет равна скорости процесса восстановления, устанавливается равновесие:
Для упрощения гидратационную воду обычно в уравнение реакции не включают и оно записывается в виде
или в общем виде для любых других окислительно-восстановительных систем:
Потенциал, устанавливающийся в условиях равновесия электродной реакции, называется равновесным электродным потенциалом. В рассмотренном случае процесс ионизации в растворе термодинамически возможен, и поверхность металла заряжается отрицательно. Для некоторых металлов (менее активных) термодинамически более вероятным является процесс восстановления гидратированных ионов до металла, тогда их поверхность заряжается положительно, а слой прилегающего электролита - отрицательно.
Устройство водородного электрода. Абсолютные значения электродных потенциалов измерить нельзя, поэтому для характеристики электродных процессов пользуются их относительными значениями. Для этого находят разность потенциалов измеряемого электрода и электрода сравнения, потенциал которого условно принимают равным нулю. В качестве электрода сравнения часто применяется стандартный водородный электрод, относящийся к газовым электродам. В общем случае газовые электроды состоят из металлического проводника, контактирующего одновременно с газом и раствором, содержащим окисленную или восстановленную форму элемента, входящего в состав газа. Металлический проводник служит для подвода и отвода электронов и, кроме того, является катализатором электродной реакции. Металлический проводник не должен посылать в раствор собственные ионы. Удовлетворяют этим условиям платина и платиновые металлы.
Водородный электрод (рис. 9.3) представляет собой платиновую пластинку, покрытую тонким слоем рыхлой пористой пластины (для увели чения
поверхности электрода) и опущенную в водный раствор серной кислоты с активностью (концентрацией) ионов Н + , равной единице.
Через раствор серной кислоты пропускают водород под атмосферным давлением. Платина (Pt) – инертный металл, который практически не взаимодействует с растворителем, растворами (не посылает свои ионы в раствор), но он способен адсорбировать молекулы, атомы, ионы других веществ. При контакте платины с молекулярным водородом происходит адсорбция водорода на платине. Адсорбированный водород, взаимодействуя с молекулами воды, переходит в раствор в виде ионов, оставляя в платине электроны. При этом платина заряжается отрицательно, а раствор – положительно. Возникает разность потенциалов между платиной и раствором. Наряду с переходом ионов в раствор идет обратный процесс – восстановление ионов Н + из раствора с образованием молекул водорода. Равновесие на водородном электроде можно представить уравнением
Условное обозначение водородного электрода H2, Pt|H + . Потенциал водородного электрода в стандартных условиях (Т = 298 К, РН2 = 101,3 кПа, [Н + ]=1 моль/л, т.е. рН=0) принят условно равным нулю: j 0 2Н + / Н2= 0 В.
Стандартные электродные потенциалы. Электродные потенциалы, измеренные по отношению к стандартному водородному электроду при стандартных условиях (Т=298К; для растворённых веществ концентрация (активность) С Red = Сох = 1 моль/л или для металлов СМе n + = 1 моль/л, а для газообразных веществ Р=101,3 кПа), называют стандартными электродными потенциалами и обозначают j 0 Оx/ Red. Это справочные величины.
Окислительная способность веществ тем выше, чем больше алгебраическая величина их стандартного электродного (окислительно-восстановительного) потенциала. Напротив, чем меньше величина стандартного электродного потенциала реагирующего вещества, тем сильнее выражены его восстановительные свойства. Например, сравнение стандартных потенциалов систем
F2 (г.) + 2e - D 2F (p.) j 0 = 2,87 В
H2 (r.)+ 2e - D 2H (р.)j 0 = -2,25 В
показывает, что у молекул F2 сильно выражена окислительная тенденция, а у ионов H - восстановительная.
Ряд напряжений металлов. Располагая металлы в ряд по мере возрастания алгебраической величины их стандартных электродных потенциалов, получают так называемый «Ряд стандартных электродных потенциалов» или «Ряд напряжений», или «Ряд активности металлов».
Положение металла в «Ряду стандартных электродных потенциалов» характеризует восстановительную способность атомов металла, а также окислительные свойства ионов металла в водных растворах при стандартных условиях. Чем меньше значение алгебраической величины стандартного электродного потенциала, тем большими восстановительными свойствами обладает данный металл в виде простого вещества, и тем слабее проявляют окислительные свойства его ионы и наоборот.
Например, литий (Li), имеющий самый низкий стандартный потенциал, относится к наиболее сильным восстановителям, а золото (Au), имеющее самое высокое значение стандартного потенциала, является очень слабым восстановителем и окисляется лишь при взаимодействии с очень сильными окислителями. Из данных «Ряда напряжений» видно, что ионы лития (Li + ), калия (К + ), кальция (Са 2+ ) и т.д. - самые слабые окислители, а к наиболее сильным окислителям принадлежат ионы ртути (Нg 2+ ), серебра (Аg + ), палладия (Pd 2+ ), платины (Pt 2+ ), золота (Аu 3+ , Аu + ).
Уравнение Нернста. Электродные потенциалы не являются неизменными. Они зависят от соотношения концентраций (активностей) окисленной и восстановленной форм вещества, от температуры, природы растворенного вещества и растворителя, рН среды и др. Эта зависимость описывается уравнением Нернста:
где j 0 Оx / Red – стандартный электродный потенциал процесса; R – универсальная газовая постоянная; T – абсолютная температура; n - число электронов, участвующих в электродном процессе; аох, а Red – активности (концентрации) окисленной и восстановленной форм вещества в электродной реакции; x и у – стехиометрические коэффициенты в уравнении электродной реакции; F- постоянная Фарадея.
Для случая, когда электроды металлические и устанавливающиеся на них равновесия описываются в общем виде
Ме n + + nе - D Ме,
уравнение Нернста можно упростить, приняв во внимание, что для твердых веществ активность постоянна и равна единице. Для 298 К, после подстановки аМе=1 моль/л, x=y=1 и значений постоянных величин R=8,314 Дж/ К*моль; F = 96485 Кл / моль, заменяя активность аМе n + на молярную концентрацию ионов металла в растворе СМе n + и введя множитель 2,303 (переход к десятичным логарифмам), получим уравнение Нернста в виде
Окислительно – восстановительные (электродные) потенциалы
Ряд стандартных электродных потенциалов
Стандартные электродные потенциалы металлов указывают на меру окислительно-восстановительной способности металла и его ионов. Металлы в виде простых веществ – восстановители, ионы металлов – окислители.
Чем наиболее отрицателен электродный потенциал, тем выше способность металла посылать ионы в раствор и тем сильнее проявляет себя металл как восстановитель (например, Li, Na, K). И наоборот, чем наиболее положителен потенциал металлического электрода, тем большей окислительной способностью обладают его ионы.
Активные металлы начала ряда, а также щелочные и щелочноземельные вытесняют водород из воды, Например,
Металлы, расположенные между магнием и кадмием, обычно не вытесняют водород из воды. На поверхности этих металлов образуются оксидные пленки, обладающие защитным действием.
Все металлы, стоящие в ряду стандартных электродных потенциалов до водорода, вытесняют его из растворов кислот с концентрацией (активностью) ионов водорода 1 моль/л. Например,
Если электродный потенциал металла имеет положительный знак, то металл является окислителем по отношению к водороду и не вытесняет его из растворов кислот с концентрацией ионов водорода 1 моль/л.
Металлы способны вытеснять друг друга из растворов солей. Направление реакции определяется при этом их взаимным положением в ряду напряжений. Например,
Чем дальше расположены друг от друга в ряду напряжений два данных металла, тем наибольшую ЭДС будет иметь составленный из них гальванический элемент.
Уравнение Нернста
Потенциал металлического электрода зависит от природы металла, концентрации (активности) ионов металла в растворе, температуры.
Если условия отличаются от стандартных, например, если концентрация ионов металла в растворе не равна 1 моль/л, то электродный потенциал металла не является стандартным и его либо определяют экспериментально, либо вычисляют.
При экспериментальном определении составляется гальванический элемент, одним из электродов которого является измеряемый, а вторым – стандартный водородный электрод (рис 8.2):
(катод) Pt, H2/2H + || Me n+ /Me (анод),
и определяется его электродвижущая сила как разность равновесных потенциалов катода и анода (ЭДС=│Ек−Еа│). Так как потенциал стандартного водородного электрода равен нулю (Е o =0,00 В), то ЭДС элемента будет равна потенциалу измеряемого электрода.
Для вычисления электродного потенциала в нестандартных условиях применяют уравнение Нернста:
Так как металл – твердое вещество и вступает в реакцию только с поверхности, его концентрация постоянна и не должна входит в уравнение. Поэтому для вычисления электродных потенциалов металла уравнение Нернста приобретает более простой вид:
где Е о – стандартный электродный потенциал, В; R – газовая постоянная, равная 8,314 Вт-с/моль∙К; Т − температура, К; n − число электронов, участвующих в окислительно-восстановительном процессе; F –число Фарадея, равное 96500 Кл/моль; – активность ионов металла,моль/л.
При подстановке числовых значений R, F и стандартной температуры Т = 298 К и при переходе к десятичным логарифмам, уравнение Нернста принимает еще более простой вид:
Уравнение Нернста для разбавленных растворов, в которых активности мало отличаются от концентраций ( [Me n + ]), имеет вид:
Окислительно — восстановительный потенциал
Окислительно — восстановительный потенциал является частным, узким случаем понятия электродного потенциала. Рассмотрим подробнее эти понятия.
В ОВР передача электронов восстановителями окислителям происходит при непосредственном контакте частиц, и энергия химической реакции переходит в теплоту.
Энергия любой ОВР, протекающей в растворе электролита, может быть превращена в электрическую энергию, если, например, окислительно-восстановительные процессы разделить пространственно, т.е. передача электронов восстановителем будет происходить через проводник электричества.
Это реализовано в гальванических элементах, где электрическая энергия получается из химической энергии окислительно-восстановительной реакции.
Элемент Даниэля-Якоби
Рассмотрим гальванический элемент Даниэля-Якоби, в котором левый сосуд наполнен раствором сульфата цинка ZnSO4, с опущенной в него цинковой пластинкой, а правый сосуд – раствором сульфата меди CuSO4, с опущенным в него медной пластинкой.
гальванический элемент Даниэля-Якоби
Взаимодействие между раствором и пластиной, которая выступает в качестве электрода, способствует тому, чтобы электрод приобрел электрический заряд.
Возникающая на границе металл-раствор электролита разность потенциалов, называется электродным потенциалом. Значение и знак (+ или -) электродного потенциала определяются природой раствора и находящегося в нем металла.
При погружении металлов в растворы их солей более активные из них (Zn, Fe и др.) заряжаются отрицательно, а менее активные (Cu, Ag, Au и др.) положительно.
Результатом соединения цинковой и медной пластинки проводником электричества, является возникновение в цепи электрического тока за счет перетекания электронов с цинковой к медной пластинке по проводнику.
При этом происходит уменьшение количества электронов в цинке, что компенсируется переходом Zn 2+ в раствор т.е. происходит растворение цинкового электрода — анода (процесс окисления).
Zn — 2e — = Zn 2+
В свою очередь, рост количества электронов в меди компенсируется разряжением ионов меди, содержащихся в растворе, что приводит к накоплению меди на медном электроде – катоде (процесс восстановления):
Cu 2+ + 2e — = Cu
Таким образом, в элементе Даниэля-Якоби происходит такая реакция:
Zn + Cu 2+ = Zn 2+ + Cu
Zn + CuSO4 = ZnSO4 + Cu
Количественно охарактеризовать окислительно-восстановительные процессы позволяют электродные потенциалы, измеренные относительно нормального водородного электрода (его потенциал принят равным нулю).
Чтобы определить стандартные электродные потенциалы используют элемент, одним из электродов которого является испытуемый металл (или неметалл), а другим является водородный электрод. По найденной разности потенциалов на полюсах элемента определяют нормальный потенциал исследуемого металла.
Окислительно-восстановительный потенциал
Значениями окислительно-восстановительного потенциала пользуются в случае необходимости определения направления протекания реакции в водных или других растворах.
2Fe 3+ + 2I — = 2Fe 2+ + I2
таким образом, чтобы йодид-ионы и ионы железа обменивались своими электронами через проводник.
В сосуды, содержащие растворы Fe 3+ и I — , поместим инертные (платиновые или угольные) электроды и замкнем внутреннюю и внешнюю цепь. В цепи возникает электрический ток.
Йодид-ионы отдают свои электроны, которые будут перетекать по проводнику к инертному электроду, погруженному в раствор соли Fe 3+ :
2I — — 2e — = I2
2Fe 3+ + 2e — = 2Fe 2+
Процессы окисления-восстановления происходят у поверхности инертных электродов. Потенциал, который возникает на границе инертный электрод – раствор и содержит как окисленную, так восстановленную форму вещества, называется равновесным окислительно-восстановительным потенциалом.
Факторы, влияющие на значение окислительно-восстановительного потенциала
Значение окислительно-восстановительного потенциала зависит от многих факторов, в том числе и таких как:
1) Природа вещества (окислителя и восстановителя)
2) Концентрация окисленной и восстановленной форм.
При температуре 25°С и давлении 1 атм. величину окислительно-восстановительного потенциала рассчитывают с помощью уравнения Нернста:
E – окислительно-восстановительный потенциал данной пары;
E°- стандартный потенциал (измеренный при Cок = Cвос);
R – газовая постоянная (R = 8,314 Дж);
T – абсолютная температура, К
n – количество отдаваемых или получаемых электронов в окислительно-восстановительном процессе;
F – постоянная Фарадея (F = 96484,56 Кл/моль);
Cок – концентрация (активность) окисленной формы;
Cвос– концентрация (активность) восстановленной формы.
Подставляя в уравнение известные данные и перейдя к десятичному логарифму, получим следующий вид уравнения:
3) Кислотность раствора
Для пар, окисленная форма которых содержит кислород (например, Cr2O7 2- , CrO4 2- , MnO4 — ) при уменьшении pH раствора окислительно-восстановительный потенциал возрастает, т.е. потенциал растет с ростом H + . И наоборот, окислительно-восстановительный потенциал падает с уменьшением H + .
4) Температура
При увеличении температуры окислительно-восстановительный потенциал данной пары также растет.
Стандартные окислительно-восстановительные потенциалы представлены в таблицах специальных справочников. Следует иметь ввиду, что рассматриваются только реакции в водных растворах при температуре ≈ 25°С.
Такие таблицы дают возможность сделать некоторые выводы:
Что можно определить по значению окислительно-восстановительного потенциала
- Величина и знак стандартных окислительно-восстановительных потенциалов, позволяют предсказать какие свойства (окислительные или восстановительные) будут проявлять атомы, ионы или молекулы в химических реакциях, например
E°(F2/2F — ) = +2,87 В – сильнейший окислитель
E°(K + /K) = — 2,924 В – сильнейший восстановитель
Окислительно-восстановительная пара будет обладать тем большей восстановительной способностью, чем больше числовое значение ее отрицательного потенциала, а окислительная способность тем выше, чем больше положительный потенциал.
- Возможно определить какое из соединений одного элемента будет обладать наиболее сильным окислительными или восстановительными свойствами.
- Возможно предсказать направление ОВР. Известно, что работа гальванического элемента имеет место при условии, что разность потенциалов имеет положительное значение. Протекание ОВР в выбранном направлении также возможно, если разность потенциалов имеет положительное значение. ОВР протекает в сторону более слабых окислителей и восстановителей из более сильных, например, реакция
Sn 2+ + 2Fe 3+ = Sn 4+ + 2Fe 2+
практически протекает в прямом направлении, т.к.
E° (Sn 4+ /Sn 2+ ) = +0,15 В,
E° (Fe 3+ /Fe 2+ ) = +0,77 В,
Cu + Fe 2+ = Cu 2+ + Fe
невозможна в прямом направлении и протекает только справа налево, т.к.
В процессе ОВР количество начальных веществ уменьшается, вследствие чего Е окислителя падает, а E восстановителя возрастает. При окончании реакции, т.е. при наступлении химического равновесия потенциалы обоих процессов выравниваются.
- Если при данных условиях возможно протекание нескольких ОВР, то в первую очередь будет протекать та реакция, у которой разность окислительно-восстановительных потенциалов наибольшая.
- Пользуясь справочными данными, можно определить ЭДС реакции.
Как определить электродвижущую силу (ЭДС) реакции?
Рассмотрим несколько примеров реакций и определим их ЭДС:
E° (Mg 2+ /Mg) = — 2,36 В
E° (Fe 2+ /Fe) = — 0,44 В
Чтобы определить ЭДС реакции, нужно найти разность потенциала окислителя и потенциала восстановителя
ЭДС = Е 0 ок — Е 0 восст
- ЭДС = — 0,44 — (- 2,36) = 1,92 В
- ЭДС = 0,00 — (- 2,36) = 2,36 В
- ЭДС = + 0,34 — (- 2,36) = 2,70 В
Все вышеуказанные реакции могут протекать в прямом направлении, т.к. их ЭДС > 0.
Связь константы равновесия и окислительно — восстановительного потенциала
Если возникает необходимость определения степени протекания реакции, то можно воспользоваться константой равновесия.
Например, для реакции
Применяя закон действующих масс, можно записать
Здесь константа равновесия К показывает равновесное соотношение концентраций ионов цинка и меди.
Значение константы равновесия можно вычислить, применив уравнение Нернста
Подставим в уравнение значения стандартных потенциалов пар Zn/Zn 2+ и Cu/Cu 2+ , находим
В состоянии равновесия E 0 Zn/Zn2+ = E 0 Cu/Cu2+, т.е.
-0,76 + (0,59/2)lgCZn2+ = +0,34 + (0,59/2)lgCCu2+, откуда получаем
Значение константы равновесия показывает, что реакция идет практически до конца, т.е. до того момента, пока концентрация ионов меди не станет в 10 37,7 раз меньше, чем концентрация ионов цинка.
Константа равновесия и окислительно-восстановительный потенциал связаны общей формулой:
lgK = (E1 0 -E2 0 )n/0,059, где
K — константа равновесия
E1 0 и E2 0 – стандартные потенциалы окислителя и восстановителя соответственно
n – число электронов, отдаваемых восстановителем или принимаемых окислителем.
Если E1 0 > E2 0 , то lgK > 0 и K > 1.
Следовательно, реакция протекает в прямом направлении (слева направо) и если разность (E1 0 — E2 0 ) достаточно велика, то она идет практически до конца.
Напротив, если E1 0 < E2 0 , то K будет очень мала.
Реакция протекает в обратном направлении, т.к. равновесие сильно смещено влево. Если разность (E1 0 — E2 0 ) незначительна, то и K ≈ 1 и данная реакция не идет до конца, если не создать необходимых для этого условий.
Зная значение константы равновесия, не прибегая к опытным данным, можно судить о глубине протекания химической реакции. Следует иметь ввиду, что данные значений стандартных потенциалов не позволяют определить скорость установления равновесия реакции.
По данным таблиц окислительно-восстановительных потенциалов возможно найти значения констант равновесия примерно для 85000 реакций.
Как составить схему гальванического элемента?
Приведем рекомендации ИЮПАК, которыми следует руководствоваться, чтобы правильно записать схемы гальванических элементов и протекающие в них реакции:
- ЭДС элемента — величина положительная, т.к. в гальваническом элементе работа производится.
- Значение ЭДС гальванической цепи – это сумма скачков потенциалов на границах раздела всех фаз, но, учитывая, что на аноде происходит окисление, то из значения потенциала катода вычитают значение потенциала анода.
Таким образом, при составлении схемы гальванического элемента слева записывают электрод, на котором происходит процесс окисления (анод), а справа – электрод, на котором происходит процесс восстановления (катод).
- Граница раздела фаз обозначается одной чертой — |
- Электролитный мостик на границе двух проводников обозначается двумя чертами — ||
- Растворы, в которые погружен электролитный мостик записываются слева и справа от него (если необходимо, здесь же указывается концентрация растворов). Компоненты одной фазы, при этом записываются через запятую.
Например, составим схему гальванического элемента, в котором осуществляется следующая реакция:
Fe 0 + Cd 2+ = Fe 2+ + Cd 0
В гальваническом элементе анодом является железный электрод, а катодом – кадмиевый.
Анод Fe 0 |Fe 2+ || Cd 2+ |Cd 0 Катод
Типичные задачи на составление схем гальванического элемента и вычисление ЭДС реакции с решениями вы найдете здесь.
Окислительно-восстановительные потенциалы и электроды
Раствор, содержащий одновременно окисленную и восстановленную формы вещества, называют окислительно-восстановительной системой (о/в) системой.
Инертный токопроводящий металл (например, платина или иридий), погруженный в окислительно-восстановительную систему, образует окислительно-восстановительный электрод.
Например: раствор, содержащий соль Cu 2+ и соль Cu + – является окислительно-восстановительной системой.
Cu 2+ - окисленная форма;
Cu + -восстановленная форма.
Примером о/в электрода может служить платиновая пластинка, опущенная в о/в - систему, содержащую окисленную и восстановленную форму вещества.
Стандартный электродный о/в потенциал Е 0 Сu 2+ /Cu + = +0,153 В
Потенциал, возникающий на границе соприкосновения пластинки инертного металла с о/в - системой, называется о/в или red–ox -потенциалом.
На практике определение стандартных о/в потенциалов различных систем проводят по отношению к нормальному водородному электроду при t = 25 °С и рН=0. По этим потенциалам составляют электрохимический ряд активности,который позволяет судить о возможности и направлении о/в процессов.
Чем больше величина стандартного о/в потенциала, тем сильнее окислительные свойства системы.
Чем меньше величина Е 0 о/в, тем сильнее восстановительные и слабее окислительные свойства вещества.
Величину о/в потенциала рассчитывают по уравнению Нернста-Петерса
При Т = 298 К уравнение Нернста-Петерса имеет вид
Например, электродный о/в потенциал системы Cu 2+ +1e ↔ Cu + по уравнению Нернста- Петерса при Т = 298 К равен:
Е (Сu 2+ /Cu) = Е 0 (Сu 2+ /Cu) + lg
По величине стандартных о/в потенциалов можно определять направление самопроизвольного протекания реакций, а также вычислять ЭДС элементов построенных на основе этих реакций.
Чем выше значение стандартного электродного потенциала Е 0 , тем выше окислительная способность системы, т.е. на этом электроде будет протекать процесс восстановления. На электроде с более отрицательным значением Е 0 , где выше восстановительная способность системы, протекает процесс окисления.
Например, определим направление реакции:
2Fe 3+ + 2I – ↔ 2Fe 2+ + I2
Е 0 (Fe 3+ /Fe 2+ ) = 0,77 В – окислитель
Е 0 (I2/2I – ) = 0,54 В – восстановитель
Потенциал первой системы больше, т.е. способность притягивать электроны у Fe 3+ выше, чем у I2. Следовательно, реакция протекает в прямом направлении. Определим ЭДС элемента, построенного на основе этой реакции:
Pt│Fe 3+ ; Fe 2+ ║I - ; I2│Pt
ЭДС = 0,77 – 0,54 = 0,23 В.
Электроны перемещаются от более активного о/в электрода (менее положительного)к менее активному о/в электроду (более положительному). Окислительно-восстановительный процесс может протекать в нужном направлении при условии, что ЭДС будет положительна.
Контрольные вопросы
1. Окислительно – восстановительные системы, их классификация.
2. Окислительно-восстановительные электроды. Роль инертного металла в них. Применение в медицине.
3. Окислительно-восстановительные потенциалы.
4. Уравнение Нернста – Петерса для простых и сложных окислительно-восстановительных систем, его анализ.
5. Направление окислительно-восстановительных процессов.
Типовые задачи
Задача1. Рассчитать величину О-В потенциала электрода Pt/ Fe 3+ , Fe 2+ , если при 25 0 С
а (Fe 3+ ) = 0,04 моль/дм 3 ; а (Fe 2+ ) = 0,012 моль/дм 3 . Е 0 (Fe 3+ / Fe 2+ ) = + 0, 77 В (см. Приложение 3.5.)
Е (Fe 3+ / Fe 2+ ) = Е 0 (Fe 3+ / Fe 2+ ) + 0,059 ·1g [Fe 3+ ] /[Fe 2+ ]
Е (Fe 3+ / Fe 2+ ) = Е 0 (Fe 3+ / Fe 2+ ) + 0,059 ·lg 0,04 / 0,012 = 0,77 + 0,059·0,52 = 0,77+0,03 = 0,8 B
Ответ: Е (Fe 3+ / Fe 2+ ) = 0,8 В
Задача 2. Электродный потенциал системы Со 3+ + 1 е ↔ Со 2+ равен Е (Co 3+ /Co 2+ ) = +1,7 В при Т =298 К. Определите величину соотношения концентраций [Со 3+ ]/[Со 2+ ], если Е 0 (Co 3+ /Co 2+ ) = +1,81 В (см. Приложение 3.5.).
Е (Co 3+ /Co 2+ ) = Е 0 (Co 3+ /Co 2+ ) + 0,059·1g [Со 3+ ] / [Со 2+ ]
1,7 = 1,81 + 0,059 ·1g [Со 3+ ] / [Со 2+ ]
1,7 – 1,81 = 0,059 ·1g [Со 3+ ] / [Со 2+ ]
– 0,1 = 0,059 ·1g [Со 3+ ] / [Со 2+ ]
1g [Со 3+ ] / [Со 2+ ] = -0,11 / 0,059 = – 1,86
[Со 3+ ] / [Со 2+ ] = 10 –1,86 = 0,014
Ответ: соотношение концентраций [Со 3+ ] / [Со 2+ ] = 0,014
Задача 3. Определить концентрацию ионов Sn 4+ в растворе, содержащем 0,05 моль ионов Sn 2+ , если Е (Sn 4+ /Sn 2+ ) = 0,21 В, Е 0 (Sn 4+ / Sn 2+ ) = 0,15 В.
Е (Sn 4+ /Sn 2+ ) = Е 0 (Sn 4+ /Sn 2+ ) + 0,0295 lg [Sn 4+ ] / [ Sn 2+ ]
0,21 = 0,15 + 0,0295 · lg [Sn 4+ ] / 0,05
0,21 – 0,15 = 0,0295 · lg [Sn 4+ ] / 0,05
lg [Sn 4+ ] / 0,05 = 2,03
[Sn 4+ ] / 0,05 = 10 2,03
[Sn 4+ ] / 0,05 = 107,15
[Sn 4+ ] = 5,36 моль/дм 3
Ответ: [Sn 4+ ] = 5,36 моль/дм 3
Тестовые задания для самоконтроля
Выберите правильный вариант ответа
01. РЕАКЦИЯ НЕ ЯВЛЯЕТСЯ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНОЙ
4) Cl2 + 2NaOH = NaCl + NaClO + H2O
02. ПРИ КОНТАКТЕ О/В СИСТЕМ:
Cd 2+ + 2 ē↔ Cd 0 ; Е 0 (Cd 2+ /Cd 0 ) = – 0,403 В
Cu + + ē ↔Cu 0 ; Е 0 (Cu + /Cu 0 ) = + 0,521 В ОКИСЛИТЕЛЕМ ЯВЛЯЕТСЯ
03. НАИБОЛЕЕ СИЛЬНЫЕ ОКИСЛИТЕЛЬНЫЕ СВОЙСТВА ПРОЯВЛЯЕТ СИСТЕМА
1) Сu 2+ + е ↔Сu + Е 0 = 0,54В
2) Cr 3+ + е ↔ Cr 2+ Е 0 = – 0,41В
3) I2 + 2е ↔2 I – Е 0 = 0,53В
04.СРЕДИ ПРИВЕДЕННЫХ ЭЛЕКТРОДОВ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫМИ ЯВЛЯЮТСЯ
а) Pt|Co 3+ , Co 2+ б) Fe|Fe 2+ в) Ag + |Ag г) Cu|Cu 2+ д) Pt|Cu 2+ ,Cu +
Читайте также: