Способы получения металлов и сплавов

Обновлено: 07.01.2025

ХИМИЯ – это область чудес, в ней скрыто счастье человечества,

величайшие завоевания разума будут сделаны

именно в этой области.(М. ГОРЬКИЙ)

Таблица
Менделеева

Универсальная таблица растворимости

Коллекция таблиц к урокам по химии

Общая характеристика и способы получения металлов

Значительная химическая активность металлов (взаимодействие с кислородом воздуха, другими неметаллами, водой, растворами солей, кислотами) приводит к тому, что в земной коре они встречаются главным образом в виде соединений: оксидов, сульфидов, сульфатов, хлоридов, карбонатов и т. д. В свободном виде встречаются металлы, расположенные в ряду напряжений правее водорода (Аg, Нg, Рt,Аu, Сu), хотя гораздо чаще медь и ртуть в природе можно встретить в виде соединений.

Минералы и черные породы, содержащие металлы и их соединения, из которых выделение чистых металлов технически возможно и экономически целесообразно, называют рудами.

Получение металлов из руд — задача металлургии.

Металлургия — это и наука о промышленных способах получения металлов из руд, и отрасль промышленности.

Любой металлургический процесс — это процесс восстановления ионов металла с помощью различных восстановителей. Суть его можно выразить так:

Чтобы реализовать этот процесс, надо учесть активность металла, подобрать восстановитель, рассмотреть технологическую целесообразность, экономические и экологические факторы.

металлургия

В соответствии с этим существуют следующие способы получения металлов:

Пирометаллургия

Пирометаллургия — восстановление металлов из руд при высоких температурах с помощью углерода, оксида углерода (II), водорода, металлов — алюминия, магния.

Например, олово восстанавливают из касситерита SnО2, а медь — из куприта Cu2O

прокаливанием с углем (коксом):

SnО2+ 2С = Sn + 2СО ↑; Cu2O + С = 2Cu+ СО ↑

Сульфидные руды предварительно подвергают обжигу при доступе воздуха, а затем полученный оксид восстанавливают углем:

2ZnS + 302 = 2ZnО + 2SO2 ↑; ZnО + С = Zn + СО ↑
сфалерит (цинковая обманка)

Из карбонатных руд металлы выделяют также путем прокаливания с углем, т. к. карбонаты при нагревании разлагаются, превращаясь в оксиды, а последние восстанавливаются углем:

FeСO3 = FеО + СO2 ↑ ; FеО + С = Fе + СО ↑
сидерит (шпатовый железняк)

Восстановлением углем можно получить Fе, Сu, Zn, Сd, Ge, Sn, Рb и другие металлы, не образующие прочных карбидов (соединений с углеродом).

В качестве восстановителя можно применять водород или активные металлы:

К достоинствам этого метода относится получение очень чистого металла.

2) TiO2+ 2Мg = Тi + 2МgO (магнийтермия)

Чаще всего в металлотермии используют алюминий, теплота образования оксида

которого очень велика (2А1 + 1,5 O2 = Аl2O3 + 1676 кДж/моль). Электрохимический ряд напряжений металлов нельзя использовать для определения возможности протекания реакций восстановления металлов из их оксидов. Приближенно установить возможность этого процесса можно на основании расчета теплового эффекта реакции (Q), зная значения теплот образования оксидов:

где Q1— теплота образования продукта, Q2 -теплота образования исходного вещества.

Доменный процесс (производство чугуна):
C + O2 = CO2, CO2 + C ↔ 2CO
3Fe2O3 + CO = 2(Fe 2 Fe 3 2)O4+ CO2
(Fe 2 Fe 3 2)O4+ CO= 3FeO + CO2
FeO + CO= Fe + CO2
(чугун содержит до 6,67% углерода в виде зерен графита и цементита Fe3C);

доменный процесс чугун


Выплавка стали (0,2-2,06% углерода) проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева. Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов. При этом оксиды либо улавливаются в виде отходящих газов (CO2, SO2), либо связываются в легко отделяемый шлак – смесь Ca3(PO4)2 и CaSiO3. Для получения специальных сталей в печь вводят легирующие добавки других металлов.

Гидрометаллургия

Гидрометаллургия — это восстановление металлов из их солей в растворе.

Процесс проходит в два этапа: 1) природное соединение растворяют в подходящем реагенте для получения раствора соли этого металла; 2) из полученного раствора данный металл вытесняют более активным или восстанавливают электролизом. Например, чтобы получить медь из руды, содержащей оксид меди СuО, ее обрабатывают разбавленной серной кислотой:

Затем медь либо извлекают из раствора соли электролизом, либо вытесняют из сульфата железом:

Таким образом, получают серебро, цинк, молибден, золото, уран.

Электрометаллургия

Электрометаллургия — восстановление металлов в процессе электролиза растворов или расплавов их соединений.

Этим методом получают алюминий, щелочные металлы, щелочноземельные металлы. При этом подвергают электролизу расплавы оксидов, гидроксидов или хлоридов.

Понятие о металлургии: общие способы получения металлов

Металлургия — это наука о промышленных способах получения металлов. Различают черную и цветную металлургию.

Черная металлургия — это производство железа и его сплавов (сталь, чугун и др.).

Цветная металлургия — производство остальных металлов и их сплавов.

Широкое применение находят сплавы металлов. Наиболее распространенные сплавы железа — чугун и сталь.

Чугун — это сплав железа, в котором содержится 2-4 масс. % углерода, а также кремний, марганец и небольшие количества серы и фосфора.

Сталь — это сплав железа, в котором содержится 0,3-2 масс. % углерода и небольшие примеси других элементов.

Легированные стали — это сплавы железа с хромом, никелем, марганцем, кобальтом, ванадием, титаном и другими металлами. Добавление металлов придает стали дополнительные свойства. Так, добавление хрома придает сплаву прочность, а добавление никеля придает стали пластичность.

Основные стадии металлургических процессов:

  1. Обогащение природной руды (очистка, удаление примесей)
  2. Получение металла или его сплава.
  3. Механическая обработка металла

1. Нахождение металлов в природе

Большинство металлов встречаются в природе в виде соединений. Наиболее распространенный металл в земной коре — алюминий. Затем железо, кальций, натрий и другие металлы.

2. Получение активных металлов

Активные металлы (щелочные и щелочноземельные) классическими «химическими» методами получить из соединений нельзя. Такие металлы в виде ионов — очень слабые окислители, а в простом виде — очень сильные восстановители, поэтому их очень сложно восстановить из катионов в простые вещества. Чем активнее металл, тем сложнее его получить в чистом виде — ведь он стремится прореагировать с другими веществами.

Получить такие металлы можно, как правило, электролизом расплавов солей, либо вытеснением из солей другими металлами в жестких условиях.

Натрий в промышленности получают электролизом расплава хлорида натрия с добавками хлорида кальция:

2NaCl = 2Na + Cl2

Калий получают пропусканием паров натрия через расплав хлорида калия при 800°С:

KCl + Na = K↑ + NaCl

Литий можно получить электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):

2LiCl = 2Li + Cl2

Цезий можно получить нагреванием смеси хлорида цезия и специально подготовленного кальция:

Са + 2CsCl = 2Cs + CaCl2

Магний получают электролизом расплавленного карналлита или хлорида магния с добавками хлорида натрия при 720–750°С:

Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:

Барий получают из оксида восстановлением алюминием в вакууме при 1200 °C:

4BaO+ 2Al = 3Ba + Ba(AlO2)2

Алюминий получают электролизом раствора оксида алюминия Al2O3 в криолите Na3AlF6:

3. Получение малоактивных и неактивных металлов

Металлы малоактивные и неактивные восстанавливают из оксидов углем, оксидом углерода (II) СО или более активным металлом. Сульфиды металлов сначала обжигают.

3.1. Обжиг сульфидов

При обжиге сульфидов металлов образуются оксиды:

2ZnS + 3O2 → 2ZnO + 2SO2

Металлы получают дальнейшим восстановлением оксидов.

3.2. Восстановление металлов углем

Чистые металлы можно получить восстановлением из оксидов углем. При этом до металлов восстанавливаются только оксиды металлов, расположенных в ряду электрохимической активности после алюминия.

Например , железо получают восстановлением из оксида углем:

2Fe2O3 + 6C → 2Fe + 6CO

ZnO + C → Zn + CO

Оксиды металлов, расположенных в ряду электрохимической активности до алюминия, реагируют с углем с образованием карбидов металлов:

CaO + 3C → CaC2 + CO

3.3. Восстановление металлов угарным газом

Оксид углерода (II) реагирует с оксидами металлов, расположенных в ряду электрохимической активности после алюминия.

Например , железо можно получить восстановлением из оксида с помощью угарного газа:

3.4. Восстановление металлов более активными металлами

Более активные металлы вытесняют из оксидов менее активные. Активность металлов можно примерно оценить по электрохимическому ряду металлов:

Восстановление металлов из оксидов другими металлами — распространенный способ получения металлов. Часто для восстановления металлов применяют алюминий и магний. А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Алюмотермия – это восстановление металлов из оксидов алюминием.

Например : алюминий восстанавливает оксид меди (II) из оксида:

3CuO + 2Al = Al2O3 + 3Cu

Магниетермия – это восстановление металлов из оксидов магнием.

CuO + Mg = Cu + MgO

Железо можно вытеснить из оксида с помощью алюминия:

При алюмотермии образуется очень чистый, свободный от примесей углерода металл.

Активные металлы вытесняют менее активные из растворов их солей.

Например , при добавлении меди (Cu) в раствор соли менее активного металла – серебра (AgNO3) произойдет химическая реакция:

2AgNO3 + Cu = Cu(NO3)2 + 2Ag

Медь покроется белыми кристаллами серебра.

При добавлении железа (Fe) в раствор соли меди (CuSO4) на железном гвозде появился розовый налет металлической меди:

CuSO4 + Fe = FeSO4 + Cu

При добавлении цинка в раствор нитрата свинца (II) на цинке образуется слой металлического свинца:

3.5. Восстановление металлов из оксидов водородом

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Как правило, взаимодействие оксидов металлов с водородом протекает в жестких условиях – под давлением или при нагревании.

CuO + H2 = Cu + H2O

4. Производство чугуна

Чугун получают из железной руды в доменных печах.

Печь последовательно загружают сверху шихтой, флюсами, коксом, затем снова рудой, коксом и т.д.


1- загрузочное устройство, 2 — колошник, 3 — шахта, 4 — распар, 5 — горн, 6 — регенератор

Доменная печь имеет форму двух усеченных конусов, соединенных основаниями. Верхняя часть доменной печи — колошник, средняя — шахта, а нижняя часть — распар.

В нижней части печи находится горн. Внизу горна скапливается чугун и шлак и отверстия, через которые чугун и шлак покидают горн: чугун через нижнее, а шлак через верхнее.

Наверху печи расположено автоматическое загрузочное устройство. Оно состоит из двух воронок, соединенных друг с другом. Руда и кокс сначала поступают в верхнюю воронку, а затем в нижнюю.

Из нижней воронки руда и кокс поступают в печь. во время загрузки руды и кокса печь остается закрытой, поэтому газы не попадают в атмосферу, а попадают в регенераторы. В регенераторах печной газ сгорает.

Шихта — это железная руда, смешанная с флюсами.

Снизу в печь вдувают нагретый воздух, обогащенный кислородом, кокс сгорает:

Образующийся углекислый газ поднимается вверх и окисляет кокс до оксида углерода (II):

CO2 + С = 2CO

Оксид углерода (II) (угарный газ) — это основной восстановитель железа из оксидов в данных процессах. Последовательность восстановления железа из оксида железа (III):

Последовательность восстановления оксида железа (III):

FeO + CO → Fe + CO2

Суммарное уравнение протекающих процессов:

При этом протекает также частичное восстановление примесей оксидов других элементов (кремния, марганца и др.). Эти вещества растворяются в жидком железе.

Чтобы удалить из железной руды тугоплавкие примеси (оксид кремния (IV) и др.). Для их удаления используют флюсы и плавни (как правило, известняк CaCO3 или доломит CaCO3·MgCO3). Флюсы разлагаются при нагревании:

и образуют с тугоплавкими примесями легкоплавкие вещества (шлаки), которые легко можно удалить из реакционной смеси:

Способы получения металлов. Виды сплавов. Получение щелочных металлов

Современный человек в своей повседневной жизни окружен различными металлами. В большинстве предметов, которыми мы пользуемся, присутствуют эти химические вещества. Это все произошло потому, что люди нашли разнообразные способы получения металлов.

Что такое металлы

Этими ценными для людей веществами занимается неорганическая химия. Получение металлов позволяет человеку создавать все более совершенную технику, совершенствующую нашу жизнь. Что же они собой представляют? Прежде чем рассмотреть общие способы получения металлов, необходимо разобраться, какими они бывают. Металлы представляют собой группу химических элементов в виде простых веществ, обладающую характерными свойствами:

• тепло- и электропроводностью;

Человек легко может отличить их от других веществ. Характерной чертой всех металлов является наличие особого блеска. Он получается благодаря отражению падающих лучей света на не пропускающую их поверхность. Блеск – это общее свойство всех металлов, но ярче всего оно проявляется у серебра.

На сегодняшний день учеными открыто 96 таких химических элементов, хотя еще не все из них признаны официальной наукой. Их разбивают на группы в зависимости от присущих им характерных свойств. Так выделяют следующие металлы:

Способы получения металлов

Получение металлов

Для того чтобы изготовить сплав, необходимо в первую очередь получить металл из природной руды. Самородные элементы – это те вещества, которые находятся в природе в свободном состоянии. К ним относится платина, золото, олово, ртуть. Их отделяют от примесей механически или с помощью химических реагентов.

Остальные металлы добывают путем обработки их соединений. Они содержатся в различных ископаемых. Руда – это минералы и горные породы, в состав которых входят соединения металлов в виде оксидов, карбонатов или сульфидов. Для их получения используют химическую обработку.

Методы получения металлов:

• восстановление оксидов углем;

• получение олова из оловянного камня;

• обжигание сернистых соединений в специальных печах.

Для облегчения добывания металлов из рудных пород к ним добавляют различные вещества, называемые флюсами. Они помогают удалять нежелательные примеси, такие как глина, известняк, песок. В результате этого процесса получаются легкоплавкие соединения, называемые шлаками.

При наличии значительного количества примесей руду перед выплавкой металла обогащают путем удаления большой части ненужных компонентов. Наиболее широко применяемые способы данной обработки – флотация, магнитный и гравитационный способ.

Цветные сплавы

Щелочные металлы

Массовое получение щелочных металлов – более сложный процесс. Это обусловлено тем, что они встречаются в природе только в виде химических соединений. Поскольку они являются восстановителями, их получение сопровождается высокими энергетическими затратами. Существует несколько способов добывания щелочных металлов:

• Литий можно получить из его оксида в вакууме или путем электролиза расплава его хлорида, образующегося при переработке сподумена.

• Натрий добывают путем прокаливания соды с углем в плотно закрытых тиглях или электролизом расплава хлорида с добавлением кальция. Первый способ наиболее трудоемкий.

• Калий получают электролизом расплава его солей либо, пропуская пары натрия через его хлорид. Также он образуется при взаимодействии расплавленного гидроксида калия и жидкого натрия при температуре 440°С.

• Цезий и рубидий добывают при помощи восстановления их хлоридов кальцием при 700–800 °С или цирконием при 650 °С. Получение щелочных металлов таким способом является крайне энергоемким и дорогостоящим.

Различия между металлами и сплавами

Принципиально четкой границы между металлами и их сплавами практически не существует, поскольку даже самые чистые, простые вещества имеют какую-то долю примесей. Так в чем же различие между ними? Практически все металлы, используемые в промышленности и в других отраслях народного хозяйства, используются в виде сплавов, полученных целенаправленно путем добавления к основному химическому элементу других компонентов.

Сплавы

Техника нуждается в разнообразных металлических материалах. При этом чистые химические элементы практически не применяются, поскольку они не обладают необходимыми для людей свойствами. Для своих нужд мы изобрели разные способы получения сплавов. Под этим термином подразумевается макроскопически однородный материал, который состоит из 2 или нескольких химических элементов. При этом в сплаве преобладают металлические компоненты. Это вещество имеет свою структуру. В сплавах различают следующие составляющие:

• основа, состоящая из одного или нескольких металлов;

• малые добавки модифицирующих и легирующих элементов;

• неудаленные примеси (технологические, природные, случайные).

Именно сплавы металлов являются основным конструкционным материалом. В технике их насчитывают более 5000.

Способы получения сплавов

Виды сплавов

Несмотря на такое многообразие сплавов, наибольшее значение для людей играют те, основу которых составляет железо и алюминий. Именно они чаще всего встречаются в повседневной жизни. Виды сплавов бывают различными. Причем их разделяют по нескольким критериям. Так применяются различные способы изготовления сплавов. По данному критерию их делят на:

• Литые, которые получены путем кристаллизации расплава смешанных компонентов.

• Порошковые, созданные при помощи прессования смеси порошков и последующего спекания при высокой температуре. Причем зачастую компонентами таких сплавов являются не только простые химические элементы, но и их различные соединения, такие как карбиды титана или вольфрама в твердых сплавах. Их добавление в тех или иных количествах изменяет свойства металлических материалов.

Способы получения сплавов в виде готового изделия или заготовки разделяют на:

• литейные (силумин, чугун);

• порошковые (титан, вольфрам).

Методы получения металлов

Типы сплавов

Способы получения металлов бывают разными, при этом и изготовленные благодаря им материалы обладают различными свойствами. В твердом агрегатном состоянии сплавы бывают:

• Гомогенными (однородными), состоящими из кристаллов одного типа. Их часто называют однофазными.

• Гетерогенными (неоднородными), именуемые многофазными. При их получении в качестве основы сплава берется твердый раствор (матричная фаза). Состав гетерогенных веществ такого типа зависит от состава его химических элементов. В таких сплавах могут быть следующие компоненты: твердые растворы внедрения и замещения, химические соединения (карбиды, интерметаллиды, нитриды), кристаллиты простых веществ.

Свойства сплавов

Вне зависимости от того, какие способы получения металлов и сплавов используются, их свойства полностью определяются кристаллической структурой фаз и микроструктурой этих материалов. У каждого из них они разные. Макроскопические свойства сплавов зависят от их микроструктуры. Они в любых случаях отличаются от характеристик их фаз, зависящих исключительно от кристаллической структуры материала. Макроскопическая однородность гетерогенных (многофазных) сплавов получается в результате равномерного распределения фаз в матрице металла.

Важнейшим свойством сплавов считается свариваемость. В остальном они идентичны металлам. Так, сплавы обладают тепло- и электропроводностью, пластичностью и отражательной способностью (блеском).

Виды сплавов

Разновидности сплавов

Различные способы получения сплавов позволили человеку изобрести большое количество металлических материалов, обладающих различными свойствами и характеристиками. По своему назначению они делятся на такие группы:

• Конструкционные (сталь, дюралюминий, чугун). К данной группе относятся и сплавы со специальными свойствами. Так они отличаются искробезопасностью или антифрикционными свойствами. К ним относятся латуни и бронзы.

• Для заливки подшипников (баббит).

• Для электронагревательной и измерительной аппаратуры (нихром, манганин).

• Для производства режущих инструментов (победит).

В производстве люди используют и другие виды металлических материалов, таких как легкоплавкие, жаропрочные, коррозионностойкие и аморфные сплавы. Также широкое применение находят магниты и термоэлектрики (телуриды и селениды висмута, свинца, сурьмы и другие).

Железные сплавы

Практически все выплавляемое на Земле железо направляется на производство простых и легированных сталей. Также оно используется в производстве чугуна. Сплавы железа получили свою популярность благодаря тому, что обладают полезными для человека свойствами. Они были получены в результате добавления к простому химическому элементу различных компонентов. Так, несмотря на то, что различные сплавы железа изготавливаются на основе одного вещества, стали и чугуны обладают различными свойствами. Благодаря этому они находят разные сферы применения. Большинство сталей тверже чугуна. Различные методы получения этих металлов позволяют получать разные сорта (марки) этих сплавов железа.

Цветные сплавы

Улучшение свойств сплавов

Благодаря сплавлению некоторых металлов и других химических элементов можно получить материалы с улучшенными характеристиками. Так, например, предел текучести чистого алюминия составляет 35 МПа. При получении сплава этого металла с медью (1,6%), цинком (5,6%), магнием (2,5%) этот показатель превышает 500 МПа.

Благодаря соединению в разных соотношениях различных химических веществ можно получить металлические материалы с улучшенными магнитными, термическими или электрическими свойствами. Главную роль в этом процессе играет структура сплава, представляющая собой распределение его кристаллов и тип связей между атомами.

Стали и чугуны

Эти сплавы получаются путем соединения железа и углерода (2%). При производстве легированных материалов к ним добавляются никель, хром, ванадий. Все обычные стали подразделяют на виды:

• малоуглеродистая (0,25 % углерода) используется для изготовления различных конструкций;

• высокоуглеродистая (более 0,55%) предназначена для производства режущих инструментов.

Различные марки легированных сталей применяются в машиностроении и другой продукции.

Сплав железа с углеродом, процентное содержание которого составляет 2-4%, называется чугуном. В состав этого материала входит и кремний. Из чугуна отливают различные изделия, обладающие хорошими механическими свойствами.

Общие способы получения металлов

Цветные металлы

Помимо железа, для изготовления различных металлических материалов используются и другие химические элементы. В результате их соединения получают цветные сплавы. В жизни людей наибольшее применение нашли материалы на основе:

• Меди, называемые латунями. Они содержат 5-45% цинка. Если его содержание составляет 5-20%, то латунь называется красной, а если 20-36%– желтой. Существуют сплавы меди с кремнием, оловом, бериллием, алюминием. Они называются бронзами. Имеется несколько видов таких сплавов.

• Свинца, представляющие собой обычный припой (третник). В этом сплаве на 1 часть данного химического вещества припадает 2 части олова. При производстве подшипников применяется баббит, который являет собой сплав свинца, олова, мышьяка и сурьмы.

• Алюминия, титана, магния и бериллия, представляющие собой легкие цветные сплавы, обладающие высокой прочностью и отличными механическими свойствами.

Способы получения

Основные способы получения металлов и сплавов:

• Литейный, при котором происходит затвердевание однородной смеси разных расплавленных компонентов. Для получения сплавов используют пирометаллургический и электрометаллургический методы получения металлов. При первом варианте для разогрева сырья используют тепловую энергию, полученную в процессе сгорания топлива. Пирометаллургическим методом получают стали в мартеновских печах и чугуны в домнах. При электрометаллургическом способе сырье нагревают в индукционных или дуговых электрических печах. При этом сырье расславляется очень быстро.

• Порошковый, при котором для изготовления сплава используются порошки его компонентов. Благодаря прессованию им придают определенную форму, а затем спекают в специальных печах.

Способы получения металлов и сплавов

Природные соединения металлов:

сильвинит КСl ∙ NaCl, каменная соль NaCl;

серный колчедан FeS2, киноварь HgS, цинковая обманка ZnS;

мел, мрамор, известняк СаСО3, магнезит MgCO3,

доломит CaCO3 ∙ MgCO3;

глауберова соль Na2SO4 ∙ 10 H2O, гипс CaSO4 ∙ 2Н2О;

магнитный железняк Fe3O4, красный железняк Fe2O3, бурый железняк Fe2O3 ∙ Н2О.

чилийская селитра NaNO3;

Минералы и горные породы, содержащие металлы и их соединения и пригодные для промышленного получения металлов, называются рудами.

Отрасль промышленности, которая занимается получением металлов из руд, называется металлургией.

Способы получения металлов из руд.

1. Электрометаллургический способ - это способы получения металлов с помощью электрического тока (электролиза). Этим методом получают алюминий, щелочные металлы, щелочноземельные металлы.

При этом подвергают электролизу расплавы оксидов, гидроксидов или хлоридов:

NaCl (расплав) D Na+ + Cl-

катод Na+ + e à Na0 ¦ 2

анод 2Cl - - 2e à Cl20 ¦ 1

суммарное уравнение: 2NaCl (распл.) – (э. ток)à 2Na + Cl2

Современный способ получения алюминия был изобретен в 1886 году. Он заключается в электролизе раствора оксида алюминия в расплавленном криолите. Расплавленный криолит растворяет Al2O3, как вода растворяет сахар.

Al2O3 (расплав) D Al3+ + AlO33–

катод Al3+ +3e à Al 0 ¦ 4

анод 4AlO33– –12 e à 2Al2O3 +3O2 ¦ 1

суммарное уравнение: 2Al2O3(распл.) – (э. ток)à 4Al + 3O2 .

2. Пирометаллургический способ - это восстановление металлов из их руд при высоких температурах с помощью восстановителей: неметаллических : кокс, оксид углерода (II), водород; металлических: алюминий, магний, кальций.

Алюмотермия :

Fe+32O3 +2Al = 2Fe0 + Al2O3

Получают железо, хром.

Восстановление оксидов металлов водородом (водородотермия ):

Cu +2O + H2 –(t)à Cu0 + H2O

Получают малоактивные металлы – медь, вольфрам.

Получение чугуна:

В вертикальной печи кокс окисляется до СО, затем происходит постепенное восстановление железа из руды:

3Fe2O3 + CO –(t)à 2Fe3O4 + CO2 ,

Fe3O4 + 4CO –(t)à 3FeО + 4CO2

FeO + CO –(t)à Fe+ CO2

Восстановление углём (коксом):

ZnO + C –(t)à Zn + CO

Получают цинк, никель.

3. Гидрометаллургический способ основан на растворении природного соединения с целью получения раствора соли этого металла и вытеснением данного металла более активным. Например, руда содержит оксид меди и ее растворяют в серной кислоте: CuO + H2SO4 = CuSO4 + H2O, затем проводят реакцию замещения:

CuSO4 + Fe = FeSO4 + Cu.

Таким способом получают серебро, цинк, молибден, золото, ванадий.

Если для восстановления требуется оксид металла, то в процессе переработки сначала получают оксид:

а) из сульфида – обжигом в кислороде: 2ZnS + 3O2 = 2ZnO + 2SO2

б) из карбоната – разложением: СаСО3 –(t)à СаО + СО2

Чугун и сталь.


Производство железа основано на карботермическом восстановлении оксидных металлсодержащих руд.

1) Сульфидные и другие руды вначале подвергают окислительному обжигу : 4FeS2 + 11O2 = 2Fe2O3 + 8SO2.

2)Восстановление оксидных руд осуществляется в доменных печах, при этом протекают следующие реакции:

3Fe2O3 + CO –(t)àCO2 + 2Fe3O4, Fe3O4 + CO–(t)àCO2 + 3FeO, FeO + CO–(t)àCO2 + Feили FeO + C –(t)àCO + Fe.


Полученное железо насыщено углеродом. 3)Затем происходит «выжигание» углерода в сталеплавильных или конверторных печах с образованием стали.

Читайте также: