Способы защиты от коррозии при котором создают контакт с более активным металлом называют

Обновлено: 05.01.2025

Коррозионная стойкость - способность материала сопротивляться воздействию агрессивной среды. Она может определяться качественно и количественно: изменением массы образцов, показателей их физических и механических свойств, уменьшением толщины образцов, объема выделившегося водорода (или поглощенного кислорода) и др.

Коррозия причиняет огромные убытки. В результате нее металлические изделия теряют свои ценные технические свойства. Поэтому имеют очень большое значение меры борьбы с коррозией.

Они весьма разнообразны и включают следующие методы:

1. Защитные поверхностные покрытия металлов. Они бывают металлические и неметаллические. Металлические покрытия в свою очередь подразделяют на: гальванические; полученные, погружением в расплав; плакированием металлов; диффузионные и изотермически напыленные. Неметаллические покрытия бывают: силикатные (эмалированные); фосфатные; керамические, полимерные: лакокрасочные и порошкообразные.

3. Химический способ - применение ингибиторов коррозии.

4. Обескислороживание воды.

5. Создание сплавов с антикоррозионными свойствами.

Металлические гальванические покрытия изолируют металл от внешней среды. Их наносят электролитическим способом, подбирая состав электролита, плотность тока и температуру среды. Метод позволяет получать очень тонкие надежные слои металлов (цинк, никель, хром, свинец, олово, медь, кадмий и др.) и является экономичным. Покрытие железных изделий этими и другими металлами помимо защиты, придает им красивый внешний вид.

Тщательная очистка покрываемого изделия от загрязнений является одним из важных условий получения качественного покрытия. К загрязнениям относятся: жиры, масла и окислы. Обработку покрываемой поверхности производят тремя способами: механическим (шлифовка, песко- и дробеструйная очистка), химическим и электрохимическим (обезжиривание, травление и электрохимическое полирование). Хранение подготовленных изделий до покрытия не более 4 - 6 часов.

Например, кровельное железо предохраняют от коррозии цинком. Цинк, хотя и является более активным металлом, чем железо, покрыт снаружи защитной окисной пленкой. При ее повреждении возникает гальваническая пара железо-цинк. Катодом (положительным) служит железо, анодом (отрицательным) - цинк. Электроны переходят от цинка к железу, цинк растворяется, но железо остается защищенным до тех пор, пока слой цинка не разрушится до конца.

Методом погружения деталей в расплав наносятся например, покрытия из цинка и олова. Защитный слой (d = 10 - 50 мкм) имеет диффузионное сцепление с основой. Недостатки метода - трудность достижения равномерной толщины покрытия, а также большой расход металла, который например, при использовании цинка для слоя толщиной 25 мкм составляет до 600 г/м2.

Диффузионный способ защиты основан на изменении химического и фазового состава поверхностного слоя металла при вхождении в него подходящих элементов, которые обеспечивают коррозионную стойкость. Стали от атмосферной коррозии сохраняют цинкованием, алитирование применяют для защиты от окисления при повышенных температурах. Кремниевые покрытия (силицирование) используют для предохранения жаростойких металлов, борирование - для повышения износостойкости и прочности.

Плакирование металлов используют для изготовления биметаллических листов типа сталь-никель, сталь-титан, сталь-медь, сталь-алюминий. Его проводят методами совместного горячего пластического деформирования, электродуговой и электрошлаковой наплавкой, сваркой взрывом.

Напыляемые покрытия получают газотермическим, плазменным, детонационным и вакуумным способами. При этом металл распыляется в жидкой фазе в виде капель и осаждается на покрываемую поверхность. Метод прост, позволяет получать слои любой толщины с хорошим сцеплением с основным металлом. При вакуумном способе материал покрытия нагревают до состояния пара, и паровой поток конденсируется на поверхности изделия.

Методы напыления позволяют защищать сборные конструкции. Однако расход металла при этом очень значительный, а покрытие получается пористым и для обеспечения противокоррозионной защиты требуется дополнительное уплотнение термопластическими смолами или другими полимерными материалами. При восстановлении изношенных деталей машин пористость является весьма ценной, так как служит носителем смазочных материалов.

Стеклоэмалями называются стекла, наносимые тонким слоем на поверхность металлических предметов с целью защиты от коррозии, придания им определенной окраски и улучшения внешнего вида, создания отражающей поверхности и пр.

Производство эмалированных изделий включает в себя следующие операции: высокотемпературный синтез-варка эмалевых стекол (фриттов); приготовление из них порошков и суспензий; подготовка поверхности металлических изделий и собственное эмалирование - нанесение суспензии на поверхность металла, сушка и оплавление порошкообразного стекла в покрытие.

Стальные изделия грунтовой эмалью покрываются обычно двух- и трехкратно. Общая толщина получаемого покрытия в среднем равна 1,5 мм. После сушки полученного грунта при температуре 90 – 100 °С деталь далее обжигают при 850 – 950 °С. С целью увеличения долговечности эмалевых покрытий стальных труб в теплоэнергетике их наносят по слою напыленного алюминия.

В основе фосфатирования стальных изделий лежит процесс образования нерастворимых в воде двух- и трехзамещенных фосфатов железа, цинка и марганца. Они образуются при погружении изделий в разбавленный раствор фосфорной кислоты с добавкой однозамещенных фосфатов вышеперечисленных металлов. Получающийся фосфатный пласт хорошо сцеплен с металлической основой. Эти покрытия пористы, поэтому на них дополнительно нужно нанести лак или краску. Толщины фосфатных слоев составляют 10 – 20 мкм. Фосфатирование нужно вести окунанием или распылением.

В качестве керамической защиты используются покрытия на основе оксидов некоторых р-элементов, также кремниземистые, алюмисиликатные, магнезильные, карборундовые и другие. Получили развитие новые материалы, называемые керметы. Это металлокерамические смеси или комбинации металлов с керамикой, например Al - Al2O3 (САП), V – Al - Al2O3 (твэл). Они находят применение в реакторостроении. По сравнению с простой керамикой керметы обладают большей прочностью и пластичностью, имеют очень высокую сопротивляемость механическим и тепловым ударам.

Лакокрасочные покрытия наносят: распылением воздухом, высоким давлением и в электрическом поле; электроосаждением, струйным обливом, окунанием, валиками, кистью и т. д. Искусственная сушка красок может выполняться горячим воздухом, в камерах, инфракрасным и ультрафиолетовым излучениями.

Нанесение слоев из порошков полимеров осуществляют газопламенным, вихревым и электростатическим напылением. При температуре 650 –700 °С порошкообразный полимер размягчается и при ударе о подготовленную и нагретую до температуры давления полимера поверхность детали сцепляется с ней, образуя сплошное покрытие. Для напыления успешно используют полиэтилен, поливинилхлорид, фторопласты, нейлон и другие полимерные материалы.

Для катодной защиты стали в почве и нейтральных водных растворах минимальный потенциал составляет 770 – 780 мВ. Предусматривается одновременная пленочная изоляция поверхности изделия от контакта с коррозионной средой.

Анодную защиту применяют только для оборудования из сплавов, склонных к пассивации в данном технологическом растворе. Коррозия этих сплавов в инертном состоянии протекает гораздо медленнее. Используется источник постоянного тока с автоматическим регулятором потенциала анодной поляризации защищаемого металла.

В зависимости от агрессивности среды при анодно-протекторной защите применяют катоды из кремнистого чугуна, молибдена, сплавов титана и нержавеющих сталей. Так предохраняют теплообменники из нержавеющих сталей, работающие в 70 – 90 %-ной серной кислоте при температуре 100 –120 °С.

Ингибиторы коррозии - это вещества, замедляющие скорость разрушения металлических изделий. Даже в малом количестве они заметно снижают скорость обоих механизмов коррозии. Их вводят в рабочую агрессивную среду или наносят на детали. Они адсорбируются на металлической поверхности, взаимодействуют с ней с образованием защитных пленок и тем самым препятствуют протеканию разрушительных процессов. Некоторые антиоксиданты способствуют удалению кислорода (или другого окислителя) из рабочей зоны, что также снижает скорость коррозии.

Ингибиторами служат многие неорганические и органические соединения и разнообразные смеси на их основе. Их широко применяют при химической очистке паровых котлов от накипи, снятии окалины методом кислотной промывки, а также при хранении и перевозке неорганических сильных кислот в стальной таре и других. Например, для солянокислотной промывки теплосилового оборудования используют ингибиторы марок И-1-А, И-1-В, И-2-В (смесь высших пиридиновых оснований).

Создание сплавов с антикоррозионными свойствами заключается в легировании сталей такими металлами, как хром. При этом получают хромистые нержавеющие устойчивые к коррозии стали. Усиливают антикоррозионные свойства сталей добавками никеля, кобальта и меди. Легирование преследует достижение их высокой коррозионной стойкости в рабочей среде и обеспечение заданного комплекса физико-механических характеристик. Легирование сталей такими легкопассивирующимися металлами, как алюминий, хром, никель, титан, вольфрам и молибден придает первым склонность к пассивации при условии образования твердых растворов.

Для борьбы с МКК аустенитных сталей применяют:

а) снижение содержания углерода, что исключает образование хромистых карбидов;

б) введение в сталь более сильных, чем хром, металлов-карбидообразо­вателей (титан и ниобий), что связывает углерод в их карбиды и исключает обеднение границ зерен по хрому;

в) закалку сталей от 1050 – 1100 °С, обеспечивающую перевод хрома и углерода в твердый раствор на их основе;

г) отжиг, обогащающий приграничные зоны зерен свободным хромом до уровня требуемой коррозионной стойкости.

Вопросы для самостоятельной работы. Основы теории коррозии, виды коррозии металлов, борьба и защита электрооборудования от коррозии Радиационные повреждения металлов и сплавов, борьба с радиационными повреждениями; исправление радиационных повреждений. Сварка и пайка в энергетике. Способы, сущность, преимущества и недостатки. Литература: Материаловедение. (Под общей ред. Б.Н. Арзамасова и Г.Г. Мухина) 3-е изд. переработанное и дополненное. М: Изд-во МГТУ им. Н.Э.Баумана, 2002.

Коррозия металлов и способы защиты от нее

Коррозионная стойкость металла зависит от его природы, характера среды и температуры.

  • Благородные металлы не подвергаются коррозии из-за химической инертности.
  • Металлы Al, Ti, Zn, Cr, Ni имеют плотные газонепроницаемые оксидные плёнки, которые препятствуют коррозии.
  • Металлы с рыхлой оксидной плёнкой – Fe, Cu и другие – коррозионно неустойчивы. Особенно сильно ржавеет железо.

Различают химическую и электрохимическую коррозию.

Химическая коррозия сопровождается химическими реакциями. Как правило, химическая коррозия металлов происходит при действии на металл сухих газов, её также называют газовой.

При химической коррозии также возможны процессы:

Fe + 2HCl → FeCl2 + H2

2Fe + 3Cl2 → 2FeCl3

Как правило, такие процессы протекают в аппаратах химических производств.

Электрохимическая коррозия – это процесс разрушения металла, который сопровождается электрохимическими процессами. Как правило, электрохимическая коррозия протекает в присутствии воды и кислорода, либо в растворах электролитов.

В таких растворах на поверхности металла возникают процессы переноса электронов от металла к окислителю, которым является либо кислород, либо кислота, содержащаяся в растворе.

При этом электродами являются сам металл (например, железо) и содержащиеся в нем примеси (обычно менее активные металлы, например, олово).

В таком загрязнённом металле идёт перенос электронов от железа к олову, при этом железо (анод) растворяется, т.е. подвергается коррозии:

Fe –2e = Fe 2+

На поверхности олова (катод) идёт процесс восстановления водорода из воды или растворённого кислорода:

2H + + 2e → H2

O2 + 2H2O + 4e → 4OH –

Например, при контакте железа с оловом в растворе соляной кислоты происходят процессы:

Анод: Fe –2e → Fe 2+

Катод: 2H + + 2e → H2

Суммарная реакция: Fe + 2H + → H2 + Fe 2+

Если реакция проходит в атмосферных условиях в воде, в ней участвует кислород и происходят процессы:

Анод: Fe –2e → Fe 2+

Катод: O2 + 2H2O + 4e → 4OH –

Суммарная реакция:

Fe 2+ + 2OH – → Fe(OH)2

4Fe(OH)2 + O2+ 2H2O → 4Fe(OH)3

При этом образуется ржавчина.

Методы защиты от коррозии

Защитные покрытия

Защитные покрытия предотвращают контакт поверхности металла с окислителями.

  • Катодное покрытие – покрытие менее активным металлом (защищает металл только неповреждённое покрытие).
  • Покрытие краской, лаками, смазками.
  • Создание на поверхности некоторых металлов прочной оксидной плёнки химическим путём (анодирование алюминия, кипячение железа в фосфорной кислоте).

Создание сплавов, стойких к коррозии

Физические свойства сплавов могут существенно отличаться от свойств чистых металлов. Добавление некоторых металлов может приводить к повышению коррозионной стойкости сплава. Например, нержавеющая сталь, новые сплавы с большой коррозионной устойчивостью.

Изменение состава среды

Коррозия замедляется при добавлении в среду, окружающую металлическую конструкцию, ингибиторов коррозии. Ингибиторы коррозии — это вещества, подавляющие процессы коррозии.

Электрохимические методы защиты

Протекторная защита: при присоединении к металлической конструкции пластинок из более активного металла – протектора. В результате идёт разрушение протектора, а металлическая конструкция при этом не разрушается.

Как называют способы защиты от коррозии при котором создают контакт с более активным металлом

Химическая коррозия сопровождается химическими реакциями. Как правило, химическая коррозия металлов происходит при действии на металл сухих газов, её также называют газовой.

2Fe + 3Cl2 → 2FeCl3

Электрохимическая коррозия – это процесс разрушения металла, который сопровождается электрохимическими процессами. Как правило, электрохимическая коррозия протекает в присутствии воды и кислорода, либо в растворах электролитов.
Например, при контакте железа с оловом в растворе соляной кислоты происходят процессы:

Способы защиты металла от коррозии


Как нам известно, что под воздействием окружающей среды портятся любые материалы и металлические изделия и стройматериалы не являются исключением.

Коррозию невозможно убрать полностью, но снизить ее воздействие при этом увеличив срок эксплуатации изделий из металла вполне возможно.

Очень важным фактором является обработка металлических изделий и конструкций от коррозии, потому что данная процедура значительно увеличит их срок эксплуатации.

Виды антикоррозийной защиты

Защиту от коррозии условно подразделяют на два вида:

  1. когда ее применяют до начала использования конструкции или изделия и
  2. когда изделие или конструкция уже пребывают в использовании.

Первый вид способствует высокой сопротивляемости «химическому» воздействию. Изолирует прямой контакт с агрессивными средами (поверхностная изоляция).


Второй вид способствует снижению агрессивной окружающей среды (это будет зависеть от условий использования).

Применение электромагнитных полей , например, «наложение» внешних электрических токов, регулирование плотности и другие методики.

Использование видов защиты от коррозии выбирается индивидуально для каждого изделия и конструкции.

Так же это зависит от следующих факторов:

  1. Вид металла;
  2. Условия эксплуатации;
  3. Трудность проведения обработки антикоррозийными составами;
  4. Экономическая целесообразность;
  5. Производственные возможности.

Подробности о методах защиты

Все методики можно разделить:

  • на активные (которые постоянно воздействуют на металл),
  • пассивные (многоразового применения),
  • технологические (применяют на этапе производства образцов).

Активные методики

Катодная защита от коррозии

Такую методику используют в тех случаях, если среда, контактирующая с металлом, является электропроводящей. На материал подают большой «минусовой» потенциал, данная процедура позволяет предотвращать его окисление.

Протекторная защита от коррозии

Является катодной поляризацией. Экземпляр связывают с контактом с материалом, который больше всего подвержен окислению в этой токопроводящей среде (проектором). Он как бы является своеобразным громоотводом, то есть принимает весь негатив агрессивных веществ на себя.

Но такого рода протектор требует периодической замены.

Анодная защита от коррозии

Этот вариант применяют очень редко, и он заключается в поддержке «инертности» материала по отношению к окружающей среде.

Пассивные

Создание защитной плёнки

Популярная и низко затратная методика предотвращения коррозии. Чтобы создать поверхностный слой применяют специальные вещества. Данные вещества должны быть не активными по отношению к агрессивным химическим соединениям, быть не электропроводными и иметь хорошую адгезию.

Все вещества для обработки металла перед применением находиться в жидком или аэрозольном состоянии, от этого будет зависеть способ нанесения.

Чтобы обработать металл используют лакокрасочные составы, разные полимеры или мастики.

Металлоконструкция в «желобах» для защиты

Используют для трубопроводов и инженерных систем. В качестве изолятора в этом случае, выступает воздушная прослойка, которая находится между внутренними стенками канала и металлом.

Фосфатирование

Так же металлы обрабатывают специальными окислителями. Такие окислители вступают с основой в реакцию и в результате на ее поверхности образуются отложения малорастворимых химических соединений.

Такой способ защиты от влаги считается очень эффективным.

Покрытие металла устойчивыми материалами

В этом случае, изделия из металла «хромируют», «оцинковывают» серебрят и тому подобное. Так же в качестве защиты металла выступает бетон, стекло, керамика, цементные растворы и так далее.

Пассивация

Данная манипуляция состоит в том, чтобы достаточно резко снизить химическую активность металла. В этом случае, поверхность металла обрабатывают специальными реактивами.

Уменьшение агрессивности среды— применения веществ, которые снижают коррозийные процессы (ингибиторы).

Осушение воздуха— это химическая очистка воздуха от различных вредных примесей и применение других методик, которые применимы в быту.

Гидрофобизация грунта– это засыпка в него специальных веществ для снижения агрессивности почвы.

Обработка ядохимикатами– применяют в тех случаях, когда существует вероятность развития биокоррозии.

Технологический способ защиты

Легирование– на основе металла изготавливают сплав устойчивый к агрессивным воздействиям.

Но такой способ можно реализовать только на промышленных производствах.

И так как вы поняли по вышеперечисленной информации не каждую методику антикоррозийной обработки можно использовать в бытовых условиях.

То есть получается возможности «частника» очень ограничены. В этой статье мы описали несколько способов антикоррозийной обработки металлов и надеемся, что данная информация была вам полезной. Желаем вам удачи и терпения!

Защита металлов от коррозии


Железо и сплавы на его основе подвержены коррозии – разрушению, которое происходит вследствие химического или электрохимического взаимодействия компонентов металлов и сплавов с различными веществами окружающей среды. В результате этих окислительно-восстановительных реакций металлы связываются в оксиды, что приводит к потере их эксплуатационных свойств. Первые проявления разрушительного процесса – образование на поверхности пятен рыжего цвета. Своевременные меры по предотвращению коррозии обеспечивают значительное продление срока службы металлических изделий и конструкций.

Виды коррозии металлов

Коррозионные процессы различаются по характеру разрушения, механизму протекания процесса, типу агрессивной среды, вызывающей коррозию.

Характер разрушения

По этому признаку выделяют следующие типы коррозии:

  • Сплошная – равномерная или неравномерная. Затрагивает равномерно всю поверхность металлоизделия или конструкции.
  • Местная. Поражаются отельные участки поверхности.
  • Питтинг-коррозия (точечная). Поражения – отдельные, глубокие или сквозные.
  • Межкристаллитная. Разрушающиеся области располагаются вдоль границ зерен.

Механизм протекания коррозии

Основные типы коррозии – химическая и электрохимическая. Химические коррозионные процессы протекают в результате химреакций, при которых разрушаются металлические связи, а образуются новые – между атомами металла и окислителя. Химическая коррозия возникает при контакте металлов и сплавов со средами, не проводящими электрический ток. Она может быть жидкостной и газовой.

  • Газовая коррозия протекает в агрессивных газовых и паровых средах при отсутствии сконденсированной влаги на поверхности металлоизделия или металлоконструкции. Она может стать причиной полного разрушения железа и сплавов на его основе. На поверхности алюминия и алюминиевых сплавов в газовых средах образуется защитная пленка, защищающая их от коррозии. Примеры газов, которые становятся причиной возникновения химических коррозионных процессов: кислород, диоксид серы, сероводород.
  • Жидкостная коррозия протекает при контакте металлической поверхности с жидкими неэлектролитами – нефтью и нефтепродуктами. При наличии даже небольшого количества воды этот химический процесс легко превращается в электрохимический.

Электрохимическая коррозия возникает при контакте металлов и сплавов с жидкостями-электролитами вследствие протекания двух взаимосвязанных процессов:

  • анодный – ионы металла переходят в раствор электролита;
  • катодный – электроны, которые образовались на стадии анодного этапа, связываются частицами окислителя.

В зависимости от среды, в которой протекают электрохимические коррозионные процессы, различают следующие типы коррозии:

  • Атмосферная. Самая распространенная. Протекает в условиях атмосферы или другого влажного газа.
  • В растворах электролитов – кислотах, щелочах, солях, обычной воде.
  • Почвенная. Скорость процесса зависит от состава грунта. Наименее агрессивны песчаные почвы, наиболее – кислые почвы.
  • Аэрационная. Ее вызывает неравномерный доступ воздушной среды к разным частям изделий и конструкций.
  • Биологическая. Ее провоцируют микроорганизмы, которые в результате жизнедеятельности вырабатывают углекислый газ, сероводород и другие газы, вызывающие коррозионные процессы.
  • Электрическая. Возникает из-за блуждающих токов, которые появляются при эксплуатации электротранспорта.

Общий вывод! Коррозионные процессы активнее всего развиваются на поверхностях, удобных для отложения пыли, осадков, плохо обдуваемых воздушными струями. Поэтому они подвержены застою воздуха, накоплению и длительному сохранению на поверхности влаги.

На стадии производства стали в ее состав могут вводиться легирующие добавки, которые предотвращают появление очагов всех (или некоторых) видов коррозии. Таким элементом является, хром, которого должно быть не менее 13 % от общего количества всех компонентов. Для предотвращения возникновения и развития коррозии в сталях без легирующих добавок используют следующие методы антикоррозионной защиты – конструктивные, пассивные, активные.

Конструктивные

Заключаются в защите поверхности металла с помощью нетонкослойных покрытий – панелей, резиновых прокладок, заслонов. Эти способы имеют мало преимуществ: их сложно, а иногда невозможно реализовать, материалы для конструктивной защиты стоят дорого и после монтажа занимают много места. Их применяют нечасто и только в местах, где они скрыты от глаз.

На металлическое изделие наносится тонкослойное покрытие, которое выполняет чисто барьерные характеристики, то есть процесс защиты заключается в предотвращении контакта металла с наружной средой. Для пассивного способа защиты используют неметаллические покрытия – грунтовки, лаки, краски, эмали. После высыхания они образуют прочную и твердую пленку, имеющую хорошее сцепление с основанием.

Преимущества пассивного способа: невысокая цена и удобное нанесение покрытий, большой ассортимент составов разных цветов и характеристик, создание надежного барьера между металлом и окружающей средой. Недостатки: невысокая устойчивость к механическим повреждениям, необходимость периодически обновлять барьерный слой.

Активные (электрохимические)

Самый распространенный способ создания активной защиты для стальной поверхности – цинкование (горячее, термодиффузионное, гальваническое, холодное). Первые три технологии осуществимы только в производственных условиях. Чаще всего используется горячее цинкование. Стальной листовой прокат цинкуют на непрерывных линиях. Преимущества такого процесса: возможность получать цинковый слой достаточной толщины, высокие автоматизация и производительность процесса. В бытовых условиях применяют только холодное цинкование – нанесение на стальную поверхность цинкнаполненного материала. Обычно холодное цинкование применяют для локального восстановления цинкового покрытия.

Принцип активного защитного действия цинка заключается в том, что он обладает меньшей скоростью коррозии в данной среде, что позволяет ему обеспечить электрохимическую катодную защиту стальной основы. При нанесении на сталь цинкового покрытия цинк с железом образуют гальваническую пару, в которой цинк является более активным металлом. При контакте с влагой и другими коррозионноопасными средами цинк-анод отдает электроны, которые принимает железо-катод, что позволяет ему сохранять свои технические характеристики. Защитный процесс длится до полного исчезновения цинкового слоя.

Плюсы цинкования – долговечность и возможность добавлять цинковый слой в процессе эксплуатации изделий и конструкций. Минусы – необходимость в тщательной подготовке поверхности, обязательное соблюдении технологических правил, сложность утилизации токсичных отходов.

КОРРОЗИЯ МЕТАЛЛОВ И ЗАЩИТА МЕТАЛЛОВ ОТ КОРРОЗИИ

Металлы вследствие своей высокой прочности, пластичности, износоустойчивости, тепло- и электропроводности являются наиболее важными конструкционными материалами.

В процессе эксплуатации в результате воздействия окружающей среды происходит их разрушение, так называемая коррозия.

Потери от коррозии в ведущих индустриальных странах составляют около 3-5% валового национального продукта, а затраты на возмещениекоррозионных потерь во всем мире исчисляются сотнями миллиардов долларов, поэтому раздел «Коррозия металлов и методы защиты их от коррозии» является одним из важнейших в курсе химии для инженерных специальностей.

Обычно корродируют металлы, которые встречаются в природе не в самородном состоянии, как Au, Pt, а в виде различных руд. На извлечение этих металлов из природных соединений расходуется значительное количество энергии (Ме +n + n? → Me 0 ; ΔG>0), которая накапливается в металлах, делая их термодинамически неустойчивыми, химически активными веществами (Ме 0 - n? → Me + n ; ΔG<0). В результате такого самопроизвольно протекающего коррозионного процесса металлы переходят в оксиды, гидроксиды, карбонаты, сульфиды и другие соединения и теряются безвозвратно.

Итак, коррозию можно определить как самопроизвольно протекающий окислительно-восстановительный процесс (ΔG<0) разрушения металла под воздействием окружающей среды, происходящий с выделением энергии (ΔН<0) и рассеиванием вещества (ΔS>0).

Механическое разрушение металлов, происходящее по физическим причинам, не называют коррозией, а называют эрозией, истиранием, износом.

По характеру разрушения поверхности коррозию подразделяют на сплошную и местную. Сплошная коррозия подразделяется на равномерную, если процесс окисления происходит по всей поверхности металла с одинаковой скоростью, и неравномерную – процесс окисления происходит по всей поверхности с различной скоростью на различных участках металла.

Местная коррозия подразделяется на коррозию пятнами, точечную, питтинг (углубленно-точечную), межкристаллитную (наиболее опасна, т.к. ослабляет связи между зернами структуры сплавов), растрескивающуюся, селективную (избирательную).

По механизму протекания различают следующие виды коррозии:

- электрохимическая (концентрационная, контактная, электрокоррозия);

- особые виды (биологическая, радиационная, ультразвуковая).

По характеру дополнительных воздействий различают:

- коррозию под влиянием механических напряжений;

- коррозию при трении;

- кавитационную коррозию (возникает при одновременном коррозионном и ударном воздействии агрессивной среды, когда лопаются пузырьки воздуха при работе лопастей гребного винта, роторов насосов).

Рассмотрим более подробно виды коррозии по механизму протекания.

Под химической коррозией понимают разрушение металлов окислением в окружающей среде без возникновения электрического тока в системе.

Газовая коррозия протекает при обычных условиях, но чаще при высоких температурах. Наблюдается при разливе расплавленных металлов, их термической обработке, ковке, прокатке, сварке и т.д.

Самый распространенный случай газовой коррозии – взаимодействие металла с кислородом:

Образующаяся при такой коррозии оксидная пленка в ряде случаев играет защитную функцию. Для этого она должна быть сплошной, беспористой, иметь хорошее сцепление с металлом, обладать твердостью, износостойкостью и иметь коэффициент термического расширения, близкий к этой величине для металла. Все эти качества оксидной пленки можно оценить по фактору Пиллинга-Бэдвордса (a). Металлы (щелочные, щелочноземельные), у которых a2O3, ZnO, NiO и т.д.).

При значениях a значительно больше единицы пленки получаются неслошные, лекго отделяющиеся от поверхности металла (железная окалина). Коррозионно-активными газами, кроме кислорода, являются: угарный газ, углекислый газ, сернистый ангидрид, азот, его оксиды и галогены. Например, при разливе расплавленного алюминия, происходит его взаимодействие не только с кислородом, но и с азотом воздуха.

Жидкостная коррозия протекает, как правило, в жидких неэлектролитах: спиртах, хлороформе, бензоле, бензине, керосине и других нефтепродуктах. Ускоряет процесс жидкостной коррозии сера,кислород, галогены, влага, атакже повышенная температура (коррозия поршней в двигателях внутреннего сгорания),что можно описать уравнениями : Me(II) + R1 – S – R2 → MeS + R1 – R2

Me(I) + nR – Cl → MeCl + 1/2nR – R ,

где R1 – S – R2и nR – Cl углеводороды, содержащие серу и хлор.

Электрохимическая коррозия наиболее распространенный вид коррозии. Это разрушение деталей, машин, конструкций в грунтовых, речных, морских водах, под влиянием воды (росы), под воздействием смазочно-охлаждающих жидкостей, используемых при механической обработке металлов, атмосферная коррозия и т.д.

Электрохимическая коррозия – это пространственно разделенный окислительно-восстановительный процесс разрушения металла, протекающий в среде электролита, с возникновением внутри системы электрического тока, называемого коррозионным током.

Рассмотрим химизм атмосферной коррозии стального изделия. Сталь – это сплав железа с углеродом, в котором углерода менее 2%, например, цементит (Fe3C4). При электрохимической коррозии во влажном воздухе (О2 + 2Н2О) железо и цементит образуют микрогальванопару, в которой роль анода выполняет железо, а цементит – роль катода.

Схема процесса:

Анодный процесс: Fe 0 - 2? → Fe 2+ 2 поляризация

Катодный процесс: 2H2O + O2 + 4? → 4OH - 1 деполяризация

Суммарное уравнение коррозионного процесса разрушения стального изделия, находящегося во влажном воздухе:

Для железа более характерна степень окисления (3+), поэтому процесс окисления идет дальше:

4Fe(OH)2+2H2O+O2→4Fe(OH)3, образующийся Fe(OH)3 при нагревании может терять воду.

То есть продуктами коррозии железа (ржавчина) является смесь различных соединений. Если учесть, что в воздухе присутствуют углекислый газ, сернистый газ, следовательно, могут образовываться и соли железа.

Часто из-за различной рельефности металлических конструкций, в том числе и стальных, на некоторых участках скапливается вода, при этом происходит так называемая концентрационная коррозия, обусловленная различной концентрацией деполяризатора кислорода (в случае атмосферной коррозии), водорода (в кислой среде) на различных участках металла. Там, где концентрация деполяризатора больше (края капли воды), формируется катодный участок, где концентрация деполяризатора меньше (центр капли воды) – анодный участок (рис.15).

После высыхания капли в её центре обнаруживается углубление, а иногда даже и отверстие (для пластин толщиной 0,1-0,2 мм). Такие процессы часто наблюдаются при атмосферной и почвенной коррозии железных и стальных изделий (троса, стопки листов и т.д.) – точечная коррозия, переходящая в питтинг. Следует отметить, что хотя конечный продукт коррозии (ржавчина) нерастворим, однако он не препятствует процессу растворения металла, поскольку формируется за пределами анодного участка (на границе соприкосновения его с катодами) в виде кольца внутри капли.

На практике часто встречаются случаи, когда металлы различной активности находятся в контакте друг с другом, образуя гальванопары. Кроме того, технические металлы содержат примеси других металлов, сплавы содержат различные металлы. Такой металл или сплав, находясь в среде электролита, дает множество микро - и макрогальванопар, в которых анодом является более активный металл, т.е. металл с меньшим значением электродного потенциала, именно он и подвергается коррозии.

Рассмотрим случай контактной коррозии с водородной деполяризациейцинка и меди, в сернокислой среде. Цинк и медь, имеют различные значения электродных потенциалов. Более активным в этой гальвано паре является цинк (Е 0 Zn2+/Zn = -0,76 В), он имеет меньшее значение электродного потенциала и будет анодом, т. е именно цинк будет подвергаться коррозионным процессам, менее активным металлом является медь (Е 0 Cu2+/Cu = +0,34 В), она будет катодом.

Запишем схему: (А) Zn | H2SO4 | Cu (K)

Анодный процесс: Zn 0 - 2? → Zn 2+

Катодный процесс: 2Н + + 2? → Н2 деполяризатор

Суммарное ионное уравнение: Zn + 2H + → Zn 2+ + H2

Факторы, влияющие на скорость коррозии:

а) напряжение и деформация при механической обработке металлов;

б) перемешивание агрессивной среды;

в) дифференциальная аэрация;

д) кислотность среды (рН).

Рассматривая фактор (д) обратите внимание, что электродные потенциалы металлов существенно зависят от состава электролита и рН среды. Так, в случае контактной (Al-Zn) коррозии в 1М растворе HCl

возникает гальвано пара, в которой роль анода выполняет Al, а катода- Zn, схема такого процесса: (А) Al | HCl | Zn (K)

В 0,1 М растворе HCl в этом случае большую активность имеет цинк, он будет в гальвано паре анодом, алюминий – катодом, а схему запишем так: (А) Zn | HCl | Al (K)

Электрокоррозия – протекает под действием блуждающих токов, возникает от постоянных источников тока (электротранспорт, трансформаторы, линии электропередач). Рассматривая коррозию под действием блуждающих токов, надо помнить, что место выхода тока – будет анодным участком, входа тока – катодным, участок протекания тока – нейтральной зоной. Радиус действия блуждающих токов может достигать нескольких десятков километров. Ток силой 1А за год разрушает до 3 кг алюминия, 9 кг железа, 11 кг цинка или меди, 34 кг свинца.

ЗАЩИТА МЕТАЛЛОВ ОТ КОРРОЗИИ

Потери от коррозии в мировой экономике огромны. Около 1/3 вводимого в эксплуатацию металла подвергается коррозии, при этом примерно 10% теряется безвозвратно.

Борьба с коррозией осуществляется различными методами. Наиболее рациональный и надежный путь – изготовление аппаратов и машин изкоррозионно-стойких металлических или неметаллических материалов,но из-за дороговизны таких материалов, чаще используют дешевые и доступные металлы с последующей защитой их от коррозии. Полностью избежать коррозии невозможно, но, применив определенные методы защиты, можно снизить ее воздействие.

Можно условно выделить следующие группы методов защиты металлов от коррозии:

1. Создание рациональных конструкций, т.е. таких, которые не имеют застойных зон и других мест скопления влаги, грязи и других коррозионно-агрессивных сред, допускают быструю очистку и аэрацию.

2. Легирование металлов. Это эффективный, хотя обычно дорогой метод повышения коррозионной стойкости металлов. При легировании в состав сплава вводят компоненты (Cr, Ni, W, Si, V, Mo, Re и другие), вызывающие пассивирование металла. Механизм защиты (например, в нержавеющих сталях) состоит в образовании на поверхности плотных оксидных слоев, типа шпинелей состава NiO . Cr2O, FeO . Cr2O3, которые оказываются более устойчивыми, чем просто оксиды хрома или никеля.

3. Создание аморфных структур металлов. Путь к этому способу защиты открыла сверхбыстрая закалка. Расплавленный металл из тигля подают в тончайший зазор между двумя массивными валками и подвергают формированию и резкому охлаждению. В этих условиях атомы не успевают выстраиваться в присущие металлам кристаллические решетки, фиксируется «хаос атомов», свойственный расплавленному металлу. В результате получается аморфная структура, подобная стеклу, резко возрастает коррозионная устойчивость металлов.

4. Защитные покрытия – самый распространенный метод защиты металлов от коррозии. Смысл их нанесения – изоляция от агрессивной среды. Различают неметаллические и металлические покрытия.

а) неметаллические покрытия получают нанесением на поверхность металла лака, краски, смолы, олифы, эмали или стеклоэмали. Поверхность металла покрывают также резиной, эбонитом, полимерными материалами, цементом, бетоном, оксидными пленками: ZnO, Al2O3 (оксидирование) и нитридными пленками: Fe4N, Fe2N (азотирование). Покрыть поверхность металла можно осаждением нерастворимых фосфатов этого металла: Fe(H2PO4)2 + 2 Fe 2+ ® Fe3(PO4)2¯ + 4H ( фосфатирование) или насыщением поверхности металла углеродом (цементация).

б) защитные покрытия металлами. Для этого используют коррозионно-устойчивые металлы (Sn, Zn, Al, Au, Ag, Ni, Cr и др.) Различают анодные и катодные металлические покрытия. Если защищаемый металл покрывают более активным металлом, то такое покрытие называют анодным. При нарушении покрытия разрушается металл покрытия. Рассмотрим это на примере оцинкованного железа. Составим схему коррозионного разрушения.

A: Zn 0 - 2? → Zn 2+ 2

Если защищаемый металл покрыт менее активным металлом, например, железо покрыто оловом, то такой вид покрытия называется катодным. При нарушении покрытия разрушается основной металл. Рассмотрим этот случай коррозии.

(А) Fe | 2H + | Sn (K)

A: Fe 0 - 2? → Fe 2+ 1

Fe + 2H + → Fe 2+ + H2

5. Электрохимические методы защиты:

а) защита внешним потенциалом);

б) анодная (протекторная).

Защита внешним потенциалом (чаще катодная) осуществляется подключением защищаемой конструкции к отрицательному полюсу (катоду) внешнего источника тока с очень малым напряжением (0,1 В). К положительному полюсу подсоединяется лом, который и разрушается. Этот вид защиты используют для металлических сооружений: трубопроводов, резервуаров и т.д.

Протекторная защита заключается в том, что к изделию, подвергающемуся электрохимической коррозии, подключают деталь – протектор из более активного металла, чем металл изделия. Протектор будет разрушаться, а изделие останется неизменным. Применяют в паровых котлах, для защиты корпусов морских и речных судов, трубопроводов, рельсов и т.д.

Задача. Приведите пример протекторной защиты в электролите, содержащем растворенный кислород. Составьте уравнения анодного и катодного процессов и вычислите ЭДС реакции.

Решение. Протекторная защита осуществляется путем присоединения к железу более активного металла, обычно цинка, магния и их сплавов. Таким образом, создается искусственный микрогальванический элемент. Чаще всего используют протекторную защиту в растворах электролитов (паровые котлы, химические аппараты), в морской воде и в почве (защита трубопроводов). Рассмотрим протекторную защиту от почвенной коррозии:

Среда нейтральная или слабощелочная, так как концентрация солей невелика. В этом, созданном нами, коррозионном элементе анодом служит протектор (цинк), он растворяется.

Анод: Zn 0 – 2 ® Zn 2+ .

Электроны передаются на железо. Деполяризатором в этом случае является кислород.

Катод: O2 + 2H2O + 4® 4OH - ; E 0 = 0,40 B.

ЭДС реакции определяем: DЕ = Екатода – Еанода = 0,40 – (-0,75) = 1,16 В.

Ответ: протектор Zn, он окисляется и защищает железо; DЕ = 1,16 В.

6. Воздействие на агрессивную среду. Для замедления коррозии в агрессивную среду вводят вещества, называемые ингибиторами (замедлителями). Это чаще всего органические вещества, пассивирующие поверхность металла: тиомочевина C(NH2)2S, диэтиламин C2H5 — NH — C2H5, уротропин (CH2)6N4, неорганические вещества SiO3 2- , NO2 - , Cr2O7 2- , а также освобождение воды от растворенного в ней кислорода (воду фильтруют через слой железных опилок). Либо удаляют активаторы коррозии, например, ионы Cl - , Br - , F - , SO4 2- , NO3 - .

Литература:

1. Фролов В.В. Химия. Гл.V, §51-56.

3. Общая химия под ред. Соколовской Е.М. и др. Гл.6, §1-11.

4. Абраменко В.Л. Методические указания к самостоятельному изучению темы “Коррозия и защита металлов от нее”. Луганск, 1991 г.

Читайте также: