Способность металла проводить электрический ток

Обновлено: 07.01.2025

Электрические свойства металлов и их сплавов

Проводниками электрического тока могут быть твердые тела, жидкости и даже газы. Твердыми проводниками являются металлы, металлические сплавы и некоторые модификации углерода. К жидким проводникам относят расплавленные металлы и электролиты. Как правило, температура плавления металлов высока, за исключением ртути, у которой она составляет −39 °С. Температуру плавления, близкую к комнатной температуре (29,8 °С), имеет галлий. Другие металлы являются жидкими проводниками лишь при повышенных или высоких температурах. Механизм прохождения тока по металлам в твердом и жидком состояниях обусловлен движением свободных электронов, вследствие чего их называют проводниками с электронной электропроводностью.

К основным характеристикам проводников относят их удельное электрическое сопротивление и температурный коэффициент сопротивления.

Удельное электрическое сопротивление проводника — сопротивление провода длиной 1 м при площади поперечного сечения 1 мм2 и температуре 20 °С.

Температурный коэффициент сопротивления — коэффициент, равный относительному изменению сопротивления при изменении температуры на 1 градус.

2.2. Черные металлы

При изготовлении и ремонте электрического оборудования широко используют черные и цветные металлы и различные сплавы. Черные металлы (чугун, сталь) применяют как конструкционные материалы для станин электрических машин, баков, кожухов трансформаторов, оснований, цоколей, электрических аппаратов и других узлов и деталей.

Специальные электротехнические стали необходимы для изготовления магнитопроводов, трансформаторов и сердечников электрических машин и аппаратов. Промышленность выпускает ряд марок листовой электротехнической стали, различающихся магнитными и электрическими свойствами. Свойства стали можно менять за счет изменения содержания основного легирующего элемента — кремния, а также применением специальных технологических приемов.

Обычно сталь с низким содержанием кремния имеет меньшую магнитную проницаемость и большие удельные потери. Но она отличается большей величиной магнитного насыщения.

Стали с низким содержанием кремния выгодно применять для работы на постоянном токе и переменном токе низкой частоты при высоких значениях индукции.

Стали с высоким содержанием кремния применяются в тех случаях, когда важно иметь малые потери гистерезиса и вихревых токов или высокую магнитную проницаемость в слабых и средних полях.

Параметры тонкой электротехнической стали приведены в табл. 2.1.

Таблица 2.1 Свойства тонкой электротехнической стали

Магнитная индукция, кГс, при напряженности магнитного поля, а/см, не менее

полные удельные потери, вт/кг, не более

Сердечники полюсов и статорных пакетов для электрических машин малой мощности

Якоря электродвигателей постоянного тока

Турбо-гидрогенераторы малой мощности, крупные многополюсные и быстроходные электродвигатели

Примечание. Полные удельные потери приведены для максимальных значений индукции 10 и 15 кГс и частоте 50 Гц.

Широкое распространение в технике получили холоднокатаные текстурованные стали, обладающие в направлении проката более высокой проницаемостью в слабых полях и более низкими потерями по сравнению с обычными горячекатаными сталями.

Листовые электротехнические стали очень чувствительны к деформации. Резка, штамповка и другие технологические операции значительно ухудшают магнитные свойства стали вблизи мест наклепа. Поэтому изделия с небольшой шириной пластин (меньше 30–40 мм) должны после штамповки или резки отжигаться в неокисляющей среде (или, по крайней мере, без доступа воздуха) по режиму: отжиг 2 часа при 750–800 °С с последующим медленным охлаждением (50–60 °С/ч) до 400 °С.

2.3. Сплавы, используемые в магнитопроводах

Сплавы высокой магнитной проницаемости, или пермаллои, обладают магнитной проницаемостью в 10–100 раз более высокой, чем листовая электротехническая сталь. Эти сплавы намагничиваются до насыщения в малых магнитных полях.

В результате деформации магнитные свойства этих сплавов могут ухудшаться в десятки раз. Поэтому пермаллои обычно поставляются заказчику в виде лент непосредственно после холодной прокатки. После изготовления деталей они должны быть подвергнуты отжигу, в результате которого могут быть получены требуемые магнитные свойства.

Материалы магнитопроводов рассмотрены в табл. 2.2.

Таблица 2.2 Материалы магнитопроводов, из свойства и области использования

Основные свойства

Сплавы с повышенной магнитной проницаемостью, обладающие высоким значением индукции насыщения

Сердечники силовых трансформаторов, дросселей, реле и деталей магнитных цепей, работающих при повышенных значениях индукции без подмагничивания или с небольшим подмагничиванием

Сплавы с повышенной магнитной проницаемостью, обладающие прямоугольной петлей гистерезиса

Сердечники магнитных усилителей, коммутирующих дросселей, выпрямительных установок, элементов вычислительных и счетно-решающих машин и т. д.

Сплав с повышенной магнитной проницаемостью и высоким удельным электрическим сопротивлением

Сердечники импульсных трансформаторов и аппаратуры связи звуковых и высоких частот, работающие без подмагничивания или с небольшим подмагничиванием

Сплавы с высокой магнитной проницаемостью в слабых полях

Сердечники малогабаритных трансформаторов, дросселей, реле, магнитные экраны толщиной 0,02 мм, сердечники импульсных трансформаторов, магнитных усилителей и бесконтактных реле

2.4. Металлопрокат

Параметры стали угловой равнополочной приведены в табл. 2.3.

Таблица 2.3 Сталь угловая равнополочная

номер профиля

Ширина полки, мм

Масса 1 м длины профиля, кг, при толщине полки, мм

Параметры стали швеллерной приведены в табл. 2.4.

Таблица 2.4 Сталь швеллерная

номер швеллера

Масса 1 м, кг

высота швеллера

Ширина полки

толщина стенки

толщина полки

Параметры стали листовой тонкой приведены в табл. 2.5.

Таблица 2.5 Сталь листовая тонкая

стандартные размеры

толщина листа, мм

Ширина листа, мм

Строительная длина, м

Параметры стальной полосы приведены в табл. 2.6.

Таблица 2.6 Полоса стальная

Параметры стальной ленты приведены в табл. 2.7.

Таблица 2.7 Лента стальная

холоднокатаная

Горячекатаная

Параметры стальной проволоки приведены в табл. 2.8.

Таблица 2.8 Проволока стальная

диаметр проволоки, мм

Площадь сечения, мм2

Параметры стали листовой горячекатаной приведены в табл. 2.9.

Таблица 2.9 Сталь листовая горячекатаная

длина листа при ширине, мм

Параметры стальных труб приведены в табл. 2.10.

Таблица 2.10 Трубы стальные

условный проход, мм

резьба, дюйм

водогазопроводные

Электросварные прямошовные

наружный диаметр, мм

обыкновенные

под накатку резьбы

толщина стенки, мм

Масса 1м, кг

2.5. Проводниковые материалы

Классификация

К проводниковым материалам в электротехнике относятся металлы, их сплавы, контактные металлокерамические композиции и электротехнический уголь.

Металлические вещества являются проводниками первого рода и характеризуются электронной проводимостью; основной параметр для них — удельное электрическое сопротивление в функции температуры.

Диапазон удельных сопротивлений металлических проводников составляет от 0,016 мкОм·м для серебра до 1,6 мкОм·м для жаростойких железохромоалюминиевых сплавов.

По роду применения проводниковые материалы подразделяются на группы:

- проводники с высокой проводимостью — металлы для проводов линий электропередач и для изготовления кабелей, обмоточных и монтажных проводов для обмоток трансформаторов, электрических машин, аппаратуры, катушек индуктивности и пр.;

- конструкционные материалы — бронзы, латуни, алюминиевые сплавы и т. д., применяемые для изготовления различных токоведущих частей;

- сплавы высокого сопротивления — предназначаемые для изготовления дополнительных сопротивлений к измерительным приборам, образцовых сопротивлений и магазинов сопротивлений, реостатов и элементов нагревательных приборов, а также сплавы для термопар, компенсационных проводов и т. п.;

- контактные материалы — применяемые для пар неразъемных, разрывных и скользящих контактов;

- материалы для пайки всех видов проводниковых материалов. Кроме чисто электротехнических свойств, для проведения необходимой технологической обработки и обеспечения заданных сроков службы в эксплуатации проводниковые материалы должны обладать достаточной нагревостойкостью, механической прочностью и пластичностью.

Чистая медь по электрической проводимости занимает второе место после серебра, обладающего из всех известных проводников наивысшей проводимостью. Высокая проводимость и стойкость к атмосферной коррозии в сочетании с высокой пластичностью делают медь основным материалом для проводов.

На воздухе медные провода окисляются медленно, покрываясь тонким слоем СuO, препятствующим дальнейшему окислению меди. Коррозию меди вызывают SО2, Н2S, NН3, NO, пары HNO3 и другие реактивы.

Проводниковую медь получают из слитков путем гальванической очистки в электролитических ваннах. Примеси даже в ничтожных количествах резко cнижают электропроводность меди, поэтому в качестве электротехнической меди применяют лишь две ее марки: М0 и М1.

Почти все изделия из проводниковой меди изготавливают путем проката, прессования и волочения. Так, волочением могут быть изготовлены провода диаметром до 0,005 мм, ленты толщиной до 0,1 мм и медная фольга толщиной до 0,008 мм.

Проводниковая медь применяется как в отожженном после холодной обработки виде (мягкая медь марки ММ), так и без отжига (твердая медь марки МТ).

При температурах термообработки выше 900 °С вследствие интенсивного роста зерна механические свойства меди резко ухудшаются.

В целях повышения предела ползучести и термической устойчивости медь легируют серебром в пределах 0,07–0,15 %, а также магнием, кадмием, цирконием, другими элементами.

Медь с присадкой серебра применяется для обмоток быстроходных и нагревостойких машин большой мощности, а медь, легированная различными элементами, используется в коллекторах и контактных кольцах сильно нагруженных машин.

Сплавы меди с цинком (от 5 до 45 %), называемые латунями, широко используются в электротехнике. Латуни, содержащие до 39 % цинка, имеют однофазную структуру твердого раствора, обладают наибольшей пластичностью. Из них изготавливают детали горячей или холодной прокаткой и волочением: листы, ленты, проволоку. Без нагрева из листовой латуни методом глубокой вытяжки и штамповкой можно изготовить детали сложной конфигурации.

Латуни с содержанием цинка свыше 39 % называют α+β-латунями или

двухфазными и применяют, главным образом, для фасонных отливок.

Двухфазные латуни являются более твердыми и хрупкими и обрабатываются давлением только в горячем состоянии.

Присадка к латуням олова, никеля и марганца повышает механические свойства и антикоррозионную устойчивость, а добавки алюминия в композиции с железом, никелем и марганцем сообщают латуням, кроме улучшения механических свойств и коррозионной стойкости, высокую твердость. Однако присутствие в латунях алюминия затрудняет пайку, а проведение пайки мягкими припоями становится практически невозможным.

- латуни марок Л68 и Л63 вследствие высокой пластичности хорошо штампуются и допускают гибку, легко паяются всеми видами припоев. В электромашиностроении широко используются для различных токоведущих частей;

- латунь ЛА67-2,5 пригодна для литых токоведущих деталей повышенной механической прочности и твердости, не требующих пайки мягкими припоями;

- латуни ЛК80-ЗЛ и ЛС59-1Л широко используется для литых токоведущих деталей электрической аппаратуры, для щеткодержателей и для заливки роторов асинхронных двигателей. Хорошо воспринимают пайку различными припоями.

Бронзы относятся к двойным или многокомпонентным сплавам на основе меди, где основным легирующим компонентом является Sn, Be, Mn, Al и т. п. Необходимость легирования вызвана недостаточной механической прочностью и термической устойчивостью чистой меди.

Общая номенклатура бронз весьма обширна, но высокой электропроводностью обладают лишь немногие марки бронз:

- кадмиевая бронза относится к наиболее распространенным проводниковым бронзам. Из всех марок кадмиевая бронза обладает наивысшей электрической проводимостью. Вследствие повышенного сопротивления истиранию и более высокой нагревостойкости эта бронза широко применяется для изготовления троллейных проводов и коллекторных пластин;

- бериллиевая бронза относится к сплавам, приобретающим прочность в результате старения. Она обладает высокими упругими свойствами, устойчивыми при нагревании до 250 °С, и электрической проводимостью в 2–2,5 раза большей, чем проводимость других марок бронз общего назначения. Эта бронза нашла широкое применение для изготовления различных пружинных деталей, выполняющих одновременно и роль проводника тока, например токоведущих пружин, отдельных видов щеткодержателей, скользящих контактов в различных приборах, штепсельных разъемов;

- фосфористая бронза обладает высокой прочностью и хорошими пружинными свойствами, из-за малой электропроводности применяется для изготовления пружинных деталей с низкими плотностями тока.

Литые токоведущие детали изготовляются из различных марок машиностроительных литьевых бронз с проводимостью в пределах 8–15 % проводимости чистой меди. Характерной особенностью бронз является малая усадка по сравнению с чугуном и сталью и высокие литейные свойства, поэтому они применяются для отливки различных токоведущих деталей сложной конфигурации, предназначенных для электрических машин и аппаратов.

Все марки литьевых бронз можно подразделить на оловянные и безоловянные.

Характерными свойствами чистого алюминия являются:

- малый удельный вес;

- низкая температура плавления;

- высокая тепловая и электрическая проводимость;

- очень большая скрытая теплота плавления;

- прочная, хотя и очень тонкая пленка оксида, покрывающая поверхность металла и защищающая его от проникновения кислорода внутрь.

Малая плотность делает алюминий основой легких конструкционных материалов; большая пластичность позволяет применять к алюминию все виды обработки давлением и получать из него листы, прутки, проволоку, трубы, тончайшую фольгу, штампованные детали с глубокой вытяжкой и др.

Хорошая электрическая проводимость обеспечивает широкое применение алюминия в электротехнике. Так как плотность алюминия в 3,3 раза ниже, а удельное сопротивление лишь в 1,7 раза выше, чем у меди, то алюминий на единицу массы имеет вдвое более высокую проводимость, чем медь.

Прочная пленка оксида быстро покрывает свежий срез металла уже при комнатной температуре, обеспечивая алюминию высокую устойчивость против коррозии в атмосферных условиях.

Сернистый газ, сероводород, аммиак и другие газы, находящиеся в воздухе промышленных районов, не оказывают заметного влияния на скорость коррозии алюминия. Действие водяного пара на алюминий также незначительно. В контакте с большинством металлов и сплавов, стоящими выше в ряду электрохимических потенциалов, алюминий служит анодом и, следовательно, коррозия его в электролитах будет прогрессировать.

Чтобы избежать образования гальванопар во влажной атмосфере, место соединения алюминия с другими металлами герметизируется лакировкой или другим способом.

Длительные испытания проводов из алюминия показали, что они в отношении устойчивости против коррозии не уступают медным.

Основные характеристики проводниковых материалов приведены в

табл. 2.11.

Таблица 2.11 Основные характеристики проводниковых материалов

Электропроводность металлов

Электропроводность металлов

Электропроводность металлов и сплавов – физическое свойство, которое учитывается при производстве разных видов изделий. Например, для изготовления электрических кабелей, микросхем используют металлы с высокими показателями электропроводности.

Данный параметр зависит от факторов окружающей среды: температуры, давления, агрегатного состояния, наличия магнитных полей и т. д. Если говорить о чистых металлах и влиянии температуры на их электропроводность, то с ростом она падает. Подробнее о том, что собой представляет электропроводность металлов, вы узнаете из нашего материала.

Природа электропроводности металлов

Электропроводностью называют способность тела, вещества проводить ток. Кроме того, этим термином обозначается физическая величина, которая численно характеризует данную способность. Электропроводность металла определяется числом свободных ионов в проводнике – их движение и является электрическим током. Данный показатель исчисляется в сименсах, а в международной системе единиц для его обозначения используется буква «S».

В зависимости от того, какой электропроводностью обладают металлы и иные вещества, среди них выделяют проводники, диэлектрики и полупроводники. Правда, между данными группами практически не существует четкого разграничения.

Чем обусловлена высокая электропроводность металлов-проводников? Они имеют большое количество свободных ионов. Среди веществ этой группы выделяют два рода, исходя из физической природы протекания тока. К первому относятся металлы с электронной проводимостью, по которым ток проходит благодаря движению свободных электронов.

Ко второму причисляют растворы кислот, щелочей, солей или электролиты, имеющие ионную проводимость. Иными словами, здесь интересующий нас процесс связан с движением положительных и отрицательных ионов. Уровень электропроводности проводников превышает 106(Ом·м)-1.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Диэлектрики обладают малым числом свободных ионов, поэтому отличаются низкой электропроводностью, практически не проводят ток. Такими материалами являются дерево, смолы, пластмассы, стекло, пр. Для них данный показатель составляет менее 106(Ом·м)-1.

По своим проводящим свойствам полупроводники занимают промежуточное положение между материалами описанных выше групп. К ним относятся германий, кремний, селен, прочие соединения, получаемые искусственно.

Природа электропроводности металлов

Существует зависимость электропроводности металлов и иных веществ от температуры, но она является индивидуальной для каждого материала. Повышение степени нагрева металлов приводит к сокращению времени свободного пробега электронов. Увеличение температуры влечет за собой возрастание тепловых колебаний кристаллической решетки, на которой рассеиваются электроны, что вызывает уменьшение электропроводности.

Полупроводникам свойственна другая зависимость электропроводности металлов от температуры: ее повышение провоцирует рост электропроводности, поскольку увеличивается число электронов проводимости и положительных носителей заряда. У диэлектриков электропроводность тоже может возрастать, однако для этого требуется очень высокое электрическое напряжение.

Металлы способны проводить ток, поскольку воздействие электромагнитного поля вызывает потерю связи между электроном и атомом из-за высокой степени ускорения.

Электрическое сопротивление металлов

Электрическое сопротивление является частью закона Ома и исчисляется в омах (Ом). Нужно понимать, что электрическое и удельное сопротивление являются разными явлениями. Если первое представляет собой свойство объекта, то второе характеризует материал.

Так, электрическое сопротивление резистора зависит от формы и удельного сопротивления материала, использованного для изготовления данного элемента электрической цепи.

Электрическое сопротивление металлов

Допустим, проволочный резистор состоит из длинной тонкой проволоки и обладает более высоким сопротивлением, чем аналогичный элемент, но выполненный из короткой и толстой проволоки. При этом оба они сделаны из одного металла.

Если сравнить два резистора из проволоки одинаковой длины и диаметра, то большим электрическим сопротивлением будет обладать тот, который состоит из материала с высоким удельным сопротивлением. А его аналогу из материала с низким удельным сопротивлением будет свойственно меньшее электрическое сопротивление.

В этом случае работает тот же принцип, что и в гидравлической системе, прокачивающей воду по трубам:

  • Чем больше длина трубы и меньше ее толщина, тем с более высоким сопротивлением сталкивается жидкость.
  • Вода будет испытывать на себе меньшее сопротивление в пустой трубе, чем в заполненной песком.

Под удельным сопротивлением понимают способность материала препятствовать прохождению электрического тока. В физике существует и обратная величина, известная как проводимость. Она выглядит таким образом:

Σ = 1/ρ, где ρ – удельное сопротивление вещества.

Электропроводность металлов и других веществ зависит от свойств носителей зарядов. В металлах присутствуют свободные электроны – на внешней оболочке их число доходит до трех. Во время химических реакций с элементами из правой части таблицы Менделеева атом металла отдает их. С электропроводностью чистых металлов все несколько иначе. В их кристаллической структуре эти наружные электроны общие и переносят заряд под действием электрического поля.

В случае с растворами в качестве носителей заряда выступают ионы.

Степень электропроводности разных металлов и сплавов

Развитием электронной теории электропроводности металлов занимался немецкий физик Пауль Друде. Именно благодаря его исследованиям стало известно о сопротивлении, наблюдаемом при прохождении электрического тока через проводник. В результате удалось разделить вещества на группы, исходя из степени их проводимости.

Степень электропроводности разных металлов и сплавов

Данная информация необходима, например, чтобы выбрать наиболее подходящий металл для производства кабеля, обладающего определенным набором свойств. Ошибка в этом случае чревата перегревом под действием тока избыточного напряжения и последующим возгоранием.

Серебро – это металл, обладающий самой высокой электропроводностью. При +20 °C этот показатель равен 63,3×104 см-1. Тем не менее, производство серебряной проводки является нерентабельным, поскольку речь идет о достаточно редком металле. В большинстве случаев он идет на изготовление ювелирных изделий, украшений, монет.

Среди неблагородных цветных металлов самая высокая электропроводность характеризует медь – она составляет 57×104 см-1 при +20 °C. Помимо этого, медь хорошо справляется с постоянными электрическими нагрузками, долговечна, надежна, имеет высокую температуру плавления, поэтому может долго работать в нагретом состоянии. Все названные свойства позволяют активно применять данный металл для бытовых целей и на производстве.

Не реже меди используется алюминий, ведь по электропроводности он уступает только серебру, меди и золоту. Его температура плавления практически в два раза ниже, чем у меди, из-за чего алюминий не может выдерживать предельные нагрузки. По этой причине его применяют в сетях с невысоким напряжением. Узнать электропроводность остальных металлов можно в соответствующей таблице.

По проводимости любой сплав значительно уступает чистому металлу, что объясняется слиянием структурной сетки, вызывающим нарушение нормального функционирования электронов. Так, медные провода изготавливают только из металла с максимальной долей примесей 0,1 % или даже 0,05 %, если речь идет об отдельных разновидностях кабеля.

Приведенные показатели – это удельная электропроводность металлов, которая представляет собой отношение плотности тока к величине электрического поля в проводнике.

Опасность металлов с высокой электропроводностью

Щелочные металлы имеют крайне высокую электропроводность, объясняют этот факт тем, что в них электроны практические не привязаны к ядру и могут быть без труда выстроены в требуемой последовательности. Еще одна особенность этих металлов состоит в низкой температуре плавления в сочетании со значительной химической активностью, что обычно не позволяет использовать их в качестве материалов для кабелей.

Находясь в незащищенном виде, металлы с высокой электропроводностью несут в себе большую опасность. Прикосновение к оголенным проводам вызывает электрический ожог, разряд воздействует на внутренние органы, что нередко становится причиной мгновенной смерти человека.

Поэтому металл закрывают специальными изоляционными материалами, которые могут быть жидкими, твердыми, газообразными – конкретный тип подбирается в соответствии со сферой использования изделия. Вне зависимости от агрегатного состояния защиты она призвана изолировать электрический ток в цепи, чтобы не допустить его воздействия на окружающую среду.

Зависимость электропроводности металлов от факторов внешней среды

Проводимость не является постоянной величиной. В таблицах приведены сведения, характерные для нормальных условий или при температуре +20 °С. В реальной жизни сложно обеспечить идеальные условия для работы цепи. Удельное сопротивление, а значит, и проводимость, определяется такими характеристиками:

  • температурой;
  • давлением;
  • наличием магнитных полей;
  • светом;
  • агрегатным состоянием вещества.

Изменения интересующего нас параметра зависят от условий среды и свойств конкретного материала. Электропроводность ферромагнетиков, в число которых входят железо и никель, увеличивается при совпадении направления тока с направлением силовых линий магнитного поля. Зависимость электропроводности от теплопроводности металлов и окружающей температуры практически линейная, даже есть понятие температурного коэффициента сопротивления – данную величину можно уточнить в таблицах.

Правда, направление зависимости определяется конкретным веществом: у металлов оно при увеличении температуры повышается, у редкоземельных элементов и растворов электролитов увеличивается в пределах одного агрегатного состояния.

Полупроводники характеризуются гиперболической и обратной зависимостью электропроводности от температуры: рост степени нагрева приводит к повышению электропроводности металлов. Данная особенность качественно отличает проводники от полупроводников. Зависимость ρ проводников от температуры выглядит следующим образом:

Зависимость электропроводности металлов от факторов внешней среды

На графике отображено удельное сопротивление меди, платины, железа. Некоторые металлы характеризуются иначе: ртуть при понижении температуры до 4°K становится сверхпроводимой, почти полностью теряя удельное сопротивление.

У полупроводников зависимость будет представлена так:

Зависимость полупроводников

Когда металл переходит в жидкое агрегатное состояние, его ρ повышается, а дальнейшее изменение свойств может быть разным. Так, висмут в расплавленном виде имеет более низкое удельное сопротивление, чем при комнатной температуре, а у жидкой меди оно повышается в десять раз. Никелю свойственно выходить из линейного графика уже при достижении температуры +400 °C, но далее ρ падает.

Температурная зависимость вольфрама так высока, что приводит к перегоранию ламп накаливания: ток нагревает спираль, из-за чего ее сопротивление многократно возрастает.

Удельное сопротивление сплавов зависит от задействованной при производстве технологии. Данное свойство простой механической смеси определяется как средний показатель ее компонентов. Тогда как для сплава замещения оно окажется иным и обычно отличается в большую сторону.

Рекомендуем статьи

Стоит пояснить, что под сплавом замещения понимают такой, в котором несколько элементов формируют одну кристаллическую решетку. Данная особенность прослеживается у нихрома, используемого для изготовления спиралей электроплит. Удельное сопротивление, а значит, и электропроводность этого металла совпадает с показателем проводников, а при подключении к сети он нагревается до красноты.

Выше были представлены только основные теории, касающиеся физических свойств металлов, а именно электропроводности, сопротивления. Например, не была затронута квантовая теория проводимости Зоммерфельда. Этого краткого знакомства вполне достаточно, чтобы понять, что сопротивление является сложным и комплексным понятием, которое невозможно полностью разобрать на основе простейшего закона Ома.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Свойства металлов: химические, физические, технологические

Металл

Не секрет, что все вещества в природе делятся на три состояния: твердые, жидкие и газообразные. А твердые вещества в свою очередь делятся на металлы и неметаллы, разделение это нашло свое отображение и в таблице химических элементов великого химика Д. И. Менделеева. Наша сегодняшняя статья о металлах, занимающих важное место, как в химии, так и во многих других сферах нашей жизни.

Химические свойства

Все мы, так или иначе, но сталкиваемся с химией в нашей повседневной жизни. Например, во время приготовления еды, растворение поваренной соли в воде является простейшей химической реакцией. Вступают в разнообразные химические реакции и металлы, а их способность реагировать с другими веществами это и есть их химические свойства.

Среди основных химических свойств или качеств металлов можно выделить их окисляемость и коррозийную стойкость. Реагируя с кислородом, металлы образуют пленку, то есть проявляют окисляемость.

Аналогичным образом происходит и коррозия металлов – их медленное разрушение по причине химического или электрохимического взаимодействия. Способность металлов противостоять коррозии называется их коррозийной стойкостью.

металл

Физические свойства

Среди основных общих физических свойств металлов можно выделить:

  • Плавление.
  • Плотность.
  • Теплопроводность.
  • Тепловое расширение.
  • Электропроводность.

Важным физическим параметром металла является его плотность или удельный вес. Что это такое? Плотность металла – это количество вещества, которое содержится в единице объема материала. Чем меньше плотность, тем металл более легкий. Легкими металлами являются: алюминий, магний, титан, олово. К тяжелым относятся такие металлы как хром, марганец, железо, кобальт, олово, вольфрам и т. д. (в целом их имеется более 40 видов).

Способность металла переходить из твердого состояния в жидкое, именуется плавлением. Разные металлы имеют разные температуры плавления.

плавка металла

Скорость, с которой в металле проводится тепло при нагревании, называется теплопроводностью металла. И по сравнению с другими материалами все металлы отличаются высокой теплопроводностью, говоря по-простому, они быстро нагреваются.

Помимо теплопроводности все металлы проводят электрический ток, правда, некоторые делают это лучше, а некоторые хуже (это зависит от строения кристаллической решетки того или иного металла). Способность металла проводить электрический ток называется электропроводностью. Металлы, обладающие отличной электропроводностью, это золото, алюминий и железо, именно поэтому их часто используют в электротехнической промышленности и приборостроении.

Механические свойства

Основными механическими свойствами металлов является их твердость, упругость, прочность, вязкость и пластичность.

При соприкосновении двух металлов могут образоваться микро вмятины, но более твердый металл способен сильнее противостоять ударам. Такая сопротивляемость поверхности металла ударам извне и есть его твердость.

Чем же твердость металла отличается от его прочности. Прочность, это способность металла противостоять разрушению под действием каких-либо других внешних сил.

Под упругостью металла понимается его способность возвращать первоначальную форму и размер, после того как нагрузка, вызвавшая деформацию металла устранена.

Способность металла менять форму под внешним воздействием называется пластичностью.

Технологические свойства

Технологические свойства металлов и сплавов важны в первую очередь при их производстве, так как от них зависит способность подвергаться различным видам обработки с целью создания разнообразных изделий.

Среди основных технологических свойств можно выделить:

  • Ковкость.
  • Текучесть.
  • Свариваемость.
  • Прокаливаемость.
  • Обработку резанием.

Под ковкостью понимается способность металла менять форму в нагретом и холодном состояниях. Ковкость метала, была открыта еще в глубокой древности, так кузнецы, занимающиеся обработкой металлических изделий, превращением их в мечи или орала (в зависимости от потребности) на протяжении многих веков и исторических эпох были одной из самых уважаемых и востребованных профессий.

кузнец

Способность двух металлических сплавов при нагревании соединяться друг с другом называют свариваемостью.

Текучесть металла тоже очень важна, она определяет способность расплавленного метала растекаться по заготовленной форме.

Свойство металла закаливаться называется прокаливаемостью.

Интересные факты

  • Самым твердым металлом на Земле является хром. Этот голубовато-белый метал был открыт в 1766 году под Екатеринбургом.
  • И наоборот, самыми мягкими металлами являются алюминий, серебро и медь. Благодаря своей мягкости они нашли широкое применение в разных областях, например, в электроаппаратостроении.
  • Золото – которое на протяжении веков было самим драгоценным металлом имеет и еще одно любопытное свойство – это самый пластичный металл на Земле, обладающий к тому же отличной тягучестью и ковкостью. Также золото не окисляется при нормальной температуре (для этого его нужно нагреть до 100С), обладает высокой теплопроводностью и влагоустойчивостью. Наверняка все эти физические характеристики делают настоящее золото таким ценным.
  • Ртуть – уникальный металл, прежде всего тем, что он единственный из металлов, имеющий жидкую форму. Причем в природных условиях ртути в твердом виде не существует, так как ее температура плавления -38С, то есть в твердом состоянии она может существовать в местах, где просто таки очень холодно. А при комнатной температуре 18С ртуть начинает испаряться.
  • Вольфрам интересен тем, что это самый тугоплавкий металл в мире, чтобы он начал плавиться нужна температура 3420С. Именно по этой причине в электрических лампочках нити накаливания, принимающие основной тепловой удар, изготовлены из вольфрама.

Видео

И в завершение образовательное видео по теме нашей статьи.


Автор: Павел Чайка, главный редактор журнала Познавайка

Электропроводность нержавейки

Электропроводность (электрическая проводимость) и электрическое сопротивление нержавейки разных марок.


Под удельной электропроводностью металлов подразумевается способность стали проводить электрический ток (измеряется в Ом/м).
Также это физическая величина, характеризующая эту способность и обратная электрическому сопротивлению.
Все нержавеющие сплавы являются проводниками, но сопротивление у разных сплавов разная, некоторые из них проводят электрический ток хуже, некоторые – лучше.

Удельное электрическое сопротивление металла значительно зависит и от температуры. При увеличении температуры стали увеличивается частота и амплитуда колебаний атомов кристаллической решетки, это увеличивает сопротивление материала и затрудняет прохождение электрического тока. Поэтому, с ростом температуры сопротивление металла увеличивается.

В этой таблице можно посмотреть как проводимость, так и сопротивление нержавеющих сплавов и не только.
Пояснения по терминам в конце таблицы.*

Материалы Проводимость
* (% IACS)
Проводимость
* (сименс/м)
Сопротивление
* (Ом*м)

Железо и чугун
Железо чистое 18.00 1.044*10 7 9.579*10 -8
В слитке Iron Ingot (непр.назв.ignot) (99.9% Fe) 15.60 9.048*10 6 1.105*10 -7
Низкоуглеродистый белый чугун 3.25 5.300*10 -7
Мартенситное хромо-никелевое (стое) железо /martensitic nickel-chromium iron 2.16 8.000*10 -7
Высококремнистый чугун / high-silicon iron 3.45 5.000*10 -7
Железо-никелевые сплавы/ h igh-nickel iron 1.0-1.2 1.4*10 -6 –1.7*10 -6
Хромо-никелевое кремнистое железо / nickel-chromium-silicon iron 1.0-1.2 1.5*10 -6 –1.7*10 -6
Алюминиево-железные сплавы/ high-aluminum iron 0.72 2.400*10 -6
Кремнистый чугун/ medium-silicoon ductile iron 2.0-3.0 5.8*10 -7 –8.7*10 -7
Ниель-железные сплавы / high-nickel ductile (20% Ni) 1.69 1.020*10 -6
Углеродистые и низколегированные стали. AISI
1008 (Отожженная) 11.81 1.460*10 -7
1010 12.06 1.430*10 -7
1015 (Отожженная) 10.84 1.590*10 -7
1016 (Отожженная) 10.78 1.600*10 -7
1018 (Отожженная) 10.84 1.590*10 -7
1020 10.84 1.590*10 -7
1022 (Отожженная) 10.84 1.590*10 -7
1025 (Отожженная) 10.84 1.590*10 -7
1029 (Отожженная) 10.78 1.600*10 -7
1030 (Отожженная) 10.39 1.660*10 -7
1035 (Отожженная) 10.58 1.630*10 -7
1040 (Отожженная) 10.78 1.600*10 -7
1042 (Отожженная) 10.08 1.710*10 -7
1043 (Отожженная) 10.58 1.630*10 -7
1045 (Отожженная) 10.64 1.620*10 -7
1046 10.58 1.630*10 -7
1050 (Отожженная) 10.58 1.630*10 -7
1055 10.58 1.630*10 -7
1060 9.58 1.800*10 -7
1065 10.58 1.630*10 -7
1070 10.26 1.680*10 -7
1078 (Отожженная) 9.58 1.800*10 -7
1080 9.58 1.800*10 -7
1095 9.58 1.800*10 -7
1137 10.14 1.700*10 -7
1141 10.14 1.700*10 -7
1151 10.14 1.700*10 -7
1524 8.29 2.080*10 -7
1524 (Отожженная) 10.78 1.600*10 -7
1552 10.58 1.630*10 -7
4130 (Закаленная и отпущенная) 7.73 2.230*10 -7
4140 (Закаленная и отпущенная) 7.84 2.200*10 -7
4626 (Нормализованная и отпущенная) 8.62 2.000*10 -7
4815 6.63 2.600*10 -7
5132 8.21 2.100*10 -7
5140 (Закаленная и отпущенная) 7.56 2.280*10 -7
Холоднодеформированные нержавеющие стали отожженные AISI
201 2.50 6.900*10 -7
202 2.50 6.900*10 -7
301 2.39 7.200*10 -7
302 2.39 7.200*10 -7
302B 2.39 7.200*10 -7
303 2.39 7.200*10 -7
304 2.39 7.200*10 -7
302Cu 2.39 7.200*10 -7
304N 2.39 7.200*10 -7
304 2.50 1.450*10 6 6.897*10 -7
304 2.50 1.450*10 6 6.897*10 -7
305 2.39 7.200*10 -7
308 2.39 7.200*10 -7
309 2.21 7.800*10 -7
310 2.21 7.800*10 -7
314 2.24 7.700*10 -7
316 2.33 7.400*10 -7
316N 2.33 7.400*10 -7
316 2.30 1.334*10 6 7.496*10 -7
317 2.33 7.400*10 -7
317L 2.18 7.900*10 -7
321 2.39 7.200*10 -7
329 2.30 7.500*10 -7
330 1.69 1.020*10 -6
347 2.36 7.300*10 -7
347 2.40 1.392*10 6 7.184*10 -7
384 2.18 7.900*10 -7
405 2.87 6.000*10 -7
410 3.02 5.700*10 -7
414 2.46 7.000*10 -7
416 3.02 5.700*10 -7
420 3.13 5.500*10 -7
429 2.92 5.900*10 -7
430 2.87 6.000*10 -7
430F 2.87 6.000*10 -7
431 2.39 7.200*10 -7
434 2.87 6.000*10 -7
436 2.87 6.000*10 -7
439 2.74 6.300*10 -7
440A 2.87 6.000*10 -7
440C 2.87 6.000*10 -7
444 2.78 6.200*10 -7
446 2.57 6.700*10 -7
PH 13-8 Mo 1.69 1.020*10 -6
15-5 PH 2.24 7.700*10 -7
17-4 PH 2.16 8.000*10 -7
17-7 PH 2.08 8.300*10 -7
Холоднодеформированные и спеченные суперсплавы (супераллои, супералои)
Elgiloy 1.73 9.950*10 -7
Hastelloy Хастеллой “A” 1.40 8.120*10 5 1.232*10 -6
Hastelloy Хастеллой”B” и “C” 1.30 7.540*10 5 1.326*10 -6
Hastelloy Хастеллой”D” 1.50 8.700*10 5 1.149*10 -6
Hastelloy Хастеллой”X” 1.50 8.700*10 5 1.149*10 -6
Haynes 150 2.13 8.100*10 -7
Haynes 188 1.87 9.220*10 -7
Haynes 230 1.38 1.250*10 -6
Incoloy 800 Инкаллой 1.74 9.890*10 -7
Incoloy 825 1.53 1.130*10 -6
Incoloy 903 2.83 6.100*10 -7
Incoloy 907 2.47 6.970*10 -7
Incoloy 909 2.37 7.280*10 -7
Inconel 600 Инконель 1.70 9.860*10 5 1.014*10 -6
Inconel 600 1.67 1.030*10 -6
Inconel 601 1.45 1.190*10 -6
Inconel 617 1.41 1.220*10 -6
Inconel 625 1.34 1.290*10 -6
Inconel 690 11.65 1.480*10 -7
Inconel 718 1.38 1.250*10 -6
Inconel X750 1.41 1.220*10 -6
L-605 1.94 8.900*10 -7
M-252 1.58 1.090*10 -6
MP35N 1.71 1.010*10 -6
Nimonic? 263 1.50 1.150*10 -6
Nimonic 105 1.32 1.310*10 -6
Nimonic 115 1.24 1.390*10 -6
Nimonic 75 1.39 1.240*10 -6
Nimonic 80A 1.36 1.270*10 -6
Nimonic 90 1.46 1.180*10 -6
Nimonic PE.16 1.57 1.100*10 -6
Nimonic PK.33 1.37 1.260*10 -6
Rene 41 1.32 1.308*10 -6
Stellite 6B Стеллит, стелит 1.89 9.100*10 -7
Udimet 500 1.43 1.203*10 -6
Waspaloy 1.39 1.240*10 -6

Электропроводимость (% IACS)

(International Annealed Copper Standard)
Это сокращение от «Международного стандарта по отожженной меди» = , это единица измерения проводимости, используемая для сравнения электрических проводников с традиционными медными. Проводимость указывается в процентах от стандартной.100% IACS соответствует проводимости 58 мегасименсов на метр. Что соответствует 1/58 ом на каждый метр провода поперечным сечением в 1 квадратный миллиметр.

Электропроводимость (сименс/м)

Siemens – единица измерения электрической проводимости в системе СИ, величина обратная ому.
Иными словами, проводимость в сименсах – это просто единица, делённая на сопротивление в омах.
См = 1 / Ом = А / В = кг-1·м-2·с³А²

Сопротивление (Ом*м)

Физический смысл удельного сопротивления: материал имеет удельное сопротивление один Ом·см, если изготовленный из этого материала куб со стороной 1 сантиметр имеет сопротивление 1 Ом при измерении на противоположных гранях куба.
В технике чаще применяется единица Ом·мм²/м. Удельное сопротивление однородного куска проводника длиной 1 метр и площадью токоведущего сечения 1 мм² равно 1 Ом·мм²/м, если его сопротивление равно 1 Ом.

Электропроводность разных металлов

Химический состав сплава и электропроводность

Разный состав сплавов и процент содержания в них легирующих добавок очень сказывается на величине электрического сопротивления. Углеродистые и низколегированные стали в несколько раз лучше проводят электрический ток, чем высоколегированные и жаропрочные, которые имеют высокое содержание никеля и хрома.

Углеродистый сплав

Углеродистый сплав при комнатной температуре, имеет низкое удельное электросопротивление за счет высокого содержания железа. При 20°С значение их удельного сопротивления находится в диапазоне от 13·10 -8 (для стали 08КП) до 20·10 -8 Ом·м (для У12).

При нагревании до температур более 1000°С способность углеродистого сплава проводить электрический ток заметно снижается. Сопротивление возрастает на порядок и может достигать значения 130·10 -8 Ом·м.

Низколегированный сплав

Низколегированный сплав способен сильнее сопротивляться прохождению электричества, чем углеродистый. Его удельное электросопротивление составляет (20…43)·10 -8 Ом·м при комнатной температуре.

Внимание, сплавы этого типа, которые очень плохо проводят электрический ток — это 18Х2Н4ВА и 50С2Г. Однако при высоких температурах, способность проводить электрический ток у сталей, приведенных в таблице, практически не различается.

Хромистая нержавеющая сталь

Хромистый нержавеющий сплав имеет высокую концентрацию атомов хрома, что повышает удельное сопротивление — токопроводимость такой нержавеющей стали мала. При обычных температурах ее сопротивление составляет (50…60)·10 -8 Ом·м.

Марка сплава 20 100 300 500 700 900 1100 1300
Х13 50,6 58,4 76,9 93,8 110,3 115 119 125,3
2Х13 58,8 65,3 80 95,2 110,2
3Х13 52,2 59,5 76,9 93,5 109,9 114,6 120,9 125
4Х13 59,1 64,6 78,8 94 108

Хромоникелевая нержавеющая аустенитная сталь

Хромоникелевый аустенитный сплав также являются нержавеющими, но из-за добавки никеля имеет удельное сопротивление в полтора раза выше, чем у хромистого — оно достигает величины (70…90)·10-8 Ом·м.

12Х18Н9 74,3 89,1 100,1 109,4 114
12Х18Н9Т 72,3 79,2 91,2 101,5 109,2
17Х18Н9 72 73,5 92,5 103 111,5 118,5
Х18Н11Б 84,6 97,6 107,8 115
Х18Н9В 71 77,6 91,6 102,6 111,1 117,1 122
4Х14НВ2М (ЭИ69) 81,5 87,5 100 110 117,5
1Х14Н14В2М (ЭИ257) 82,4 95,6 104,5 112 119,2
1х14Н18М3Т 89 100 107,5 115
36Х18Н25С2 (ЭЯ3С) 98,5 105,5 110 117,5
Х13Н25М2В2 103 112,1 118,1 121
Х7Н25 (ЭИ25) 109 115 121 127
Х2Н35 (ЭИ36) 87,5 92,5 103 110 116 120,5
Н28 84,2 89,1 99,6 107,7 114,2 118,4 122,5

FAQ Электропроводность нержавеющих сплавов

Что такое электропроводность?

Это способность стали проводить электрический ток (измеряется в Ом/м). Также это физическая величина, характеризующая эту способность и обратная электрическому сопротивлению.

Влияет ли температура на электропроводность?

Влияет ли химический состав сплава и электропроводность?

Разные составы сплавов и процент содержания в них легирующих добавок сказывается на величине электрического сопротивления. Углеродистые и низколегированные стали в несколько раз лучше проводят электрический ток, чем высоколегированные и жаропрочные, которые имеют высокое содержание никеля и хрома.

Читайте также: