Способность металлов и сплавов в расплавленном состоянии

Обновлено: 22.01.2025

Получение качественных отливок без раковин, трещин и других дефектов зависит от литейных свойств сплавов, которые проявляются при заполнении формы, кристаллизации и охлаждении отливок в форме. К основным литейным свойствам сплавов относят: жидкотекучесть, усадку сплавов, склонность к образованию трещин, газопоглощение, ликвацию.

Жидкотекучесть–способность расплавленного металла течь по каналам литейной формы, заполнять ее полости и четко воспроизводить контуры отливки.

При высокой жидкотекучести сплавы заполняют все элементы литейной формы.

Жидкотекучесть зависит от многих факторов: от температурного интервала кристаллизации, вязкости и поверхностного натяжения расплава, температуры заливки и формы, свойств формы и т.д.

Чистые металлы и сплавы, затвердевающие при постоянной температуре, обладают лучшей жидкотекучестью, чем сплавы, затвердевающие в интервале температур (твердые растворы). Чем выше вязкость, тем меньше жидкотекучесть. С увеличением поверхностного натяжения жидкотекучесть понижается. С повышением температуры заливки расплавленного металла и формы жидкотекучесть улучшается. Увеличение теплопроводности материала формы снижает жидкотекучесть. Так , песчаная форма отводит теплоту медленнее, и расплавленный металл заполняет ее лучше, чем металлическую форму. Наличие неметаллических включений снижает жидкотекучесть. Так же влияет химический состав сплава (с увеличением содержания серы, кислорода, хрома жидкотекучесть снижается; с увеличением содержания фосфора, кремния, алюминия, углерода жидкотекучесть увеличивается).

Усадка–свойство металлов и сплавов уменьшать объем при охлаждении в расплавленном состоянии, в процессе затвердевания и в затвердевшем состоянии при охлаждении до температуры окружающей среды. Изменение объема зависит от химического состава сплава, температуры заливки, конфигурации отливки.

Различают объемную и линейную усадку.

В результате объемной усадки появляются усадочные раковины и усадочная пористость в массивных частях отливки.

Для предупреждения образования усадочных раковин устанавливают прибыли – дополнительные резервуары с расплавленным металлом, а также наружные или внутренние холодильники.

Линейная усадка определяет размерную точность полученных отливок, поэтому она учитывается при разработке технологии литья и изготовления модельной оснастки.

Линейная усадка составляет: для серого чугуна – 0,8…1,3 %; для углеродистых сталей – 2…2,4 %; для алюминиевых сплавов – 0,9…1,45 %; для медных сплавов – 1,4…2,3 %.

Газопоглощение– способность литейных сплавов в расплавленном состоянии растворять водород, азот, кислород и другие газы. Степень растворимости газов зависит от состояния сплава: с повышением температуры твердого сплава увеличивается незначительно; возрастает при плавлении; резко повышается при перегреве расплава. При затвердевании и последующем охлаждении растворимость газов уменьшается, в результате их выделения в отливке могут образоваться газовые раковины и поры.

Растворимость газов зависит от химического состава сплава, температуры заливки, вязкости сплава и свойств литейной формы.

Ликвация –неоднородность химического состава сплава в различных частях отливки. Ликвация образуется в процессе затвердевания отливки, из-за различной растворимости отдельных компонентов сплава в его твердой и жидкой фазах. В сталях и чугунах заметно ликвируют сера, фосфор и углерод.

Различают ликвацию зональную,когда различные части отливки имеют различный химический состав, и дендритную, Когдахимическая неоднородность наблюдается в каждом зерне.

Литейные сплавы

1. Чугун является наиболее распространенным материалом для получения фасонных отливок. Чугунные отливки составляют около 80 % всех отливок.

Широкое распространение чугун получил благодаря хорошим технологическим свойствам и относительной дешевизне. Из серого чугуна получают самые дешевые отливки (в 1,5 раза дешевле, чем стальные, в несколько раз – чем из цветных металлов). Область применения чугунов расширяется вследствие непрерывного повышения его прочностных и технологических характеристик. Используют серые, высокопрочные, ковкие и легированные чугуны.

2. Сталь как литейный материал применяют для получения отливок деталей, которые наряду с высокой прочностью должны обладать хорошими пластическими свойствами. Чем ответственнее машина, тем более значительна доля стальных отливок, идущих на ее изготовление. Стальное литье составляет: в тепловозах – 40…50 % от массы машины; в энергетическом и тяжелом машиностроении (колеса гидравлических турбин с массой 85 тонн, иногда несколько сотен тонн) – до 60 %.

Стальные отливки после соответствующей термической обработки не уступают по механическим свойствам поковкам.

Используются: углеродистые стали 15Л…55Л; легированные стали 25ГСЛ, 30ХГСЛ, 110Г13Л; нержавеющие стали 10Х13Л, 12Х18Н9ТЛ и др.

Среди литейных материалов из сплавов цветных металлов широкое применение нашли медные и алюминиевые сплавы.

1. Медные сплавы – бронзы и латуни.

Латуни – наиболее распространенные медные сплавы. Для изготовления различной аппаратуры для морских судостроения, работающей при температуре 300 ?С, втулок и сепараторов подшипников, нажимных винтов и гаек прокатных станов, червячных винтов применяют сложнолегированные латуни. Обладают хорошей износостойкостью, антифрикционными свойствами, коррозионной стойкостью.

Из оловянных бронз (БрО3Ц7С5Н1) изготавливают арматуру, шестерни, подшипники, втулки.

Безоловянные бронзы по некоторым свойствам превосходят оловянные. Они обладают более высокими механическими свойствами, антифрикционными свойствами, коррозионной стойкостью. Однако литейные свойства их хуже. Применяют для изготовления гребных винтов крупных судов, тяжело нагруженных шестерен и зубчатых колес, корпусов насосов, деталей химической и пищевой промышленности.

2. Алюминиевые сплавы.

Отливки из алюминиевых сплавов составляют около 70 % цветного литья. Они обладают высокой удельной прочностью, высокими литейными свойствами, коррозионной стойкостью в атмосферных условиях.

Наиболее высокими литейными свойствами обладают сплавы системы алюминий – кремний (Al-Si) – силумины АЛ2, АЛ9. Они широко применяются в машиностроении, автомобильной и авиационной промышленности, электротехнической промышленности.

Также используются сплавы систем: алюминий – медь, алюминий – медь – кремний, алюминий – магний.

3. Магниевые сплавы обладают высокими механическими свойствами, но их литейный свойства невысоки. Сплавы системы магний – алюминий – цинк – марганец применяют в приборостроении, в авиационной промышленности, в текстильном машиностроении.

Литейные свойства сплавов

Литейные сплавы получают сплавлением двух или нескольких металлов и неметаллов. Такие сплавы должны обладать хорошей жидкотекучестью и теплопроводностью, повышенной пластичностью и др. Практическое значение литейных сплавов определяет то, что они по некоторым свойствам (прочности, твердости, способности воспроизводить очертания литейных форм, обрабатываемости режущим инструментом и др.) превосходят чистые металлы.

Важное место в литейном производстве занимают сплавы с особыми физическими свойствами (например, электропроводностью, магнитной проницаемостью и др.).

Сплавы в зависимости от химического состава отличаются друг от друга температурой плавления, химической активностью, вязкостью в расплавленном состоянии, прочностью, пластичностью и другими свойствами. Для производства фасонных отливок применяют серые, высокопрочные, ковкие и другие чугуны, углеродистые и легированные стали, сплавы алюминия, магния, меди, титана и др.

Не все сплавы в одинаковой степени пригодны для изготовления фасонных отливок. Из одних сплавов (серого чугуна, силумина) можно легко изготовить отливку сложной конфигурации, а из других (титановых сплавов, легированных сталей и др.) получение отливок сопряжено с определенными трудностями. Получение качественных отливок без раковин, трещин и других дефектов зависит от литейных свойств сплавов. К основным литейным свойствам сплавов относят жидкотекучесть, усадку сплавов, склонность к образованию трещин, газопоглощение и ликвацию.

Жидкотекучесть способность расплавленного металла течь по каналам литейной формы, заполнять ее полости и четко воспроизводить контуры отливки. При высокой жидкотекучести литейные сплавы заполняют все элементы литейной формы, при низкой — полость формы заполняется частично, в узких сечениях образуются недоливы. Жидкотекучесть сплавов определяют по специальным пробам. За меру жидкотекучести принимают длину заполненной спирали в литейной форме, и она зависит от многих факторов. Например, повышение температуры заливки увеличивает жидкотекучесть всех сплавов. Чем выше теплопроводность материала формы, тем быстрее отводится тепло от залитого металла, тем ниже жидкотекучесть.

Неметаллические включения снижают жидкотекучесть сплавов. На жидкотекучесть влияет химический состав сплавов: с увеличением в исходном материале содержания серы, кислорода и хрома жидкотекучесть снижается, а с повышением содержания фосфора, кремния, алюминия, углерода - увеличивается.

В зависимости от жидкотекучести сплава выбирают минимальную толщину стенок отливок. Например, при изготовлении мелких отливок из серого чугуна в песчаных формах минимальная толщина стенок составляет 3-4 мм, для средних — 8—10 мм, в для крупных — 12—15 мм; для стальных отливок, соответственно, 5—7, 10—12, 15—20 мм.

Усадка процесс уменьшения объема отливки при охлаждении, начиная с некоторой температуры жидкого металла в литейной форме до температуры окружающей среды. Усадка протекает в жидком состоянии, при затвердевании в процессе кристаллизации и в твердом состоянии. Различают линейную и объемную усадки, которые определяют в процентах. Величина усадки сплавов зависит от их химического состава, температуры заливки, конфигурации отливки и других факторов. Наименьшую линейную усадку имеет серый чугун (0,9—1,3 %) и алюминиевые сплавы — силумины (0,9—1,3 %). Стали и некоторые сплавы цветных металлов имеют усадку от 1,8 до 2,5 %. Изготовлять отливки из сплавов с повышенной усадкой сложно, так как в массивных частях отливки образуются усадочные раковины и усадочная пористость. Для предупреждения образования усадочных раковин предусматривают установку прибылей — дополнительных резервуаров с расплавленным металлом для питания отливок в процессе их затвердевания.

Напряжения в отливках возникают вследствие неравномерного их охлаждения и механического торможения усадки. Они характерны для отливок с различной толщиной стенок. При затвердевании температура отливки в массивных частях выше, чем снаружи или в тонких сечениях. Поэтому усадка в отдельных местах по величине различна, но так как части одной и той же отливки не могут изменять свои размеры независимо друг от друга, то в ней возникают напряжения, которые могут вызывать образование трещин или коробление. Для предупреждения образования больших напряжений и трещин необходимо в конструкции литой детали предусматривать равномерную толщину стенок, плавные переходы и устранять элементы, затрудняющие усадку сплава, а также использовать литейные формы и стержни повышенной податливости. Трещины довольно часто образуются в отливках из углеродистых и легированных сталей, сплавов магния и многих алюминиевых сплавов (подробнее о дефектах см. раздел 5).

Газопоглощениеспособность литейных сплавов в расплавленном состоянии растворять водород, азот, кислород и другие газы. Степень растворимости газов зависит от состояния сплава: с повышением температуры твердого сплава она увеличивается незначительно, несколько возрастает при плавлении и резко повышается при перегреве расплава. При затвердевании и последующем охлаждении растворимость газов уменьшается, и в результате их выделения в отливке могут образоваться газовые раковины и поры.

Растворимость газов зависит от химического состава сплава, температуры заливки, вязкости сплава и свойств литейной формы. Для уменьшения газонасыщенности сплавов применяют плавление в вакууме или в среде инертных газов и другие методы.

Ликвация неоднородность химического состава в различных частях отливки. Различают ликвации зональную и дендритную (внутризеренную).

Зональная ликвация — это в объеме всей затвердевшей литой детали. Дендритная химическая неоднородность - ликвация — химическая неоднородность в пределах одного зерна (дендрита) сплава. Ликвация зависит от химического состава сплава, конфигурации отливки, скорости охлаждения и других факторов.

ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ

Механические свойства характеризуют способность металлов и сплавов сопротивляться действию внешних сил - статистических и динамических, растягивающих, сжимающих, изгибающих, скручивающих, которые вызывают различные виды деформации.

Основными механическими свойствами металлов являются ударная, вязкость, прочность , твердость, пластичность, хрупкость , выносливость и др.

Механические свойства металлов устанавливаются при статистическом и динамическом нагружении.

Прочностью называется способность металлов сопротивляться разрушающему воздействию внешних сил. В зависимости от направления действия сил различают прочность на растяжение, сжатие, изгиб и др. Предел текучести - свойство металла сопротивляться деформации. Чем выше прочность металла, тем меньше размеры изделия и расход металла на изделие.

Твердостьхарактеризует свойство металла сопротивляться вдавливанию в него другого, более твердого тела, Металлы и сплавы, обладающие высокой твердостью, применяются для производства режущего инструмента и различных деталей, подверженных сильному износу.

Вязкость - свойство материла поглощать энергию внешних сил за счет пластической деформации.

Упругостьюназывается свойство металлов и сплавов восстанавливать свою форму и размеры после прекращения действия внешней силы. Упругость имеет важное значение для материалов, которые используются для изготовления пружин, рессор, мостовых ферм и др.

Пластичность характеризует свойство металлов изменять свою форму и размеры под действием внешних сил, не разрушаясь. Пластичность выражается относительным удлинением и сужением определяемыми при растяжении стандартных образцов.

Хрупкость - это свойство металлов и сплавов разрушаться под действием внешних сил без достаточной деформации.

Выносливостьюназывается свойство металла сопротивляться действию переменных по величине и направлению многократных нагрузок. Материалы, обладающие большой выносливостью применяются для изготовления коленчатых валов и шатунов двигателей , деталей паровых машин и др.

Кручение характеризует сопротивление металлов действию крутящего момента.

Технологические свойства определяют способность металлов и сплавов подвергаться различным видам обработки. Значение технологических свойств металлов при изучении влияния различных методов изготовления изделий на их свойства. Основными технологическими свойствами являются ковкость, свариваемость, прокаливаемость, жидко-текучесть и др.

Ковкость- способность металлов и сплавов подвергаться различным видам обработки давлением (прокатке, волочению, ковке, штамповке) без разрушения. Ковкость характеризуется пластичностью и сопротивлением деформации.

Свариваемость пособность металлов и сплавовобразовывать прочные сварные соединения, обладающие теми же свойствами, что свариваемые металлы. Хорошо свариваются малоуглеродистые и низколегированные стали, удовлетворительно - среднеуглеродистые и среднелегированные стали. Низкая свариваемость высоколегированных сталей и чугунов вызывает необходимость применения специальных сварочных материалов, предварительного подогрева, термообработки и т.д. , что повышает себестоимость процесса, снижает качество сварных соединений.

Прокаливаемость характеризуется способностью металла или сплава закаливаться на определенную глубину. При низкой прокаливаемости прочность материала по сечению неодинаковая, что приводит к снижению срока эксплуатации деталей машин и механизмов.

Жидко текучестьюназывается способностью металлов и сплавов в расплавленном состоянии хорошо заполнять полость литейной формы и точно воспроизводить очертания отливки. Высокая жидкотекучесть материала обеспечивает получение высококачественных и плотных отливок, снижение в них газовых и усадочных раковин и т.п.

Обрабатываемость резаниемопределяется способностью металлов и сплавов поддаваться обработке режущим инструментом. При хорошей обрабатываемости металла резанием режущий инструмент легко и быстро снимает припуск на обработку, полученная деталь имеет необходимую точность и чистоту поверхности, тогда как при плохой обрабатываемости резанием снижается стойкость инструмента, повышающая энергетические и трудовые затраты.

СТАЛИ

Все стали можно разделить на углеродистые и легированные. Углеродистые стали, являются основным конструкционным материалом, используемым в промышленности, эти стали проще в производстве и значительно дешевле легированных. Свойства углеродистых сталей определяется количеством углерода и содержанием примесей, которые взаимодействуют и с железом и с углеродом. Механические свойства углеродистых сталей зависят главным образом от содержания углерода. С увеличением содержания углерода увеличивается прочность и твердость, уменьшается пластичность. Кроме углерода в стали обязательно присутствуют другие элементы, наличие которых обусловлено разными причинами. Различают примеси - постоянные, скрытые, случайные и специальные (легированные).

Постоянные примеси - это кремний, марганец, фосфор и сера. Марганец, кремний вводят в процессе выплавки в сталь для раскисления. Сера - вредная примесь и попадает в сталь с исходным сырьём. Содержание серы в стали, допускается не более 0,06 %. Фосфор также попадает в сталь с чугуном, поэтому также является вредной примесью. Его содержание в сталях допускается до 0,05 %. Чем больше углерода в стали, тем сильнее влияние фосфора на её хрупкость. Содержание фосфора и серы в стали зависит от способа её выплавки. Кремний до 0.5 % , марганца до 0.8 % .

Скрытые примеси - это газы: азот, кислород, водород. Газы попадают в сталь при её выплавке, даже в очень маленьких количествах газы сильно ухудшают пластические свойства стали. Содержание их допускается до 0.001 %. В результате вакуумирования стали, их содержание уменьшается, и свойства стали усиливаются.

Случайные примеси - могут быть любые элементы металлов, которые попадают при выплавке стали. Содержание этих элементов ниже тех пределов, когда их вводят специально. Если они не влияют, на качество стали, то их не выводят из состава стали.

Специальные примеси - это элементы, специально вводимые в сталь для получения каких либо заданных свойств. Такие элементы называют легирующими. А стали их содержащие -легированными.

Сталь является легированной, если содержание легирующего элемента составляет 1 % и более.

Стали классифицируются по следующим признакам: по способу производства, степени раскисления, химическому составу, назначению, качеству и структуре.

Тема: "Свойства и способы испытаний металлов". Занятие 1.

Из всех известных в настоящее время элементов более половины являются металлами.

В твердом состоянии металлы обладают рядом характерных свойств:

- высокой тепло- и электропроводностью;

- положительным температурным коэффициентом электросопротивления; с повышением температуры электросопротивление чистых металлов возрастает; большое число металлов (~30) обладает сверхпроводимостью (у этих металлов при температуре, близкой к абсолютному нулю, электросопротивление падает скачкообразно, практически до нуля); эффект Мейснера , заключающемся в полном вытеснении магнитного поля из объёма сверхпроводника

- термоэлектронной эмиссией, т. е. способностью испускать электроны при нагреве;

- хорошей отражательной способностью, т. е. обладают специфическим металлическим блеском;

- повышенной способностью к пластической деформации.

Наличие этих свойств и характеризует так называемое металлическое состояние вещества.

Неметаллические вещества (металлоиды) не обладают металлическим блеском, характеризуются низкой тепло- и электропроводимостью и отрицательным коэффициентом электросопротивления, т. е. с повышением температуры электросопротивление уменьшается.

Свойства металлов можно подразделить на физические, химические, технологические, механические, эксплуатационные (служебные).

Под физическими свойствами подразумевают удельный вес, плотность, температуру плавления, тепло- и электропроводность, магнитные свойства, тепловое расширение.

Удельный вес — физическая величина, которая определяется как отношение веса вещества P к занимаемому им объёму V .

В отдельных случаях удельным весом называют безразмерное число, которое показывает, во сколько раз вещество тяжелее воды такого же объема при 4°C. (относительная плотность) .

Плотностью называется отношение массы однородного материала к единице его объема. Это свойство важно при использовании материалов в авиационной и ракетной технике, где создаваемые конструкции должны быть легкими и прочными.

Температура плавления — это такая температура, при которой металл переходит из твердого состояния в жидкое. Чем ниже температура плавления металла, тем легче протекают процессы его плавления, сварки и тем они дешевле.

Электропроводностью называется способность материала, хорошо и без потерь на выделение тепла, проводить электрический ток. Хорошей электропроводностью обладают металлы и их сплавы, особенно медь и алюминий. Большинство неметаллических материалов не способны проводить электрический ток, что также является важным свойством, используемом в электроизоляционных материалах.

Теплопроводность — это способность материала переносить теплоту от более нагретых частей тел к менее нагретым. Хорошей теплопроводностью характеризуются металлические материалы.

Магнитными свойствами т. е. способностью хорошо намагничиваться обладают только железо, никель, кобальт и их сплавы.

Коэффициенты линейного и объемного расширения характеризуют способность материала расширяться при нагревании. Это свойство важно учитывать при строительстве мостов, прокладке железнодорожных и трамвайных путей и т. д.

Химические свойства характеризуют склонность материалов к взаимодействию с различными веществами и связаны со способностью материалов противостоять вредному действию этих веществ. Способность металлов и сплавов сопротивляться действию различных агрессивных сред называется коррозионной стойкостью, а аналогичная способность неметаллических материалов — химической стойкостью.

К механическим свойствам металлов относятся: упругость, жесткость, пластичность, твердость, ударная вязкость, прочность и усталостная прочность.

Под упругостью подразумевают способность материалов внутренними силами восстанавливать первоначальную форму после снятия нагрузки, вызвавшей деформацию. Соответственно деформация называется упругой.

Жесткость — способность материала сопротивляться упругой деформации.

Пластичность — способность материала к остаточной (пластической) деформации, т. е. способность материала без разрушения получать большие остаточные деформации . К пластичным материалам относятся свинец, индий, алюминий, медь.

Прочность — способность материала сопротивляться возникновению и развитию пластической деформации.

Твердость — способность материала сопротивляться внедрению в него другого, более твердого тела; твердость представляет производную от жесткости и прочности материала.

Вязкость — способность материала противостоять разрушению при ударе.

Выносливость , или сопротивление усталости, — способность материала выдерживать длительное действие знакопеременных нагрузок. Усталостью металлов и сплавов называется явление разрушения в результате многократного повторно-переменного нагружения.

Под технологическими свойствами подразумевают способность металла обрабатываться с помощью различных технологических приемов (литья, штамповки, ковки, обработки резанием, сварки, термической обработки).

Литейные свойства характеризуются способностью металлов и сплавов в расплавленном состоянии хорошо заполнять полость литейной формы и точно воспроизводить ее очертания.

Ковкость — это способность металлов и сплавов подвергаться различным видам обработки давлением без разрушения.

Свариваемость определяется способностью материалов образовывать прочные сварные соединения.

Обрабатываемость резанием определяется способностью материалов поддаваться обработке режущим инструментом.

К эксплуатационным (служебным) свойствам относятся жаростойкость, жаропрочность, износостойкость, радиационная стойкость, коррозионная и химическая стойкость и др.

Жаростойкость характеризует способность металлического материала сопротивляться окислению в газовой среде при высокой температуре.

Жаропрочность характеризует способность материала сохранять механические свойства при высокой температуре.

Износостойкость — это способность материала сопротивляться разрушению его поверхностных слоев при трении.

Радиационная стойкость характеризует способность материала сопротивляться действию ядерного облучения.

2. Основные методы определения механических свойств металлов

Механические испытания могут быть статические и динамические. К статическим испытаниям относятся испытания на растяжение, изгиб, кручение, определение твердости. Статические испытания проводят под действием статической нагрузки, т. е. прилагаемая к образцу нагрузка возрастает медленно и плавно.

К динамическим испытаниям относятся испытания на ударную вязкость и усталость.

Читайте также: