Способность металла или сплава заполнять литейную форму называется
С точки зрения их внутреннего строения, свойства металлов зависят от:
- химического состава
- типа кристаллической решетки.
- количества компонентов
- температуры
От степени переохлаждения металла при кристаллизации размер зерен зависит от:
- Чем больше степень переохлаждения, тем крупнее зерно.
- Размер зерна не зависит от степени переохлаждения.
- Чем больше степень переохлаждения, тем мельче зерно.
- Зависимость неоднозначна: с увеличением переохлаждения зерно одних металлов растет, других - уменьшается.
Процесс кристаллизации металла или сплава-это:
1. переход из твердого состояния в жидкое;
2. переход из твердого состояния в газообразное;
3. переход в аморфное состояние;
4. переход из жидкого состояния в твердое с образованием кристаллической структуры
Макроскопический анализ материалов позволяет определить:
- химический состав
- механические свойства
- форму и размер зерен
- макродефекты
Прочность – это способность материала:
- Сопротивляться действию внешних сил без разрушения
- Восстанавливать первоначальную форму после снятия нагрузки
- Сопротивляться проникновению более твердого материала
- способность материала изменять свою форму под действием внешней нагрузки и восстанавливать ее после снятия
- способность материала выдерживать нагрузки не разрушаясь
- способность материала изменять свою форму при приложении внешних нагрузок не разрушаясь
- способность материала изменять свою форму под действием внешней нагрузки и восстанавливать ее после снятия
- Сопротивляться проникновению более твердого материала
Мерой внутренних сил, возникающих в материале под влиянием внешних воздействий является:
Свойство материалов сопротивляться разрушению называется:
- плотность
- прочность
- деформирование
- упругость
Существование одного и того же химического элемента в виде двух и более простых веществ, различных по строению и свойствам называется:
- Аллотропия
- Пластичность
- Прочность
- Кристаллизация
Механическим свойством является:
- жидкотекучесть
- теплопроводность
- твердость
- свариваемость
- Температура, при которой металл полностью переходит из твердого состояния в жидкое.
- Способность металла, не разрушаясь, изменять форму под действием нагрузки и сохранять измененную форму после того, как нагрузка будет снята.
- Свойство металла, характеризующее способность его подвергаться обработке резанием.
- Способность металла или сплава в расплавленном состоянии заполнять литейную форму.
- Способность металла образовывать сварной шов, без трещин.
- Способность материала сопротивляться внедрению в него, более твердого тела
- Свойство тел проводить с той или иной скоростью тепло при нагревании.
- Уменьшение объема или линейных размеров расплавленного металла или сплава при его охлаждении до комнатной температуры.
Способность тел проводить тепло при нагревании — это:
- температура плавления;
- теплопроводность;
- теплоемкость;
- плотность.
Физическим свойством является:
- теплопроводность,
- кислотостойкость,
- окалиностойкость;
- жаростойкость
Испытаниями на растяжение определяют свойства металлов:
Испытаниями на стойкость против коррозии определяют свойства металлов:
- остается после снятия нагрузки;
2. исчезает после снятия нагрузки;
3. после снятия нагрузки появляется трещина;
4. пропорциональна приложенному напряжению
К химическим свойствам металлов относятся:
1. износостойкость;
2. твёрдость;
3. теплопроводность;
4. коррозионностойкость
К физическим свойствам металлов относятся:
1. износостойкость ;
2. твёрдость ;
3. теплопроводность;
4. коррозионностойкость.
1.способность материала сопротивляться действию внешних сил без разрушения
2. способность материала изменять свою форму и размеры под действием внешних сил
3. способность материала восстанавливать первоначальную форму и размер после прекращения действия внешних сил
4. способность материала оказывать сопротивление проникновению в него другого более твердого тела
Продуктами доменного процесса являются:
Химическое соединение Fe 3 С называется:
1. сплавы железа с углеродом, содержащие до 0,02 % углерода
2. сплавы железа с углеродом, содержащие от 0,02 % до 2.14 % углерода
3. сплавы железа с углеродом, содержащие от 2,14 до 6,67 % С
4. сплавы железа с углеродом, содержащие 0,8 % С
Чугунами называют:
1. сплавы железа с углеродом, содержащие до 0,02 % углерода
2. сплавы железа с углеродом, содержащие от 0,02 % до 2.14 % углерода
3. сплавы железа с углеродом, содержащие от 2,14 до 6,67 % С
4. сплавы железа с углеродом, содержащие 0,8 % С
Чугун, в котором весь углерод находится в виде химического соединения Fe 3 С, называется:
1. серым
2. ковким
3. белым
4. высокопрочным
Чугуны с пластинчатой формой графита называются:
1. серыми
2. ковкими
3. белыми
4. высокопрочными
Чугуны, в которых графит имеет шаровидную форму называются:
1. серыми
2. ковкими
3. белыми
4. высокопрочными
Чугуны, в которых графит имеет хлопьевидную форму называется:
1. серым
2. ковкими
3. белыми
4. высокопрочными
Целью легирования является:
1. создание сталей с особыми свойствами
2. получение гладкой поверхности
3. повышение пластических свойств
4. уменьшения поверхностных дефектов
Маркой углеродистой инструментальной стали является:
Сталь из чугуна можно получить, если:
1. увеличить содержание углерода;
2. уменьшить содержание углерода;
3. уменьшить содержание примесей;
4. увеличить содержание примесей;
5. добавить легирующие элементы.
Вредной примесью в чугунах является:
Железо и его сплавы принадлежит к:
- К тугоплавким металлам
- К черным металлам
- К диамагнетикам
- К металлам с высокой удельной прочностью.
В белом чугуне графит имеет форму:
- Хлопьевидная.
- В белом чугуне графита нет.
- Шаровидная.
- Пластинчатая.
Маркой высококачественной стали является:
Маркой углеродистой качественной конструкционной стали является:
Маркой полуспокойной стали является:
Качество стали зависит от содержания:
1. серы и фосфора
2.фосфора и марганца
3.серы и кремния
4.кремния и марганца
СЧ15 – одна из марок серого чугуна с пластинчатым графитом. Цифра 15 означает:
1. содержание углерода в процента
2. относительное удлинение
3. предел прочности при растяжении
4. твёрдость по Бринеллю
Основным легирующим элементом быстрорежущей стали является:
1. хром
2. кобальт
3. кремний
4. вольфрам
Количество углерода в Стали 20 равно:
Латуни и бронзы – это сплавы на основе:
Маркой, обозначающей латунь, является:
Маркой литейной оловянной бронзы является:
Алюминиевый сплав дюралюмин, обозначается:
Охлаждение заготовок совершается в машинном масле при…
Процесс насыщения поверхности металлического изделия углеродом- это…
Сущностью химико-термической обработки стальных изделий является:
1. изменение кристаллической структуры детали;
2. изменение кристаллической структуры поверхностного слоя;
3. изменение химического состава поверхностного слоя;
4. окисление поверхностного слоя;
Добавки, которые делают пластмассу эластичным называются:
Добавки, которые способствуют предотвращению старения пластмассы называются:
Литейные свойства сплавов
Для получения отливок в машиностроении наиболее широко применяются серые, ковкие и высокопрочные чугуны, углеродистые и легированные стали, алюминиевые сплавы, медные сплавы, магниевые сплавы, сплавы на основе тугоплавких металлов.
Для получения качественной отливки литейные сплавы наряду с определенным уровнем механических и физико-химических свойств должны обладать определенным уровнем технологических свойств. Ниже перечислены основные литейные свойства сплавов.
1. Жидкотекучесть – способность жидкого металла полностью заполнять щелевидные полости литейной формы и четко воспроизводить очертания отливки. При хорошей жидкотекучести металл заполняет всю полость формы, какой бы сложной она ни была, а при недостаточной – образует недоливы в узких сечениях отливки. Фосфор, кремний и углерод улучшают жидкотекучесть, а сера её ухудшает. В сером чугуне больше углерода, чем в стали, и поэтому он обладает лучшей жидкотекучестью. Чем больше перегрев жидкого металла, тем более тонкостенную отливку можно получить.
Наибольшей жидкотекучестью обладают эвтектические сплавы, чистые металлы и интерметаллиды, кристаллизующиеся при постоянной температуре. По мере увеличения интервала кристаллизации жидкотекучесть уменьшается. Минимально возможная толщина получаемых отливок зависит от их размера и жидкотекучести сплава (табл.2.1).
Определение жидкотекучести производится на технологических пробах, представляющих собой модели плохо заполняющейся отливки. Например, в спиралевидной пробе жидкотекучесть измеряется длиной заполненной части измерительного канала малого сечения.
Минимально возможные толщины отливок
Размеры отливок | Материал отливок | |
Чугун | Сталь | |
Мелкие | 3…4 мм | 5…7 мм |
Средние | 8…10 мм | 10…12 мм |
Крупные | 12…15 мм | 15…20 мм |
2. Склонность к усадке. Усадка – уменьшение объёма металла и линейных размеров отливки в процессе её кристаллизации и охлаждения в твердом состоянии. Различают объемную и линейную усадку.
Объемная усадка – уменьшение объема металла при кристаллизации, сопровождающееся образованием в массивных сечениях отливки усадочной рыхлоты (пористости) или концентрированной усадочной раковины, так как массивные сечения кристаллизуются последними. Устраняют усадочную раковину установкой прибыли в массивном сечении. Прибыль, имея большее сечение, кристаллизуется медленнее отливки, поэтому питает её жидким металлом при кристаллизации, а усадочная раковина перемещается в прибыль, которую отрезают.
Фактически любая усадка является объемной, просто объемная не проявляется в изменении линейных размеров вследствие образования пустот.
Линейная усадка – уменьшение линейных размеров при охлаждении затвердевшей отливки. Стержни и формовочная смесь оказывают сопротивление линейной усадке металла, следовательно, в отливке возникают внутренние напряжения, приводящие в ряде случаев к короблению и образованию горячих трещин. Для уменьшения внутренних напряжений формовочные и стержневые смеси делают податливыми.
В реальных условиях производства отливок сокращение их размеров в форме не является свободным, так как тормозится вследствие трения отливки о стенки формы, выступающими частями формы, а также недостаточной податливостью стержней. Поэтому действительное изменение размеров отливки характеризуется не линейной усадкой, которая является свободной, а литейной (затруднённой) усадкой. Литейную усадку учитывают при изготовлении модели, увеличивая её размеры по сравнению с отливкой на величину литейной усадки. Линейная усадка серых чугунов равна, примерно 1 %, углеродистой стали – около 2 %, для цветных сплавов – примерно 1,5 %.
3. Склонность к ликвации. Ликвация – неоднородность химического состава сплава по сечению отливки. Различают зональную и дендритную ликвацию. Зональная ликвация – это неоднородность химического состава между отдельными зонами по объему отливки, а дендритная ликвация – неоднородность химического состава в пределах одного зерна. Ликвация приводит к увеличению неоднородности механических свойств отливки. Чем больше скорость охлаждения (т.е. чем меньше отливка), тем меньше развивается ликвация. Целесообразно отливки конструировать так, чтобы их затвердевание шло по направлению к установленной прибыли. В этом случае большая часть ликвирующих примесей скапливается в прибыли, затвердевающей последней.
4. Склонность к газопоглощению. Газопоглощение – способность литейных сплавов в жидком состоянии растворять кислород, азот, водород. Чем больше перегрев расплава, тем больше газопоглощение. В литейной форме расплав охлаждается, уменьшается растворимость газов, они выделяются с возможным образованием газовых раковин. Поэтому формовочная и стержневые смеси должны иметь хорошую газопроницаемость.
Литейные свойства сплавов.
Жидкотекучесть. Это- способность металлов и сплавов течь по каналам формы и заполнять ее.
Заполнение литейных форм является сложным гидродинамическим и физико-химическим процессом. Главным фактором, определяющим уровень жидкотекучести, являются свойства сплава в жидком состоянии: теплофизические свойства, особенности кристаллизации, вязкость, окисляемость.
Влияние литейной формы связано главным образом с ее теплофизическими свойствами, со смачиваемостью жидким металлом, с условиями физико-химического воздействия "металл - форма".
На жидкотекучесть влияют также условия плавки и заливки, перегрев металла, насыщение металла посторонними включениями, условия подвода металла к форме.
Количественные значения жидкотекучести определяют по длине заполнения канала литейной формы с определенной площадью поперечного сечения. Наибольшее распространения получали технологические спиральные пробы.
При теоретическом анализе характеристики жидкотекучести основным является определение условий остановки движущегося потока. Высказано несколько точек зрения на механизм остановки потока : выделение 20 % твердой фазы, образование на конце потока прочной твердой корочки, рост в канале литейной формы дендритов (древовидных кристаллов), препятствующих движению потока, накопление твердых кристаллов на конце потока.
Течение металла в литейной форме сопровождается кристаллизацией. Поэтому движущийся поток рассматривают как гетерогенную жидкость. Из гидравлики известно, что движение таких жидкостей начинается только после того, как касательное напряжение становится больше определенного значения σ0, называемого предельным напряжением сдвига.
При поступлении металла в канал литейной формы на стенках канала и образуется твердая корочка из-за высокой интенсивности охлаждения металла в начальные моменты. С течением времени, по мере прогревания формы, интенсивность теплоотвода уменьшается. Но перенос теплоты к корочке за счет поступления новых порций металла остается постоянным, и она начинает оплавлятся. Уменьшению размеров корочки способствует также смывание части кристаллов движущимися потоками. Накопление обломков кристаллов на конце потока приводит к постоянному нарастанию сил внутреннего трения. Условия течения металла заметно ухудшаются. Наконец в определенный момент количество накопившихся обломков становится несколько большим, а сопротивление внутреннему трению настолько значительным, что поток останавливается.
Изменение жидкотекучести сплавов тесно связано сих диаграммами состояния. Академик А.А. Босвар показал, что сплавы сохраняют основные свойства жидкого тела, в том числе способность к макроперемещениям, не во всем интервале температур между ликвидусом и солидусом, а только в той части, где кристаллы не образуют связанного каркаса, а движутся вместе с жидкостью. Профессор Ю.А. Нехендзи назвал температуру, при которой поток перестает течь, температурой нулевой жидкотекучести.
С увеличением температурного интервала кристаллизации жидкотекучесть снижается. При этом большое значение имеют размеры и форма первичных кристаллов.
Если первичные кристаллы растут в виде сильно разветвленных дендритов, граница нулевой жидкотекучести находится вблизи границы ликвидус. Примером могут служить доэвтектические сплавы с широким интервалом кристаллизации и дендритной формой первичных кристаллов.
Если же первичные кристалл имеют компактные формы и небольшие размеры, граница нулевой жидкотекучести тяготеет к линии солидус. Несмотря на то что выделяется значительная часть твердой фазы, металл продолжает течь, поскольку выделившиеся первичные кристаллы не связаны между собой. В качестве примера можно привести заэвтектические чугуны.
Заполняемость. Она характеризует способность металлов и сплавов воспроизводить контур отливок в особо тонких сечениях, где в значительной степени проявляется действие капиллярных сил.
Заполнение тонких сечений отливок - это процесс взаимодействия металла и формы. иногда этот процесс называют формовоспроизведением или формозаполнением. Эти термины следует признать менее удачными, поскольку заполнение острых кромок и тонких сечений в большей степени зависит от свойств металла.
Заполняемость обусловлена рядом факторов:
1. поверхностным натяжением сплава и смачиваемостью формы;
2. вязкостью сплава, связанной с его теплофизическими свойствами;
3. температурным интервалом кристаллизации;
4. формой и размерами первичных кристаллов;
5. склонностью сплава к пленообразованию;
6. теплофизическими свойствами формы;
7. способом заливки металла (стационарный или центробежный);
8. конструктивными особенностями литниковой системы;
9. наличием газов в форме и условиями ее вентиляции.
На примере титана модно оценить влияние смачивания формы металлом на заполняемость. Угол смачивания титаном электрокорунды составляет 120 o С, а в магнезите - 107 o С. заполняемость корундовой формы для изготовления пластины толщиной 9 мм значительно хуже, чем магнезитовой.
При заполнении каналов с малой площадью поперечного сечения потку производится преодолеть значительное давление, обусловленное действием капиллярных сил. При незначительном удалении таких элементов от оси вращения необходима большая скорость вращения центробежного стола.
Характер затвердевания. Характер затвердевания металлов и сплавов определяет особенность перехода металла из жидкого состояния в твердое.
В процессе затвердевания реальной отливки в сплаве, кристаллизующемся в интервале температур, всегда так называемая область затвердевания. Эта область ограничена изотермами ликвидус и солидус, которые в процессе охлаждения отливки последовательно перемещаются от ее поверхности к термическому центру.
Область затвердевания делиться на две части - жидко-твердую и твердо-жидкую.
Жидко-тверда часть примыкает к изотерме ликвидус, твердо-жидкая - к изотерме солидус. Граница между ними носит несколько названий: выливаемости, нулевой жидкотекучести, начала линейной усадки. Положение этой граници связано с формой и размерами первичных кристаллов. При сильной развитой дендритной форме мелких кристаллов - к границе солидус.
Твердо-жидкая часть области затвердевания делится на две зоны границей питания. Между границей выливаемости и границей питания сросшиеся дендриты не препятствуют макроперемещениям жидкости. Между границами питания и солидус каркас дендритов образует изолированные области, внутри которых возможно только микроскопическое перемещение жидкости.
Параметры области затвердевания во многом определяют качество отливок, которое оценивается по заполнению линейной формы, развитию усадочных дефектов, по вероятности появления трещин, по формированию литой поверхности. Последнее особенно важно для художественного литья.
Затвердевание металла является прежде всего тепловым процессом. Его развитие определяется в основном тем количеством теплоты, в которое освобождается при переходе металла из жидкого состояния в твердое и условиями отвода теплоты из области затвердевания, что от совокупности теплофизических свойств металла и форм.
Теплофизические свойства сплавов определяются теплотой затвердевания, теплоемкостью, теплопроводностью и плотностью. Причем для процесса затвердевания наиболее значима теплота затвердевания.Критерием интенсивности теплоотвода служит коэффициент теплоаккумулирующей способности формы.
b = √ λ ср,
где, λ - теплопроводность; с - удельная теплоемкость; р - плотность.
Большое значение для развития процесса затвердевания имеет зазор, образующийся между отливкой и формой, так как он является звеном, передающим теплоту от отливки к форме.
Характер формирования литой поверхности. Под характером формирования литой поверхности металлов и сплавов подразумевают их способность воспроизводить профиль поверхности формы (шероховатость, механический пригар), склонность к образованию макронеровностей (спаи), склонность к химическому взаимодействию с формой (химический пригар).
Формирование литой поверхности определяется условиями взаимодействия расплава с материалом литейной формы. эти условия зависят от целого комплекса факторов: от теплофизических свойств металла и формы, их химического состава, гидродинамики потока во время заполнения форм, от изменения физико-химических свойств металла и формы с изменением температуры.
Качество поверхности художественной отливки во многом определяет эстетическую ценность изделия. Важное значение имеет отражательная способность поверхности, обрабатываемость (шлифуемость и полируемость), взаимодействие с различными реагентами при патинировании.
Немаловажна и себестоимость изделия. Приходится искать технологические решения, позволяющие сочетать умеренные затраты на изготовление отливки с высоким качеством поверхности.
В машиностроении к качеству литой поверхности предъявляются другие требования, обеспечивающие высокие механические свойства, химическую стойкость, низкие гидравлические потери, обрабатываемость литой детали и др.
Шероховатость поверхности характеризуется средним арифметическим отклонением измеренного профиля от его средний линии Ra и высотой неровностей Rz определяемой как расстояние между пятью высшими точками и пятью низшими точками, находящимися в пределах базовой длины (ГОСТ 2789-73).
Шероховатость отливки непосредственно зависит от шероховатости поверхности формы. Чем крупнее зерна формовочного материала, тем больше шероховатость поверхности отливки.
Формирование профиля литой поверхности определяется двумя факторами - смачиваемостью формы металлом и условиями теплоотвода на границе "металл-форма" в начальный период затвердевания отливки. Смачиваемость оценивают по краевому углу смачивания, интенсивность теплоотвода - по температуропроводности (м 2 /с) формовочного материала а = λ / (срр).
Литейная форма является пористым телом. Ее пористость колеблется в пределах от 15 до 45%. Причем основная часть пор относится к капилярным, т.е. таким, в которых форма поверхности жидкости зависит от поверхности сил и мало искажена силой тяжести.
Проникновению жидкого металла в поры формы происходит при условии, если давление металла рм на границе "металл-форма" превышает капиллярное противодавление формы рz.
рм = Hpq
где, Н - гидростатический напор металла (высота столба); q - укорение силы тяжести; р - плотность жидкого металла.
рк = (2 σ cos θ) / r
где σ - поверхностное напряжение; θ - краевой угол смачивания формы металлом; r - радиус поры формы.
Таким образом, чтобы уменьшить проникновение металла в поры формы, следует идти по пути уменьшения r за счет применения мелкозернистого песка и увеличения σ, cos θ, зависящих от физических свойств металла и состава формовочной смеси. Так, краевой угол смачивания песчано-глинистой формы зависит от содержания кислорода и сере в стали.
Если металл не смачивает материал формы, то он может проникать в ее поры только под действием металлостатического давления.
Глубину проникновения металла h в поры формы можно определить по формуле
H = H - (2 σ cos θ) / p q r.
из приведено формулы следует, что пока капиллярные силы превышают металлостатическое давление, механический пригар не образуется.
На смачиваемость формовочных материалов расплавленным металлом влияет газовая атмосфера литейной формы. например, при изготовлении стальных отливок и окислительной атмосфере ширина зоны взаимодействия металла с формой увеличивается в 1,5 - 2 раза по сравнению с изготовлением в воздушной атмосфере.
Механизм взаимодействия жидкой стали с формой, определяющей качество поверхности отливок, можно представить следующим образом. Если при заполнении формы жидкий металл проникает в поры формовочной смеси, происходит образование механического пригара. Эта стадия заканчивается формированием твердой корочки металла на поверхности отливки. Далее при взаимодействии металла с кислородом окружающей газовой атмосферы образуются жидкие оксиды, проникающие в формовочную смесь и вступающие с ней в химическое взаимодействие.
Основными составляющими песчано-глинистых смесей являются кварцевый песок, состоящий преимущественно из зерен кварца SiO2,, и огнеупорная глина (каолинит) Al2O3 * 2SiO2 * 2H2О. при температуре 100 o С и выше удаляется гироскопическая влага. При температуре 450-600 o С происходит распад каолинита на метакаолин и воду:
Из анализа изменения изобарно-изотермического потенциала представленных выше четырех реакций вытекает, что преимущественное развитие получают реакции (1) и (4). Таким образом, с термодинамической точки зрения для уменьшения химического пригара на стальном литье желательно в форме создать восстановительную или же нейтральную атмосферу.
Объемная усадка. Объемная усадка металлов и сплавов характеризует изменение объема металла при понижении температуры в жидком состоянии, в процессе затвердевания и при охлаждении твердого металла.
Согласно схеме, предложенной А.А. Бочваром, полная объемная усадка распределяется между объемом концентрированной усадочной раковины и объемом усадочной пористости. Чем больше эффективная часть температурного интервала кристаллизации (разница температур начала усадки и солидуса), тем большая доля объемной усадки проявляется в виде усадочных пор. В сплавах, кристаллизирующихся при постоянной температуре (чистые металлы, сплавы эвтектического состава), усадочная пористость практически не образуется.
Линейная усадка. Линейная усадка металлов и сплавов отражает изменение линейных размеров отливки после образования на ее поверхности жесткого кристаллического скелета и охлаждения до комнатной температуры.
В отливах из чистых металов температура начала линейной усадки соответствует температуре плавления. Линейная усадка в этом случае пропорциональная линейному коэффициенту термического расширения и разности между температурами плавления и комнатной:
где, ε - коэффициент линейной усадки, %, α t - средний линейный коэффициент расширения металла в интервале от tпл до t20; tпл и t20 - соответственно температуры плавления и комнатной.
Участок диаграммы состояния между температурой начала линейной усадки и температурой солидус назван А.А. Бочваром эффективным интервалом кристаллизации.
Трещиностойкость. Это - способность металлов и сплавов к релаксации (ослаблению, уменьшению) напряжений, возникающих в отливке при затвердевании и охлаждении, в результате усадки, фазовых превращений или температурного перепада.
В практике литья обычно различают два вида трещин - горячие и холодные. Это деление весьма условно. Считается, что горячие трещины образуются в области, близкой к температуре солидус. По внешнему виду эти трещины отличаются окисленной поверхностью, в особенности - на стальных отливках. Холодные трещины, в отличие от горячих, имеют поверхность и образуются в области упругих деформаций при температуре, которая значительно ниже температуры окончания кристаллизации.
Свариваемость. От свариваемости сплавов зависит качество исправления дефектов отливок и надежность соединения литых деталей методом сварки.
Для художественных отливок это свойство имеет большое значение. Особенно важно обеспечить надежное соединение крупных элементов скульптур.
В литейной практике свариваемость обычно оценивают по склонности к образованию сварочных трещин и по разупрочнению околошовной зоны. Трещин в зоне сварного шва могут появиться при его остывании в результате возникновения больших термических напряжений. Свариваемость оценивают также, сопоставляя свойства шва и околошовной зоны со свойствами основного металла.
Литейные свойства сплавов и их влияние на конструктивные размеры и форму отливок
К литейным свойствам относят технологические свойства металлов и сплавов, которые проявляются при заполнении формы, кристаллизации и охлаждении отливок в форме. Наиболее важные литейные свойства — это жидкотекучесть, усадка (объемная и линейная), склонность сплавов к ликвации и образованию трещин и пористости, поглощению газов и др.
Жидкотекучесть — это способность металлов и сплавов течь в расплавленном состоянии по каналам литейной формы, заполнять ее полости и четко воспроизводить контуры отливки. Жидкотекучесть литейных сплавов зависит от температурного интервала кристаллизации, вязкости и поверхностного натяжения расплава, температуры металла и формы при заливке и т. д.
Технически чистые металлы и сплавы, кристаллизующиеся при постоянной температуре (эвтектические сплавы), обладают лучшей жидкотекучестью, чем сплавы, образующие твердые растворы и затвердевающие в интервале температур. С увеличением поверхностного натяжения жидкотекучесть уменьшается интенсивнее, когда канал в литейной форме тоньше. Жидкотекучесть улучшается с повышением температуры заливки расплавленного металла и температуры формы. Увеличение теплопроводности материала формы снижает жидкотекучесть. Так, песчаная форма отводит теплоту с меньшей скоростью, и расплавленный металл заполняет ее лучше, чем металлическую форму.
Жидкотекучесть сплавов зависит также от их химического состава: фосфор, кремний и углерод улучшают ее, а сера ухудшает. Серый чугун содержит больше углерода и кремния, чем сталь, и поэтому обладает лучшей жидкотекучестью.
Минимально возможная толщина стенки для различных литейных сплавов не одинакова и составляет при литье в песчаные формы для отливок из серого чугуна: мелких — 3. 4 мм, средних — 8. 10, крупных — 12. 15 мм, а для отливок из стали — соответственно 6. 7, 10. 12 и 15. 20 мм.
Жидкотекучесть металла устанавливают путем заливки специальных технологических проб и оценивают линейными размерами заполненной полости канала определенной формы. Наибольшей жидкотекучестью обладает серый чугун, наименьшей — магниевые сплавы.
Усадка — свойство литейных сплавов уменьшать объем при затвердевании и охлаждении. Усадочные процессы в отливках протекают с момента заливки расплавленного металла в форму вплоть до полного охлаждения отливки. Различают линейную и объемную усадку, выраженную в относительных единицах.
Линейная усадка — уменьшение линейных размеров отливки при ее охлаждении от температуры, при которой образуется прочная корка, способная противостоять давлению расплавленного металла, до температуры окружающей среды. Линейную усадку определяют соотношением
где lф и lотл — размеры полости формы и отливки при температуре 20 °C.
На линейную усадку влияют: химический состав сплава, температура его заливки, масса, конструкция отливки и литейной формы. Так, усадка серого чугуна уменьшается с увеличением содержания углерода и кремния. Усадку алюминиевых сплавов уменьшает повышенное содержание кремния. Увеличение температуры заливки сплава в форму приводит к возрастанию усадки отливки. Значения линейной усадки литейных сплавов приведены в табл. 33.1.
Объемная усадка — уменьшение объема сплава во время его охлаждения в литейной форме при формировании отливки. Объемная усадка приблизительно равна утроенной линейной усадке, в отливках проявляется в виде усадочных раковин, пористости, трещин и коробления.
Усадочные раковины — сравнительно крупные полости, расположенные в местах отливки, затвердевающих последними (рис. 33.1, а). Сначала около стенок литейной формы образуется корка твердого металла. Вследствие того, что усадка расплава при переходе из жидкого состояния в твердое превышает усадку корки, уровень металла в незатвердевшей части отливки понижается до уровня а-а.
В следующий момент времени на корке нарастает новый слой, а уровень жидкости понижается до уровня б-б. Так продолжается до тех пор, пока не закончится процесс затвердевания. Снижение уровня расплава при затвердевании приводит к образованию сосредоточенной усадочной раковины, которая формируется при изготовлении отливок из технически чистых металлов, сплавов эвтектического состава и сплавов с узким интервалом кристаллизации.
Усадочная пористость — скопление пустот, образовавшихся в отливке в обширной зоне в результате усадки в тех местах отливки, которые затвердевали последними без доступа к ним расплавленного металла (рис. 33.1, б). Вблизи значений температуры солидуса кристаллы срастаются между собой. Это приводит к разобщению ячеек, заключающих в себе остатки жидкой фазы. Затвердевание небольшого объема металла в такой ячейке происходит без доступа к ней питающего расплава из соседних ячеек. В результате усадки в каждой ячейке получается небольшая усадочная раковина. Множество таких межзеренных микроусадочных раковин образует пористость, которая располагается по границам кристаллов металла.
Получить отливки без усадочных раковин и пористости возможно с помощью непрерывного подвода расплавленного металла в процессе кристаллизации вплоть до полного затвердевания. С этой целью на отливках устанавливают прибыли-резервуары, которые обеспечивают доступ расплавленного металла к участкам отливки, затвердевающим последними.
Прибыль не всегда может обеспечить доступ расплавленного металла к утолщенному участку отливки (рис. 33.2, а). В этом месте образуется усадочная раковина и пористость. Установка прибыли на утолщенный участок (рис. 33.2, б) предупреждает образование усадочных раковин и пористости.
Предупредить образование усадочных раковин и пористости позволяет установка в литейную форму наружных холодильников (рис. 33.2, в) или внутренних холодильников (рис. 33.2, г). Вследствие высокой теплопроводности и большой теплоемкости холодильника отвод теплоты происходит интенсивнее от массивной части отливок, чем от тонкой. Это способствует выравниванию скоростей затвердевания массивной и тонкой частей, а также устранению усадочных раковин и пористости. Внутренние холодильники изготавливают из того же сплава, что и отливку. При заполнении формы внутренние холодильники частично расплавляются и свариваются с металлом отливки.
В результате неравномерного затвердевания тонких и массивных частей и торможения усадки формой при охлаждении в отливках возникают напряжения, которые тем выше, чем меньше податливость формы и стержней. Если величина напряжений превысит предел прочности литейного сплава на данном участке отливки, то в теле ее образуются трещины. Если литейный сплав имеет достаточную прочность, пластичность и способен противостоять действию возникающих напряжений, то при превышении предела текучести искажается геометрическая форма отливки после ее извлечения из формы.
Горячие трещины в изделиях возникают в процессе кристаллизации и усадки металла при переходе из жидкого состояния в твердое при температуре, близкой к температуре солидуса. Горячие трещины проходят по границам кристаллов и имеют окисленную поверхность. Склонность сплавов к образованию горячих трещин увеличивается при наличии неметаллических включений, газов (водорода, кислорода), серы и других примесей. Кроме того, появление горячих трещин в отливках вызывает резкие переходы от толстой части к тонкой, острые углы, выступающие части и т. д. Высокая температура заливки повышает вероятность образования трещин в результате увеличения кристаллов металла и перепада температур в отдельных частях отливки.
Для предупреждения возникновения горячих трещин в отливках необходимо создать условия, способствующие формированию мелкозернистой структуры; обеспечить одновременное охлаждение тонких и массивных частей отливок; увеличить податливость литейных форм; по возможности снизить температуру заливки сплава.
Холодные трещины возникают в изделиях, когда сплав полностью затвердел. Тонкие части отливки охлаждаются и сокращаются быстрее, чем толстые. В результате в отливке образуются напряжения, которые вызывают появление трещин. Холодные трещины чаще всего образуются в тонкостенных отливках сложной конструкции из сплавов с высокими упругими свойствами и усадкой при пониженных температурах, а также с низкой теплопроводностью. Опасность возникновения холодных трещин в отливках усиливается наличием в сплаве вредных примесей (например, фосфора в сталях).
Для предупреждения образования холодных трещин в отливках необходимо обеспечить равномерное охлаждение отливок во всех сечениях путем использования холодильников, применять сплавы с высокой пластичностью, проводить отжиг отливок и т. п.
Коробление — изменение формы и размеров отливки под влиянием напряжений, возникающих при охлаждении. Коробление увеличивается при малой податливости формы и стержней, усложнении конфигурации отливки и повышении скорости охлаждения, которая вызывает неравномерное охлаждение между отдельными частями отливки и различную усадку. Для предупреждения коробления необходимо создать рациональную конструкцию отливки, обеспечивающую равномерное охлаждение. Благодаря применению холодильников (внутренних, наружных) удается выравнивать скорость охлаждения массивных и тонких частей отливки.
Ликвация — неоднородность химического состава сплава в различных частях отливки. Она возникает в процессе затвердевания изделия из-за различной растворимости отдельных компонентов сплава в его твердой и жидкой фазах. Чем больше это различие, тем неоднороднее распределяется примесь по сечению отливки. Для уменьшения ликвации увеличивают скорость охлаждения заготовки.
Склонность к газопоглощению — это способность литейных сплавов в жидком состоянии растворять кислород, азот и водород. Их растворимость растет с перегревом расплава (температуры заливки). Движение металла в форме мелкими струйками или турбулентными потоками также способствует повышению растворимости газов. При избыточном содержании газов они выделяются из расплава в виде газовых пузырей, которые могут всплывать на поверхность или оставаться в отливке, образуя газовые раковины, пористость или неметаллические включения, снижающие механические свойства и герметичность отливок.
Для уменьшения газовых раковин и пористости в отливках плавку металла следует вести под слоем флюса или в среде защитных газов с использованием хорошо просушенных шихтовых материалов. Кроме того, необходимо увеличивать газопроницаемость формы и стержней, снижать влажность формовочной смеси, подсушивать формы и т. д.
В отливках также могут возникать такие дефекты, как недолив, перекос, шлаковые раковины, пригар и др.
Недолив возникает при неправильной конструкции литниковой системы, недостаточной жидкотекучести сплава или утечки металла в разъем формы.
Перекос может быть вызван неточной сборкой стержней или формы, случайным сдвигом полуформ под внешним воздействием.
Для предотвращения искажения формы отливок следует выработать более рациональную конструкцию отливки и технологию литья.
Шлаковые раковины образуются при пониженной вязкости шлака, недостаточной эффективности литниковой системы, неправильной или небрежной заливке.
Пригар — поверхностный дефект, возникающий из-за слишком высокой температуры заливки, излишней длительности затвердевания, слабого уплотнения или низкого качества формовочной смеси.
Наружные дефекты отливок обнаруживают внешним осмотром непосредственно после извлечения заготовок из формы или после их очистки, а внутренние выявляют радиографическими и ультразвуковыми методами.
При использовании радиографических методов (рентгенографии, гаммаграфии) на отливки воздействуют рентгеновским или гамма-излучением. С помощью этих методов выявляют наличие дефекта, величину и глубину его залегания.
При ультразвуковом контроле волна, проходящая через стенку отливки, при встрече с границей дефекта (трещиной, раковиной и др.) частично отражается. По интенсивности отражения судят о наличии, размерах и глубине залегания дефектов.
Трещины в отливках выявляют люминесцентным контролем, магнитной или цветной дефектоскопией.
Обнаруженные дефекты могут быть исправимы и неисправимы. Так, коробление стальных отливок может быть исправлено правкой. Наружные дефекты заваривают дуговой или газовой сваркой. При недоливе крупных отливок иногда допускается исправление дефектов заливкой жидкого металла. Раковины и пористость устраняют пропиткой или заделывают различными замазками, шпаклевкой или клеями. В случае неисправимого брака следует пересмотреть конструкцию отливки или технологию ее получения.
Из схемы последовательности операций изготовления отливок в разовых формах (см. рис. 13.2) следует, что параллельно с изготовлением формы идет плавка металла и после сборки формы расплавленный металл заливают в нее.
Известно множество литейных сплавов на основе железа, алюминия, магния, меди, титана, цинка и др. Каждый из сплавов характеризуется комплексом прочностных, эксплуатационных, физических и технологических свойств. Так как из этих сплавов получают отливки, они должны обладать комплексом специфических технологических свойств, обеспечивающих получение качественной отливки. К таким свойствам — их называют литейными — относятся жидкотекучесть, склонность к образованию усадочных раковин, трещин, склонность к газонасыщению и ликвации.
Жидкотекучесть — это способность металла заполнять литейную форму и воспроизводить очертания ее внутренней полости. Существует несколько методов оценки жидкотекучести, но наиболее распространено устройство в виде длинного тонкого канала, обычно свернутого в спираль, по длине заполнения которого судят об уровне жидкотекучести. При низкой жидкотекучести расплава возможен брак отливок по недоливам и спаям.
На жидкотекучесть оказывают влияние свойства формы и расплава. С ростом коэффициента теплопроводности, содержания влаги и теплоемкости смеси жидкотекучесть сплава падает, так же как и при росте коэффициента теплопроводности сплава, поверхностного натяжения на границе расплав — воздух и ширины температурного интервала кристаллизации сплава. Несмотря на обилие факторов, влияющих на жидкотекучесть, в реальных условиях производства манипулировать ими сложно, так как в цехе существует сложившийся технологический процесс получения отливки, а ее материал задан конструктором. Основным фактором, с помощью которого удается регулировать жидкотекучесть,
является температура перегрева расплава. С ростом перегрева резко повышается жидкотекучесть. Поэтому тонкостенные ажурные отливки с развитой сложной поверхностью отливают первыми горячими порциями расплава сразу после его выдачи в ковш из печи, а толстостенные отливки получают из остывшего в ковше металла.
Различают три вида усадки металла: в жидком состоянии, в процессе кристаллизации и в ходе остывания металла от температур кристаллизации. Наиболее безобиден первый вид усадки, который легко компенсируется снижением уровня расплайа в заливочной чаше или в стояке.
Усадка в процессе кристаллизации приводит к образованию усадочных раковин и пористости в отливках. Она связана с разницей плотностей металлов в твердом и жидком состоянии. Если кристаллизация металла протекает в узком интервале температур, что способствует так называемому направленному затвердению, при котором сравнительно гладкий фронт кристаллизации продвигается от поверхности к термическому центру отливки, увеличение плотности металла при переходе из жидкого состояния в твердое приводит к снижению уровня расплава и образованию в верхней центральной части отливки концентрированной усадочной раковины. При широком температурном интервале кристаллизации (объемное затвердевание) концентрированной усадочной раковины не образуется, зато появляется большое количество пор, рассеянных по всему объему отливки. Для устранения урадочных дефектов над массивными частями отливки устанавливают прибыли, толщина которых больше толщины питаемого ими узла, в результате чего усадочная раковина выводится в прибыль и удаляется вместе с ней после охлаждения отливки.
Схема установки прибыли 2 над отливкой 1 приведена на рис. 14.1. Прибыли бывают открытыми, когда их верхний уровень совпадает с верхним уровнем опоки, и закрытыми, когда он ниже. Предпочтительна сферическая форма прибылей. С целью повышения их эффективности прибыли утепляют путем установки вставок 6 из сухой стержневой смеси. Условия питания отливок в процессе ее затвердевания более благоприятны, если образующая в прибыли раковина 3 соединяется с атмосферой. С этой целью в прибыль заформовывают высушенные стерженьки 4
из стержневой смеси, а иногда устанавливают газотворные патроны 5, которые, разлагаясь под действием расплавленного металла, создают в раковине избыточное давление.
Основным фактором, определяющим объем усадочной раковины или суммарный объем пор, является разность плотностей в жидком и твердом состоянии. Для разных сплавов она различна, что и определяет их различную склонность к образованию усадочных раковин. Известно, что стади, ковкие и высокопрочные чугуны, сплавы меди,, сплавы на основе алюминия (кроме Al—Si) склонны к образованию раковин и пористости, в то время как серые чугуны и силумины, наоборот, дают плотные отливки и не требуют установки прибылей.
Неравномерная усадка отливки в процессе ее остывания от температур кристаллизации приводит к возникновению в ней напряжений, а иногда и трещин. Различные сплавы характеризуются различными коэффициентами линейной усадки, что и определяет их склонность к образованию трещин.
Кроме термических напряжений в отливке, связанных с неравномерностью охлаждения отдельных ее частей, могут возникать механические (усадочные) напряжения, обусловленные торможением усадки формой или стержнем, и фазовые, связанные с неодновременным протеканием фазовых превращений в сплаве. Необходимо отметить, что термические напряжения могут быть вызваны тем, что поверхностные слои отливок охлаждаются быстрее центральных зон, в результате чего в них возникнут растягивающие напряжения, а в нижележащих слоях — сжимающие.
Рассмотрим механизм образования напряжений за счет неравномерности охлаждения различных частей отливки на базе изучения условий охлаждения массивной части отливки 2 и ребра 1 (рис. 14.2, а). На рис. 14.2, б показаны кривые охлажения этих частей отливки, здесь tKp— критическая температура перехода из пластического состояния в упругое. Выше этой температуры напряжений не может возникнуть, так как пластическая деформация снимает их. На участке 1-2 (рис. 14.2, в; 1Н — начальная, 1к — конечная длина отливки) изменение длины частей отливки идет по закону, определяемому скоростью охлаждения ребра. В это время массивная часть пластична и напряжения снимаются за счет ее пластической деформации. Правее точки 2 металл обеих частей находится в упругом состоянии, но температура массивной-части выше. Если бы ребро было отделено от отливки, то его усадка протекала бы по кривой 2-Зи а усадка массивной части — по кривой 2-32. Но так как обе эти части связаны между собой, то у них общая длина, определяемая точкой 3. В результате тонкая часть сжимается на величину , а массивная — растягивается на величину т.е. после нерав-
Ч Ч ' Т |
номерного охлаждения в тонкой части возникают сжимающие, а в массивной части растягивающие напряжения. Если их величина превысит предел прочности металла, то в отливке возникнут трещины.
Разрушение металла (образование трещин) под действием внутренних напряжений происходит в различные периоды кристаллизации и охлаждения отливки, в связи с чем различают кристаллизационные, горячие и холодные трещины.
Помимо усадочных процессов и жесткости форм существенное влияние на склонность к образованию трещин оказывают состав сплава и особенно наличие примесей, образующих легкоплавкие эвтектики. Например, увеличение содержания в стали серы и фосфора повышает опасность возникновения горячих и холодных трещин.
Так как основной причиной образования напряжений является неравномерность охлаждения различных частей отливки, то главным средством борьбы с напряжениями, короблением и трещинообразованием считается выравнивание скоростей охлаждения путем утепления тонких сечений (установкой сухих стержней) и захолаживакия внутренними или наружными холодильниками массивных частей.
Склонность к газонасыщению присуща большинству сплавов. Газы (водород, азот, кислород, метан и оксиды углерода) наиболее часто встречаются в металле. Оксиды углерода СО и С02 присутствуют в виде отдельных пузырей, появившихся как следствие незавершенности процесса раскисления сплава. Кислород и основная масса азота находятся в связанном состоянии в виде оксидов и нитридов и на качество отливки существенного влияния не оказывают. Наиболее вредным газом считается водород, который в атомарном состоянии хорошо растворяется в жидких сплавах. По мере снижения температуры расплава в форме растворимость водорода снижается, и он в виде пузырьков выделяется из расплава и скапливается перед фронтом кристаллизации. Если прибыль затвердевает позже питаемого ею узла, то пузырьки газа вытесняются в прибыль. В противном случае образуются подкорковые газовые пузыри, вскрываемые при механической обработке.
Для предотвращения насыщения расплава водородом исходная шихта должна быть сухой, плавку необходимо вести форсированно, защищая металл толстым слоем шлака, нейтральными атмосферами (аргон, гелий) и вакуумом. Для удаления газов из металла после плавки применяют продувку инертным газом и обработку вакуумом.
Газовые раковины в отливке могут появиться и в связи с неудовлетворительным качеством форм и стержней. Высокая га- зотворная способность смеси, высокая влажность и плотная набивка форм, а также их низкая газопроницаемость приводят к прорыву образующихся газов и паров в расплав и образованию поверхностных газовых включений.
Ликвация — это химическая неоднородность по сечению отливки, возникающая в процессе ее затвердевания. Различают внутрикристаллическую и зональную ликвации. Внутрикри- сталлическая неоднородность является следствием кристаллизации, в результате которой центральная часть кристаллов содержит меньше растворенного в расплаве элемента, чем наружная. Эта неоднородность легко устраняется термической обработкой (высокотемпературным отжигом). Зональная ликвация характерна для сплавов, дающих при затвердевании гладкий фронт кристаллизации. В этом случае легкоплавкие примеси, газовые и неметаллические включения оттесняются фронтом в термический центр отливки. Основным средством борьбы с этим видом неоднородности считается вывод ликвата в прибыль.
Читайте также: