Способность металла восстанавливать первоначальную форму и размеры после прекращения действия

Обновлено: 07.01.2025

Твердость Твердостью металла называется сопротивление, оказываемое металлом при вдавлении в него твердых предметов. Наиболее распространенными методами определения твердости являются методы Бринеля и Роквелла .

Упругость Упругостью металла называется свойство металла восстанавливать свою первоначальную форму и размеры после прекращения действия внешней силы, вызвавшей его деформацию. Брусок металла, подвергнутый действия растягивающего усилия, удлиняется. Если это усилие не превосходит, определенной для данного материала величины, брусок после снятия нагрузки получает свои первоначальные размеры. Величина этого усилия называется пределом упругости. Если нагрузка перейдет за предел упругости, то после снятия нагрузки форма бруска не восстанавливается, и брусок останется удлиненным; такая деформация называется пластической.

Прочность Прочностью называется свойство металла сопротивляться действию внешних разрушающих сил. В зависимости от характера этих внешних сил различают прочность на растяжение, на сжатие, на изгиб, на кручение и т.д. Условное напряжение, отвечающее наибольшей нагрузке , предшествующей разрушению образца, называется пределом прочности, обозначается σ b и выражается в кг/мм². Это условное напряжение вычисляют, определяя максимальное усилие P, которое может выдержать образец во время испытания, деля его на первоначальную площадь поперечного сечения образца F 0 .

Вязкость ударная Вязкость характеризуется сопротивлением удару. Удельная ударная вязкость (сопротивление удару) определяется количеством работы, необходимой для разрушения бруска посредством ударной изгибающей нагрузки на так называемом копре Шарпи, деленной на поперечное сечение образца, и выражается в кгм /см² . Хрупкость является обратным показателем вязкости. Она определяет, насколько быстро металл или сплав будет разрушаться под воздействием внешней силы.

Знание показателя вязкости и хрупкости необходимо для расчета поглощаемой энергии воздействия, которая приводит к деформации металлического образца. Р азличают следующие методы измерения и виды вязкости металлов: - статическая. Происходит медленное воздействие на материал до момента его разрушения; - циклическая . Образец подвергают многократным нагрузкам с одинаковым или изменяющимся показателем силы. При этом основной величиной циклической вязкости является количество работы, необходимой для разрушения образца; - ударная. Для ее расчета применяют маятниковый копер Шарпи. Заготовку крепят на нижнем основании, маятник с рубящим конусом находится в верхней точке. После его опускания происходит взаимодействие металла и рубящей части. Степень деформации характеризуется вязкостью образца.

Износостойкость Способность металла сопротивляться истиранию, разрушению поверхности или изменению размеров под действием трения называется износостойкостью.

Ковкость Способность металла без разрушения поддаваться обработке давлением (ковке, прокатке, прессовке и т.д.) называется его ковкостью. Ковкость металла зависит от его пластичности. Пластичные металлы обычно обладают и хорошей ковкостью.

Пластичность Одним из основных свойств металлов является их пластичность, т.е способность металла, подвергнутого нагрузке, деформироваться под действием внешних сил без разрушения и давать остаточную (сохраняющуюся после снятия нагрузки) деформацию. Пластичность иногда характеризуют величиной удлинения образца при растяжении. Отношение приращения длины образца при растяжении к его исходной длине, выражаемое в процентах, называется относительным удлинением и обозначается δ, %. Относительное удлинение определяется после разрыва образца и указывает способность металла удлиняться под действием растягивающих усилий.

Порог хладноломкости — температурный интервал изменения характера разрушения, является важным параметром конструкционной прочности . Чем ниже порог хладоломкости , тем менее чувствителен металл к концентраторам напряжений (резкие переходы, отверстия, риски), к скорости деформации. Хладноломкость — склонность металла к переходу в хрупкое состояние с понижением температуры. Хладоломкими являются железо, вольфрам, цинк и другие металлы, имеющие объемноцентрированную кубическую и гексагональную плотноупакованную кристаллическую решетку .

Выносливость и усталость Пример деформации из-за усталости металла При длительном приложении внешних сил в структуре образца выявляются деформации и дефекты. Они приводят к потере прочности образца и как следствие – к его разрушению. Это называется усталостью металла. Выносливость является обратной характеристикой.

Характер упаковки атомов и его влияние на плотность хорошо просматриваются на примере плотно упакованных решеток кристалла. Простейшим типом кристаллической решетки является кубическая , в которой расположение атомов образует пустотность , приблизительно равную 48%. Более плотной является гранецентрированная кубическая упаковка, дающая около 26% пустот. В такой решетке каждый атом имеет 12 ближайших соседей (4 по бокам и по 4 сверху и снизу. Гексагональная решетка также относится к плотнейшим упаковкам и отличается от гранецентрированной лишь способом наложения слоев.

а - кубическая, б- гранецентрированная кубическая, в - гексагональная

Высокая чистота поверхности , полученная в результате отделочных операций, значительно повышает усталостную прочность , так как чем меньше микронеровности, тем меньше возможность появления поверхностных трещин от усталости металла . Выносливость - свойство металла противостоять усталости.

Такое явление наступает в результате появления последовательных напряжений (внутренних или поверхностных) за определенный промежуток времени. Если структура не подвергается изменению – говорят о хорошем показателе выносливости. В противном случае происходит деформация. Выполняют следующие испытания образца на выносливость для того, чтобы узнать механические свойства металлов: - чистый изгиб. - поперечный изгиб. - изгиб в одной плоскости; - поперечный и продольный изгиб в одной плоскости; - неравномерное кручение с повторением цикла. Эти испытания позволяют определить показатель выносливости и рассчитать время наступления усталости детали.

Если переменные напряжения превышают, величину предела усталости металла, то через некоторое число циклов переменных нагружений , которое тем меньше, чем больше напряжения, развиваются трещины усталости и деталь разрушается. Ниже определенного значения переменного напряжения ( предела усталости ) металл не разрушается даже при очень большом числе циклов, так как это напряжение является асимптотой для кривой усталости.

По теме: методические разработки, презентации и конспекты

Открытый урок на тему : "Коррозия металлов и сплавов.Методы защиты от коррозии"

Заранее формируются бригады (по интересам) и каждой бригаде выдаётся задание. - Каждая бригада показывает свою презентацию, которую подготовил в домашних условиях, пользуясь материалами интернета. зна.

Методическая разработка открытого урока ПМ01."Подготовка и ведение технологического процесса производства цветных металлов и сплавов".Тема :" Производство глинозема". для студентов специальности 150402 "Металлургия цветных металлов"

В данной методической разработке рассмотрены цели урока: методическая, обучающая, воспитательная, развивающая и личностные. В пояснительной записке рассмотрена роль самостоятельной работы студентов. Н.

«ХИМИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ».

Формирование знаний о химических свойствах металлов.Развивают умения пользоваться опорными знаниями. Закрепляют умения и навыки выполнять химический эксперимент. Развивают логическое мышление, умеют а.


Практическая работа «Изучение типов кристаллических решеток и их влияние на структуру и свойства металлов и их сплавов»

Представлена методическая разработка практического занятия для учебной дисциплины ОП 08 «Материаловедение» по специальности среднего профессионального образования 22.02.06 "Сварочное производств.


Методическая разработка открытого урока по дисциплине Материаловедение на тему: "Черные, цветные металлы и сплавы на их основе"

В данной методической разработке открытого урока представлена методика преподавания темы «Черные, цветные металлы и сплавы на их основе» учебной дисциплины ОП.04 Материаловедение с п.


Презентация "Металлы и сплавы" по предмету "Материаловедение"

содержит материалы о строении, составе, классификации и применении черных металлов и сплавов.

В презентации размещены материалы о строении, свойствах и применении металлов.

Тест по материаловедению ПРУМ-18/з


Внимание! Все тесты в этом разделе разработаны пользователями сайта для собственного использования. Администрация сайта не проверяет возможные ошибки, которые могут встретиться в тестах.

Список вопросов теста

Вопрос 1

Для кристаллизации состояния вещества характерны (несколько вариантов ответа)

  • ковкость
  • наличие дальнего порядка в расположении частиц
  • анизотропия свойств
  • высокая электропроводность
  • наличие только ближнего порядка в расположении частиц
Вопрос 2

Способность материала сопротивляться внедрению другого белее твердого тела назывется

  • прочностью
  • упругостью
  • вязкостью
  • пластичностью
  • твердостью
Вопрос 3

Структура за эвтектического белого чугуна при комнатной температуре состоит

  • из ледебурита и первичного цементита
  • из перлита, ледебурита и вторичного цементита
  • из перлита и вторичного цементита
  • из перлита
Вопрос 4

Гомогенизированный отжиг сталей проводят при температурах

  • 160-180оС
  • 800-900оС
  • 750-780оС
  • 1100-1200оС
  • 660-680оС
Вопрос 5

Структура, получаемая после закалки и среднего отпуска

  • троостит отпуска
  • остаточный аустенит
  • сорбит отпуска
  • мартенсит отпуска
  • перлит
Вопрос 6

Основные преимущества титановых сплавов

  • высокие прочность и вязкость
  • высокая хладостойкость, хорошие антифрикционные свойства
  • высокая жаростойкость, хорошие литейные свойства
  • хорошая обрабатываемость резанием
  • высокая удельная прочность и коррозионная стойкость
Вопрос 7

Оптимальная температура закалки стали У13 составляет

Вопрос 8

Твердость низкоуглеродистой стали можно повысить

  • закалкой ТВЧ
  • отжигом
  • объемной закалкой
  • нормализацией
  • цементацией и закалкой ТВЧ
Вопрос 9

Стабилизатор вводят в состав пластмасс

  • для защиты полимера от старения
  • для уменьшения усадки
  • для формирования требуемой структуры материала
  • для получения требуемой степени кристалличности
  • для повышения прочности
Вопрос 10

Молекулы каучука имеют строение

  • густо сетчатое
  • редко сетчатое
  • линейные или слабо разветвленное
  • паркетное
  • лестничное
Вопрос 11

Основными порошка железа являются методами получения

  • размол в шаровых мельницах и электролиз расплава
  • метод испарения – конденсации и центробежное распыление
  • межкристаллитная коррозия и размол в вихревых мельницах
  • распыление расплава и восстановление оксидов железа
  • электролиз растворов и термодиффузионное насыщение
Вопрос 12

Изменение размеров спрессованного изделия после снятия внешних сил называется

  • упругим последствием
  • усадкой
  • относительным удлинением
  • ползучестью
Вопрос 13

Уменьшение объема пор при спекании прессовки, приводящее к уменьшению линейных размеров, называется

  • усадкой
  • относительным сужением
  • упругим последействием
  • ползучестью
Вопрос 14

Высококачественные стали и стали с особыми свойствами выплавляют в

  • мартеновских печах
  • доменных печах
  • кислородном конвертере
  • электропечах
Вопрос 15

Технологический процесс получения неразъемных соединений за счет межатомных и межмолекулярных сил связи называется

  • прессованием
  • литьем
  • ковкой
  • сваркой
Вопрос 16

Соединение металлических деталей в твердом состоянии с помощью присадочного сплава (металла) называются

  • термической обработкой
  • холодной сваркой
  • сваркой трением
  • обработкой металлов давлением
  • пайкой
Вопрос 17

Наиболее широко применяемым видом обработки металлов давлением является

  • ковка
  • прокатка
  • прессование
  • волочение
Вопрос 18

Технологический процесс выдавливания металла из замкнутого объема через выходное отверстие матрицы называется

  • прокаткой
  • прессованием
  • литьем
  • волочением
Вопрос 19

Технологический процесс протягивания металла через отверстие, размер которого меньше сечения исходной заготовки, называется

  • прокаткой
  • высадкой
  • волочением
  • прессованием
Вопрос 20

Процесс получения деталей требуемой геометрической формы, точности размеров за счет механического срезания с поверхностей заготовки режущим инструментом материала технологического припуска в виде стружки называется

  • прокатом
  • штамповкой
  • резанием
  • ковкой
Вопрос 21

Способность металлов передавать тепло от более нагретых к менее нагретым участкам тела называется

  • теплопроводностью
  • тепловым расширением
  • теплоемкостью
Вопрос 22

Способность металла при нагревании поглощать определенное количества тепла называется

  • тепловым расширением
  • теплоемкостью
  • теплопроводностью
Вопрос 23

Способность металлов увеличиваться в размерах при нагревании и уменьшаться при охлаждении называют

  • теплопроводностью
  • теплоемкостью
  • тепловым расширением
Вопрос 24

Свойство металла противостоять усталости называется

  • выносливостью
  • усталостью
  • упругостью
Вопрос 25

Способность материала восстанавливать первоначальную форму и размеры после прекращения действия нагрузки называется

  • упругостью
  • усталостью
  • выносливостью
Вопрос 26

Твердый раствор внедрения углерода в α – железе называется

  • феррит
  • цементит
  • аустенит
  • перлит
  • ледебурит
Вопрос 27

Твердый раствор внедрения углерода в γ – железе называется

  • перлит
  • аустенит
  • цементит
  • феррит
  • ледебурит
Вопрос 28

Химическое соединение железа с углеродом называется

  • феррит
  • перлит
  • цементит
  • аустенит;
  • ледебурит
Вопрос 29

Механическая смесь феррита и цементита, содержащая 0,8% углерода, называется

Тесты по материаловедению с ответами

А) нитрид бора, алмаз, кремень, электрокорунд, наждак.

Б) алмаз, электрокорунд, кремень, нитрид бора, наждак.

В) алмаз, нитрид бора, электрокорунд, наждак, кремень.

Г) алмаз, нитрид бора, электрокорунд, кремень, наждак.

12. По крупности абразивные материалы подразделяются на …

А) 4 группы и 28 номеров.

Б) 6 групп и 24 номера.

В) 2 группы и 10 номеров.

Г) 4 группы и 24 номера.

13. Абразивный инструмент принято маркировать

обозначениями, характеризующими:

А) абразивный материал, связку, твёрдость, прочность.

Б) зернистость, твёрдость, прочность, связку.

В) твёрдость, зернистость, прочность, ударную вязкость.

Г) абразивный материал, связку, зернистость, твёрдость.

14. На маркировке шлифовального круга

ПП450х50х127ЗАЗЭ50С1Б цифра 450 обозначает …

А) диаметр отверстия круга.

Б) зернистость круга.

Г) наружный диаметр круга.

15. Процесс термообработки, заключающийся в нагреве стали

до определённой температуры, выдержке и последующим

медленном охлаждении вместе с печью, называется …

16. Процесс термообработки, заключающийся в нагреве стали

до температур, превышающих фазовые превращения,

выдержке и последующим быстрым охлаждением называется …

17. Процесс термообработки, применяемый после закалки, и

заключающийся в нагреве стали, выдержке и

последующим охлаждением, называется …

18. Процесс насыщения поверхностного слоя одновременно

азотом и углеродом в расплавленных цианистых солях

называется …

19. Получение стали с высокой твёрдостью, прочностью,

износоустойчивостью достигается …

20. Неметаллический композиционный материал на основе

полимеров (смол) называется …

Сталью называется сплав железа с углеродом, в котором углерода содержится …

А) от 2,14% до 6,67%.

В каких печах сталь не производят?

В) кислородных конверторах.

Сталь, содержащая в своём составе углерод, марганец,

кремний, серу и фосфор называется …

Г) с особыми свойствами.

У углеродистой конструкционной стали обыкновенного

качества, поставляемой по химическому составу, впереди

маркировки ставится буква …

Г) буква не пишется.

У углеродистой конструкционной стали обыкновенного

качества, поставляемой по механическим свойствам, впереди

6. Углеродистые стали, содержащие до 0,25% углерода

называются …

Г) с повышенным содержанием углерода.

7. В углеродистых инструментальных сталях впереди маркировки

ставится буква …

8. Сталь, в состав которой вводят специальные элементы для

придания ей требуемых свойств, называется …

9. Сталь, в которой легирующих элементов содержится свыше

10%, называется …

10. У быстрорежущих сталей впереди маркировки ставится

У высококачественных сталей в конце маркировки

Коррозионностойкие (хромистые) стали содержат хрома

К сталям и сплавам с особыми физическими и химическими свойствами относится …

В маркировке легированных сталей буквой Г

обозначают …

15. В маркировке легированных сталей буквой Ф

16. Какой металл не является цветным?

17. Какой из перечисленных цветных металлов является

самым легкоплавким?

18. Какой из перечисленных цветных металлов имеет

наименьшую плотность?

19. Какой из перечисленных цветных металлов имеет

наилучшую электропроводность?

20. Сплав меди с цинком называется …

Процесс термообработки, заключающийся в нагреве

стали до определённой температуры, выдержке и

последующим медленном охлаждении вместе с печью,

называется …

Процесс термообработки, заключающийся в нагреве стали до

температур, превышающих фазовые превращения, выдержке

и последующим быстрым охлаждением называется …

стали до температуры 800-1150 0 , выдержке и

последующим охлаждением на воздухе, называется …

Процесс термообработки, применяемый после закалки,

и заключающийся в нагреве стали, выдержке и

5. Недостатком закалки в одной среде является …

А) неравномерное охлаждение и термическое напряжение.

Б) определение точного времени охлаждения.

В) большая продолжительность процесса.

Г) большие затраты на процесс.

6. Процесс насыщения углеродом поверхностного слоя стали при

нагреве в соответствующей среде называется …

7. Процесс насыщения поверхностного слоя одновременно азотом

и углеродом в расплавленных цианистых солях называется …

8. Процесс насыщения поверхностного слоя одновременно

азотом и углеродом в газовой среде называется …

9. Ковкий чугун получают после отжига …

А) белого чугуна.

Б) серого чугуна.

В) высокопрочного чугуна.

Г) специального чугуна.

Улучшение микроструктуры стали, её механических свойств и подготовка изделий к последующей термообработки достигается …

Устранение внутренних напряжений, уменьшение

хрупкости, понижение твёрдости, увеличение вязкости и

улучшение обрабатываемости достигается …

12. Получение стали с высокой твёрдостью, прочностью,

13. Уменьшение внутренних напряжений в деталях после

механической обработки, изменение структуры в целях

облегчения условий обработки, выравнивание

химического состава стали в слитках достигается …

14. Свойства металлов и сплавов, характеризующие способность подвергаться обработке в холодном и горячем состояниях, называются …

15.Свойства металлов и сплавов, характеризующие способность

сопротивляться воздействию внешних сил, называются …

16. Свойства металлов и сплавов, характеризующие способность

сопротивляться окислению, называются …

17. К физическим свойствам металлов и сплавов относится:

Г) ударная вязкость.

18. К механическим свойствам металлов и сплавов относится:

В) температура плавления.

19. К технологическим свойствам металлов и сплавов

Б) ударная вязкость.

20. К химическим свойствам металлов и сплавов относится:

Б) коррозионная стойкость.

Г) температура плавления.

1. Свойства металлов и сплавов, характеризующие

способность подвергаться обработке в холодном и горячем

состояниях, называются …

2. К механическим свойствам металлов и сплавов относится:

3. Масса вещества, заключённая в единице объёма называется …

В) тепловым расширением.

4. Способность металла принимать новую форму и размеры

под действием внешних сил, не разрушаясь, называется …

Б) ударной вязкостью.

5. К физическим свойствам металлов и сплавов относится:

6. Чугуном называется сплав железа с углеродом, где углерода

содержится …

Б) от 2,14% до 6,67%.

7. Чугун выплавляют в….

А) доменных печах.

Б) мартеновских печах.

8. Вредными примесями при производстве стали и чугуна

А) сера и фосфор.

Б) кремний и марганец.

В) углерод и кислород.

Г) все примеси вредные.

9. Сухой перегонкой угля при t=1000 0 С без доступа кислорода

Физические, химические, механические и технологические свойства металлов

Чтобы правильно выбрать материал для определённых целей, необходи­мо знать свойства металлов. Так, например, для изготовления режущих инструментов требуются прочные, твердые и износоустойчивые металлические мате­риалы.

Физические свойства металлов и сплавов определяются цве­том, удельным весом, плотностью, температурой плавления, тепло­вым расширением, тепло- и электропроводностью, а также магнит­ными свойствами.

Физические свойства металлов характеризуются определенными числовыми значениями, которые приведены в таблице 1.

Физические свойства некоторых металлов

Металл Символ Цвет Плотность, кг/м 3 Температура плавления, °С Удел. электро- сопротивление при 20 °С, 10 -6 Ом∙м
Алюминий Al Серебристо-белый 2700 658,7 0,029
Вольфрам W Блестящий белый 19300 3380 0,053
Железо Fe Серебристо-белый 7800 1539 0,100
Кобальт Co Серебристо-белый 8900 1490 0,062
Магний Mg Блестящий серебристо-белый 1700 650 0,047
Медь Cu Красный 8900 1083 0,017
Никель Ni Серебристо-белый с серова­тым оттенком 8900 1452 0,070
Олово Sn Серебристо-белый 7300 231,9 0,124
Свинец РЬ Синевато-серый 11400 327,4 0,220
Титан Ti Серебристо-белый 4500 1668 0,470
Хром Сr Блестящий серовато-белый 7100 1550 0,150
Цинк Zn Синевато-серый 7100 419,5 0,060

Отношение массы тела к его объему является постоянной вели­чиной для данного вещества и называется плотностью.

Плотность и удельный вес имеют большое значение при вы­боре металлических материалов для изготовления различных из­делий. Так, детали и конструкции в приборостроении, в авиа- и вагоностроении наряду с высокой прочностью должны обладать малой плотностью. Из металлов, наиболее широко применяемых в технике, наименьшую плотность имеют магний и алюминий.

Все металлы как тела кристаллического строения переходят при определенной температуре из твердого состояния в жидкое и наоборот. Температура, при которой металл переходит из твердого состояния в жидкое, называется температурой плавления.

Температура плавления является важным физическим свой­ством металлов. Знание температуры плавления металлов и спла­вов необходимо в металлургии, в литейном производстве, при горя­чей обработке металлов давлением, при сварке, пайке и других процессах, сопровождающихся нагреванием металлических мате­риалов.

Способность металлов передавать тепло­ту от более нагретых частей тела к менее нагретым называется теплопроводностью.

Среди металлических материалов лучшей теплопроводностью обладают серебро, медь, алюминий. Эти же металлы являются и лучшими проводниками электрического тока.

Теплопроводность металлов имеет большое практическое значе­ние. Из металлов и сплавов, обладающих высокой теплопроводно­стью, изготовляют детали машин, которые при работе поглощают или отдают теплоту.

Металлы и сплавы с низкой теплопроводностью для полного прогрева нуждаются в медленном и длительном нагревании. Быст­рый нагрев и быстрое охлаждение таких металлических материа­лов может вызвать образование трещин. Это необходимо учиты­вать при термической обработке, горячей обработке давлением, литье в металлические формы и т. д.

Различные вещества, в том числе и металлы, при нагревании расширяются, при охлаждении - сжима­ются. Неодинаковость величины теплового линейного расширения материалов характеризуется коэффициентом линейного расшире­ния α, который показывает, на какую долю первоначальной длины l0 при 0 °С удлинилось тело вследствие нагревания его на 1°С. Единица измерения α - °С -1 .

Тепловое расширение металлов необходимо учитывать при изго­товлении и эксплуатации точных измерительных приборов и инст­рументов, изготовлении литейных форм, горячей обработке метал­лов давлением и в других случаях, связанных с нагреванием и охлаждением.

Детали точных приборов и измерительных инструментов изго­тавливаются из материалов с малым коэффициентом линейного расширения, детали автоматически действующих механизмов, которые, удлиняясь, должны замыкать электрическую цепь, делают из мате­риалов с большим коэффициентом линейного расширения.

Электропроводностью называется способность металлов про­водить электрический ток.

Высокой электропроводностью обладают те металлы, которые хорошо, т. е. без потерь на тепло, проводят электрический ток.

Магнитные свойства. Некоторые металлы намагничиваются под действием магнитного поля. После удаления магнитного поля они обладают остаточным магнетизмом. Это явление впервые обнаружено на железе и получило название ферромагнетизма. Сильно выраженными магнитными свойствами обладают желе­зо, никель, кобальт и их сплавы. Перечисленные выше металличе­ские материалы называют ферромагнитными. У остальных металлов и сплавов магнитные свойства выражены крайне слабо, поэтому практически они считаются немагнитными.

Магнитные превращения не связаны с изменением кристаллической решетки или микроструктуры, они обусловлены изменениями в характере межэлектронного взаимодействия.

Магнитной проницаемостью называют способность металлов намагничиваться под действием магнитного поля.

При нагреве ферромагнитные свойства металла уменьшаются постепенно: вначале слабо, затем резко, и при определённой температуре (точка Кюри) исчезают (точка Кюри для железа - 768°С, у никеля - 360° С, у кобальта - 1130° С.). Выше этой температуры металлы становятся парамагнетиками (слабомагнитными материалами).

К химическим свойствам металлов следует отнести их спо­собность сопротивляться химическому или электрохимическому воздействию различных сред (коррозии) при нормальных и высо­ких температурах.

Рассмотренные выше физические свойства металлов обна­руживаются в явлениях, не сопровождающихся изменением вещест­ва. Так, например, нагрев металлов или прохождение через метал­лы электрического тока не сопровождается химическими измене­ниями их. При химических же явлениях происходит превращение металлов в другие вещества с иными свойствами.

Многие металлы подвергаются химическому изменению под воз­действием внешней среды, т. е. разрушаются от коррозии. Мерой коррозионной стойкости служит скорость распростране­ния коррозии металлов в данной среде и в данных условиях: чем эта скорость меньше, тем металл более коррозионностоек.

Высокой коррозионной стойкостью в атмосфере и в агрессивных средах обладают никель, титан и их сплавы. Титан и его сплавы по коррозионной стойкости приближаются к благородным ме­таллам.

Прочность — это способность материала сопротивляться дейст­вию внешних сил без разрушения.

Упругость — это способность материала восстанавливать свою первоначальную форму и размеры после прекращения действия внешних сил, вызвавших деформацию.

Пластичность — это способность материала изменять свою форму и размеры под действием внешних сил, не разрушаясь, и сохра­нять полученные деформации после прекращения действия внеш­них сил.

Механическими свойствами металлов называется совокуп­ность свойств, характеризующих способность металлических мате­риалов сопротивляться воздействию внешних усилий (нагрузок).

К механическим свойствам металлических материалов относят­ся: прочность, твердость, пластичность, упругость, вязкость, хруп­кость, усталость, ползучесть и износостойкость.

Твердость - способность металла оказывать сопротивление проникновению в него другого, более твердого тела.

Прочность - способность металла сопротивляться разрушению под действием внешних сил.

Для определения прочности образец металла установленной формы и размера испытывают на наибольшее разрушающее напряжение при растяжении, которое называют пределом прочности (временное сопротивление).

Пластичность - способность металла, не разрушаясь, изменять форму под нагрузкой и сохранять ее после прекращения действия нагрузки.

Вязкость – способность металла оказывать сопротивление быстровозрастающим (ударным) нагрузкам.

Технологические свойства металлов и сплавов характеризу­ют их способность поддаваться различным методам горячей и хо­лодной обработки. К технологическим свойствам металлов и спла­вов относятся литейные свойства, ковкость, свариваемость, обраба­тываемость режущими инструментами, прокаливаемость.

Обрабатываемость металлов характеризуется их механическими свойствами: твердостью, прочностью, пластичностью.

Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях.

Износостойкость – способность материала сопротивляться поверхностному разрушению под действием внешнего трения.

Коррозионная стойкость – способность материала сопротивляться действию агрессивных кислотных, щелочных сред.

Жаростойкость – это способность материала сопротивляться окислению в газовой среде при высокой температуре.

Жаропрочность – это способность материала сохранять свои свойства при высоких температурах.

Хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах. Хладоломкостью называется склонность металла к переходу в хрупкое состояние с понижением температуры. Хладоломкими являются железо, вольфрам, цинк и другие металлы, имеющие объемноцентрированную кубическую и гексагональную плотноупакованную кристаллическую решетку.

Красноломкасть - склонность металла к переходу в хрупкое состояние с повышением температуры.

При выборе материала для создания конструкции необходимо полностью учитывать механические, технологические и эксплуатационные свойства.

© 2014-2022 — Студопедия.Нет — Информационный студенческий ресурс. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав (0.023)

тесты по материаловедению
тест

С точки зрения их внутреннего строения, свойства металлов зависят от:

  1. химического состава
  2. типа кристаллической решетки.
  3. количества компонентов
  4. температуры

От степени переохлаждения металла при кристаллизации размер зерен зависит от:

  1. Чем больше степень переохлаждения, тем крупнее зерно.
  2. Размер зерна не зависит от степени переохлаждения.
  3. Чем больше степень переохлаждения, тем мельче зерно.
  4. Зависимость неоднозначна: с увеличением переохлаждения зерно одних металлов растет, других - уменьшается.

Процесс кристаллизации металла или сплава-это:

1. переход из твердого состояния в жидкое;

2. переход из твердого состояния в газообразное;

3. переход в аморфное состояние;

4. переход из жидкого состояния в твердое с образованием кристаллической структуры

Макроскопический анализ материалов позволяет определить:

  1. химический состав
  2. механические свойства
  3. форму и размер зерен
  4. макродефекты

Прочность – это способность материала:

  1. Сопротивляться действию внешних сил без разрушения
  2. Восстанавливать первоначальную форму после снятия нагрузки
  3. Сопротивляться проникновению более твердого материала
  4. способность материала изменять свою форму под действием внешней нагрузки и восстанавливать ее после снятия
  1. способность материала выдерживать нагрузки не разрушаясь
  2. способность материала изменять свою форму при приложении внешних нагрузок не разрушаясь
  3. способность материала изменять свою форму под действием внешней нагрузки и восстанавливать ее после снятия
  4. Сопротивляться проникновению более твердого материала

Мерой внутренних сил, возникающих в материале под влиянием внешних воздействий является:

Свойство материалов сопротивляться разрушению называется:

  1. плотность
  2. прочность
  3. деформирование
  4. упругость

Существование одного и того же химического элемента в виде двух и более простых веществ, различных по строению и свойствам называется:

  1. Аллотропия
  2. Пластичность
  3. Прочность
  4. Кристаллизация

Механическим свойством является:

  1. жидкотекучесть
  2. теплопроводность
  3. твердость
  4. свариваемость
  1. Температура, при которой металл полностью переходит из твердого состояния в жидкое.
  2. Способность металла, не разрушаясь, изменять форму под действием нагрузки и сохранять измененную форму после того, как нагрузка будет снята.
  3. Свойство металла, характеризующее способность его подвергаться обработке резанием.
  4. Способность металла или сплава в расплавленном состоянии заполнять литейную форму.
  1. Способность металла образовывать сварной шов, без трещин.
  2. Способность материала сопротивляться внедрению в него, более твердого тела
  3. Свойство тел проводить с той или иной скоростью тепло при нагревании.
  4. Уменьшение объема или линейных размеров расплавленного металла или сплава при его охлаждении до комнатной температуры.

Способность тел проводить тепло при нагревании — это:

  1. температура плавления;
  2. теплопроводность;
  3. теплоемкость;
  4. плотность.

Физическим свойством является:

  1. теплопроводность,
  2. кислотостойкость,
  3. окалиностойкость;
  4. жаростойкость

Испытаниями на растяжение определяют свойства металлов:

Испытаниями на стойкость против коррозии определяют свойства металлов:

  1. остается после снятия нагрузки;
    2. исчезает после снятия нагрузки;
    3. после снятия нагрузки появляется трещина;

4. пропорциональна приложенному напряжению

К химическим свойствам металлов относятся:

1. износостойкость;
2. твёрдость;
3. теплопроводность;
4. коррозионностойкость

К физическим свойствам металлов относятся:

1. износостойкость ;
2. твёрдость ;
3. теплопроводность;
4. коррозионностойкость.

1.способность материала сопротивляться действию внешних сил без разрушения

2. способность материала изменять свою форму и размеры под действием внешних сил

3. способность материала восстанавливать первоначальную форму и размер после прекращения действия внешних сил

4. способность материала оказывать сопротивление проникновению в него другого более твердого тела

Продуктами доменного процесса являются:

Химическое соединение Fe 3 С называется:

1. сплавы железа с углеродом, содержащие до 0,02 % углерода
2. сплавы железа с углеродом, содержащие от 0,02 % до 2.14 % углерода

3. сплавы железа с углеродом, содержащие от 2,14 до 6,67 % С
4. сплавы железа с углеродом, содержащие 0,8 % С

Чугунами называют:
1. сплавы железа с углеродом, содержащие до 0,02 % углерода
2. сплавы железа с углеродом, содержащие от 0,02 % до 2.14 % углерода
3. сплавы железа с углеродом, содержащие от 2,14 до 6,67 % С
4. сплавы железа с углеродом, содержащие 0,8 % С

Чугун, в котором весь углерод находится в виде химического соединения Fe 3 С, называется:
1. серым
2. ковким
3. белым
4. высокопрочным

Чугуны с пластинчатой формой графита называются:
1. серыми
2. ковкими
3. белыми
4. высокопрочными

Чугуны, в которых графит имеет шаровидную форму называются:
1. серыми
2. ковкими
3. белыми
4. высокопрочными

Чугуны, в которых графит имеет хлопьевидную форму называется:
1. серым
2. ковкими
3. белыми
4. высокопрочными

Целью легирования является:

1. создание сталей с особыми свойствами
2. получение гладкой поверхности
3. повышение пластических свойств
4. уменьшения поверхностных дефектов

Маркой углеродистой инструментальной стали является:

Сталь из чугуна можно получить, если:

1. увеличить содержание углерода;

2. уменьшить содержание углерода;

3. уменьшить содержание примесей;

4. увеличить содержание примесей;

5. добавить легирующие элементы.

Вредной примесью в чугунах является:

Железо и его сплавы принадлежит к:

  1. К тугоплавким металлам
  2. К черным металлам
  3. К диамагнетикам
  4. К металлам с высокой удельной прочностью.

В белом чугуне графит имеет форму:

  1. Хлопьевидная.
  2. В белом чугуне графита нет.
  3. Шаровидная.
  4. Пластинчатая.

Маркой высококачественной стали является:

Маркой углеродистой качественной конструкционной стали является:

Маркой полуспокойной стали является:

Качество стали зависит от содержания:

1. серы и фосфора

2.фосфора и марганца

3.серы и кремния

4.кремния и марганца

СЧ15 – одна из марок серого чугуна с пластинчатым графитом. Цифра 15 означает:

1. содержание углерода в процента

2. относительное удлинение

3. предел прочности при растяжении

4. твёрдость по Бринеллю

Основным легирующим элементом быстрорежущей стали является:

1. хром
2. кобальт
3. кремний
4. вольфрам

Количество углерода в Стали 20 равно:

Латуни и бронзы – это сплавы на основе:

Маркой, обозначающей латунь, является:

Маркой литейной оловянной бронзы является:

Алюминиевый сплав дюралюмин, обозначается:

Охлаждение заготовок совершается в машинном масле при…

Процесс насыщения поверхности металлического изделия углеродом- это…

Сущностью химико-термической обработки стальных изделий является:

1. изменение кристаллической структуры детали;

2. изменение кристаллической структуры поверхностного слоя;

3. изменение химического состава поверхностного слоя;

4. окисление поверхностного слоя;

Добавки, которые делают пластмассу эластичным называются:

Добавки, которые способствуют предотвращению старения пластмассы называются:

Читайте также: