Спекание резины с металлом

Обновлено: 07.01.2025

Вулканизация - это технологический процесс превращения каучука в резину, с сшиванием макромолекул каучука с образованием пространственной сетчатой структуры. В результате вулканизации каучук теряет пластические свойства, становится эластичным и прочным. В большинстве случаев вулканизация, осуществляется при нагревании резиновых смесей, содержащих свободную серу, данная стадия является завершающей в производстве РТИ.

К вулканизирующим веществам относятся: сера, полисульфидные ускорители, динитробензол и тринитробензол, органические перекиси, диазосоединения, оксиды металлов, различные смолы. В связи с тем, что в промышленности находят все большее применение новые виды синтетических каучуков, некоторые из которых не вулканизуются с серой, количество вулканизирующих веществ возросло. Наиболее распространение получила серная вулканизация. В зависимости от содержания серы реакция протекает в гомогенной среде(концентрация серы равна концентрации насыщения) и в гетерогенной среде (концентрация выше концентрации насыщения). При вулканизации сера плавится и диффундирует в каучук.

Различают два вида вулканизации:

- холодная: паровая, газовая, в растворе;

- горячая: в прессах, в котлах, в среде горячего воздуха.

Различают два способа проведения процесса вулканизации:

- периодическим: в котлах, прессах, автоклавах;

- непрерывным: в кипящем слое, в расплаве солей, ротационная.

К основным параметрам вулканизации относят: вулканизационную среду, температуру, давление.

Вулканизацию проводят при высокой температуре, поэтому в качестве вулканизирующей среды применяют: насыщенный водяной пар, горячий воздух, перегретую воду. Повышенное содержание кислорода в вулканизирующей среде вызывает деструкцию каучука, иногда подвулканизацию. Наиболее выгодным теплоносителям считают насыщенный водяной пар, т.к. при отдаче тепла он конденсируется, а температура конденсата близкая к водяному пару. При применении горячего воздуха необходимо его дополнительно подогревать, при отдаче тепла, температура его уменьшается. Температура в процессе вулканизации составляет 130 °С до 155 °С. Не рекомендуют применять более высокую температуры, так как каучук легко подвергается окислительной деструкции при повышенных температурах и весьма чувствителен к перевулканизации, это влечет за собой ухудшение механических свойств.

Чем выше температура вулканизации, тем меньше продолжительность процесса, тем выше производительность оборудования. Выбор процесса зависит от толщины изделия, а также от вида каучука.

В процессе вулканизации, прежде всего, изменяются физические и механические свойства, причем в большей степени заметно улучшение эластических свойств.

Вулканизация приводит к увеличению прочности эластомера. Возникновение химических связей между молекулярными цепочками приводит к уменьшению остаточной деформации резины. В значительной степени при вулканизации изменяются и другие механические и физические свойства, такие как твердость, сопротивление раздиру, истиранию и т.д. Плотность эластомера меняется как вследствие соединения молекулярных цепей химическими связями, так и в результате присоединения агента вулканизации. Вследствие соединения молекулярных цепей химическими (вулканизационными) связями каучук теряет способность к самопроизвольному растворению в растворителях, характерному для исходного невулканизованного каучука. После образования пространственной сетки вулканизат способен лишь к ограниченному набуханию.

При рассмотрении зависимости модуля резиновой смеси от продолжительности вулканизации, можно установить три стадии:

· формирование вулканизационной сетки,

Индукционный период - это промежуток времени при температуре вулканизации, в течение которого не наблюдается измеримого сшивания. Длительность индукционного периода определяется стойкостью резиновых смесей к преждевременной вулканизации (подвулканизации). Индукционный период вулканизации увеличивает время пребывания резиновых смесей в вязкотекучем состоянии. На этом этапе в ней образуются комплексы ускоритель-активатор-сера, выступающие в качестве реальных сшивающих агентов. Из изложенного следует, что индукционный период вулканизации существенно влияет на структуру и свойства вулканизатов индивидуальных эластомеров и их комбинаций .

Вслед за индукционным периодом происходит поперечное сшивание, скорость которого зависит от температуры, агента вулканизации и состава резиновой смеси. Результатом этой стадии является формирование вулканизационной структуры резины. Если продолжать нагревание и после того, как агенты вулканизации израсходованы, то наблюдается или дальнейшее повышение жесткости, или наоборот снижение модуля вулканизата. Это – стадия перевулканизации. Завершению формирования вулканизационной структуры соответствует оптимум вулканизации. В этот момент обычно получают вулканизат с наилучшими свойствами .

Для процесса вулканизации оценивается плато вулканизации – отрезок времени, в течение которого значения измеряемого параметра, близкие к оптимальным, меняются относительно мало. Характер плато, который в значительной степени определяет поведение вулканизата при старении, сильно зависит от выбора вулканизующих агентов и их дозировки. В зависимости от типа и количества применяемых ускорителей получаются различные виды мостиков, которые сильно отличаются друг от друга по энергиям связи. В зависимости от последних получают большую или меньшую теплостойкость и, следовательно, более или менее ярко выраженную склонность к реверсии. Прочностные свойства вулканизатов вначале возрастают , доходя до некоторого предельного значения(оптимум вулканизации), а затем наблюдается снижение этих свойств (реверсия). Молекулярный механизм процесса реверсии нельзя считать полностью выясненным.

Атомы серы вступают в химическое взаимодействие с линейными молекулами каучука по месту некоторых двойных связей и собою как бы «сшивают» их друг с другом. В результате образуется гигантская молекула, имеющая три измерения в пространстве – как бы длину, ширину и толщину. Полимер приобрёл пространственную структуру. Такой каучук (резина) будет, конечно, прочнее невулканизированного. Меняется и растворимость полимера: каучук, хотя и медленно, растворяется в бензине, резина лишь набухает в нём.

Компрессионное формование, самый старый способ формования, распространенный и в настоящее время. При этом способе заготовку резиновой смеси определённой массы закладывают в каждое гнездо пресс-формы в каждом цикле вулканизации. Избыток резиновой смеси выпрессовывается из пресс-формы в канавки, расположенных вокруг полостей пресс-форм, образуя облой или заусенцы.

Недостаток компрессионного способа в том, что трудно выдерживать размеры изделия, т. к. точные размеры получаются только в том случае, когда весь избыток резиновой смеси выпрессовывается из гнёзд пресс-формы и крышка плотно садится на нижнюю часть формы. Кроме того, при получении изделий таким способом необходимо затрачивать время на разогрев заготовок до температуры вулканизации, причём во время разогрева резиновая смесь может подвулканизироваться, что приводит к браку.

Более совершенным является способ формования изделий литьем под давлением. В данном способе прессовщик вручную заполняет материальный цилиндр ре­зиновой смесью, при этом используется только одна заготовка, масса которой несколько превышает сумму масс формуемых изделий и резиновой смеси, находя­щейся в литьевых каналах. После заполнения инжекционного цилиндра резиновая смесь продавливается по литниковым каналам в полость пресс – формы, где происходит выдержка под давлением и температурой.

По сравнению с компрессионным способом изготовления фор­мовых РТИ литьевой имеет ряд преимуществ:

-независимо от числа гнезд в пресс-форме требуется одна заготовка простой конфигурации;

- время укладки одной групповой заготовки в литьевую ка­меру в несколько раз меньше времени укладки заготовок в каждое гнездо;

- возможность получения подогретой заготовки от питателя, установленного в непосредственной близости от литьевых прес­сов (продавливание резиновой смеси через литниковую систему формы повышает ее температуру и сокращает время вулканиза­ции);

- для большинства РТИ не требуются подпрессовки;

- изделия получаются с минимальным облоем и без выпрессовок;

- открытие и закрытие стационарных форм с помощью спе­циальных устройств пресса в 2—3 раза увеличивает срок их службы.

Несмотря на сложность и высокую стоимость оснастки и обо­рудования для осуществления литьевого способа перечисленные преимущества делают изготовление формовых РТИ этим методом весьма эффективным.

На производстве также применяются пресса оснащённые шнековым питателем. Отличительной особенностью этого типа литьевых прессов яввляется оснащение инжекционного цилиндра шнековым питателем, который разогревает и пластицирует резиновую смесь при подаче её в инжекиионный цилиндр, оснащённый нижним расположением гидравличе­ского механизма замыкания литье­вой формы и верхним расположе­нием механизма впрыска. Пресс ра­ботает следующим образом. Резино­вая смесь в виде ленты из катуш­ки подается к шнековому пита­телю, который ее транспортирует в инжекционный цилиндр; по мере заполнения резиновой смесью плун­жер «всплывает». После набора определенной дозы останавливается привод шнекового питателя, и гид­равлическим механизмом замы­кается литьевая форма. Далее про­исходит выдавливание резиновой смеси из инжекционного цилиндра в гнезда литьевой формы. Для предотвращения вытекания резино­вой смеси по виткам шнекового пи­тателя в период процесса впрыска в месте соединения шнекового пита­теля с инжекционным цилиндром установлен обратный клапан. После окончания цикла вулканизации пресс раскрывается, а свулканизованные изделия извлекаются из гнезд формы. Разогрев резиновой смеси шне­ковым питателем позволяет сокра­тить длительность цикла вулканизации в 2 раза .

Устройство и принцип работы пресса вулканизационного

Вертикальный литьевой пресс. Пресс оснащен плитами размером 600х600 мм с паровым обогревом до 220 0 С

Литьевые пресса фирмы «Пирелли» широко используются на заводах резинотехнических изделий. Максимальное усилие сжатия достигает 4500 кН.

Литьевой пресс фирмы «Пирелли» предназначен для производства резиновых изделий инжекционным методом объёмом до 2000 см 3 и компрессионным методом по объёму пресс-форм.

Функциональные узлы пресса

Пресс с масляным гидродинамическим приводом на четырёх колоннах, в комплекте с верхним поршнем, опускающимся вниз, состоит из следующих частей:

1Неподвижного стола, спроектированного с учётом размещения инжекционного части и выталкивателя на четырёх штоках, расположенных по бокам, справа и слева;

2Четырёх колонн, проходящих через неподвижный стол и установленных на опорной плите.

3С-образной каретки, перемещающейся по двум колоннам, с обработанными плоскостями, приспособленными для установки средней плиты обогрева или одной части пресс-формы. Движение каретки управляется двумя масляными гидродинамическими цилиндрами, смонтированными на неподвижной плите. Ход подъёма и опускания регулируется при помощи двух микро выключателей, составляет 650 мм.

4 Подвижной плиты, передвигающейся по двум колоннам и соединенной с верхней частью упорного поршня. Движение подъёма пресса осуществляется посредством двух масляных гидродинамических цилиндров, смонтированных на главном цилиндре пресса. Ход при подъёме регулируется при помощи микро выключателя, составляет 595 мм.

5 Двух плит обогрева, одна из которых закреплена на неподвижном столе, а другая на подвижном столе пресса, закаленных и отшлифованных. Нижняя плита имеет отверстие позволяющее монтаж гидроцилиндра для инжекции.

6 Выталкивателя, состоящего из четырёх штоков, расположенных слева и справа от верхней плиты обогрева. Движение выталкивателя управляется при помощи двух масляных гидродинамических цилиндров, расположенных под неподвижным столом пресса. Длина хода при подъёме и опускании регулируется при помощи двух микро выключателей и составляет 167 мм.

7 Инжекционной группы, расположенной под неподвижным столом, состоящей из гидродинамического цилиндра. Объём инжекции материала 2000 см 3

8 Бака для сбора масла гидродинамической системы, расположенного на главном цилиндре пресса и снабжённого указателем уровня.

9 Колпака для ограждения и улавливания газов, расположенного вокруг пресса, в комплекте с предохранительной дверцей.

10 Электрооборудования управления с рамкой для установки составных частей, съёмной, в комплекте с кнопочной панелью, расположенной на боковой стенке пресса

11 Масляной гидродинамической аппаратуры, расположенной сзади пресса

12 Термопневматической аппаратуры, расположенной с правой стороны пресса.

Вулканизация резины

Шиномонтажных мастерских становятся все больше и больше. Однако в дороге, как у велосипедиста, так и у автомобилиста, может возникнуть ситуация, когда колесо пробилось, а до мастерской далеко. У автолюбителя зачастую есть запасное колесо, а вот у водителя велосипеда такого колеса нет, и возникает необходимость вулканизировать камеру в пути.

Понятие о вулканизации

Вулканизация – это химический процесс, в ходе которого, сырой каучук, улучшая свойства материала в прочности и упругости, становится резиной. По сути, каучук может применяться, как специальный клей, для заделывания прокола в камере или покрышке. Процессы вулканизации резины бывают такими:

Метод горячей вулканизации

Метод горячей вулканизации

  • электрическая;
  • серная;
  • горячая;
  • холодная.

Виды резины

Резина один из немногих материалов, имеющих различную твердость. В зависимости от процентного содержания серы она бывает:

  • мягкая – содержит до 3% серы;
  • полу твердая – от 4 до 30% серы;
  • твердая – более 30%.

Мягкая резина Твердая резина Полутвердая резина

Каучук, является природным материалом, и как правило продукция изготовленная из натуральных составляющих, получается наиболее качественной и долговечной. Поэтому комплектующие для велосипедных и автомобильных колес, изготавливается из мягкой резины, в основе которой каучук.

Электрическая вулканизация резины

В целом вулканизация бывает холодной и горячей. Процесс электрической вулканизации относится к горячему способу. В качестве нагревателя в домашних условиях, используется электроплита с керамическим нагревателем, также подойдет строительный фен или обычный утюг. Оптимальная температура для данного способа 145С о . Для определения температуры, можно также воспользоваться подручными средствами, например, если лист бумаги начал обугливаться, значит, температура достигла необходимых показателей.

Электрическая вулканизация резины

Электрическая вулканизация резины

Существуют также специальные струбцины с элементом нагрева. Такие устройства могут работать от бытовой сети 220В, от автомобильного аккумулятора, через розетку прикуривателя и от собственной батареи. Все зависит от исполнения каждого прибора. Данные струбцины просты в использовании, необходимо приложить латку из резины к камере, зажать и включить в сеть.

Серная вулканизация резины

После вулканизации каучука

После вулканизации каучука

Эта операция состоит из химической реакции, в ходе которой к каучуку присоединяют атомы серы. При добавлении до 5%, получается сырье для изготовления камер и покрышек. В случае склеивания двух элементов, сера, помогает соединять молекулы каучука, образовывая так называемый мостик. Данная процедура относится к горячему способу, но вряд ли получится ее проделать ее в походе или на трассе.

Горячая вулканизация

Вулканизировать резину горячим способом нужно, только с применением пресса. Глубина и площадь пореза, подскажут, сколько времени нужно сваривать. Как правило, чтобы восстановить 1мм пореза, нужно 4 минуты варки. Соответственно если порез 4мм, то вулканизировать нужно 16 минут. При этом аппаратура должна быть разогрета и настроена.

Выполняя горячую вулканизацию при температуре выше 150С о , можно испортить каучук и ничего не добиться, так как материал будет разрушаться, и терять свои характеристики.

Использование струбцин или пресса, позволяет качественно залатать повреждение. После окончания работ следует убедиться, что в шве нет пустот или пузырьков воздуха. Если таковые имеются, нужно очистить место прокола от свежей резины и заново повторить весь процесс.

Для того, чтобы заклеить камеру в домашних условиях, горячим способом, необходимо выполнить следующее. Из сырой резины, нужно вырезать кусочек немного меньше, чем сама латка. Камера или шина зачищаются в месте повреждения несколько шире, до шероховатого состояния, после чего обезжириваются бензином. Подготавливая латку, нужно подрезать фаску таки под углом 45°, также зашкурить и обезжирить. После чего накрываем место пробоя заплаткой, зажимаем в тиски и нагреваем до нужной температуры.

Если растворить сырую резину в бензине, то можно получить специальный клей, для резины, применяя который повышается качество шва. Особое внимание следует уделять температурному режиму. Вулканизация производится при температуре 140 — 150 °С, если появился запах горелой резины, то значит заплатка перегрелась, а если она не слилась с общим изделием, то возможно не достигли нужной температуры. Во избежание прилипания резины к металлу, нужно проложить между ними бумагу.

Холодная вулканизация

В наше время воспользоваться этим методом не составляет труда, так как приобрести набор для ремонта можно в каждом магазине авто или вело запчастей. Комплектация такого набора может отличаться, но в каждом есть латки и специальный клей.

Холодная вулканизация резины

Холодная вулканизация резины

Процедура ремонта в этом случае похожа на горячий способ. Также нужно обработать поврежденную поверхность абразивом, удалить резиновую пыль и обезжирить. После высыхания нанести клей на камеру и приклеить заплатку. В этом случае играет роль не продолжительность прижатия, а его сила. Поэтому недостаточно будет просто придавить камнем, необходимо большее усилие.

Холодная вулканизация резины своими руками довольно-таки несложный процесс, который можно выполнить, где бы ни находился, если есть специальный набор. Однако сырая резина своими руками в домашних условиях не делается. Для таких работ нужно специальное оборудование.

Изготовление приспособления для вулканизации

Каждый вулканизатор имеет два основных элемента – нагревательную часть и зажимное устройство. В основе такого оборудования для обработки резины, может использоваться:

  • утюг;
  • «базарная» электроплитка;
  • поршень от двигателя.

В приспособлении с утюгом, нагревательной частью является поверхность, которой в быту гладят. Если планируем использовать электроплиту, то нагревательную спираль следует закрыть, металлическим листом, а при работе нужно прокладывать бумагу между резиной и металлом. Такое устройство должно быть оборудовано терморегулятором, во избежание перегрева материала.

Прижимную часть вулканизатора проще всего сделать из струбцины. Наиболее простым в изготовлении будет устройство, состоящее из утюга и струбцины. Поскольку они оба металлические, соединить их при помощи дуговой сварки не составит труда. Утюг же имеет терморегулятор.

В вулканизаторе из поршня, также используется металлическая пластина. На нее укладывается резиновая камера. Поршень, своей гладкой частью, которая контактирует со взрывной смесью в двигателе, при помощи самодельного зажима, придавливает латку. Между поршнем и латкой, также прокладывается бумага. После чего в поршень заливается бензин и поджигается.

Такое устройство из поршня, особенно актуально в дороге, когда нет возможности подключиться к электрической сети. Однако такое устройство лишено терморегулятора, и контролировать температуру придется вручную.

Плюсы и минусы вулканизации

Основным достоинством процесса ремонта резины является то, что отремонтировать дешевле, чем купить новое. Однако каждая ситуация индивидуальна, поэтому важно определить спасет ли ремонт ситуацию.

Холодный способ достаточно прост в использовании, это не займет много времени, а затраты будут минимальными. Главный же минус такого способа, это ненадежность склеивания. Такая процедура является временной, и следует как можно быстрее обратиться на СТО.

Горячая вулканизация надежно сваривает резину, позволяет проводить такие работы при любой температуре и имеет невысокую стоимость.

Итак, выполнить ремонт камеры или покрышки можно разными способами, но лучше доверить эту работу специалистам, потому что это собственная безопасность.

Сырая резина

Сырой резиной называют смесь, предназначенную для получения упругих материалов. Их получают в процессе обработки приготовленного состава, называемой вулканизацией.

Рулон сырой резины

Рулон сырой резины

Изготовление сырой резины

В качестве основы при изготовлении этого сырья берут каучук, это может быть и природный, и искусственный каучук. В качестве пластификаторов могут быть применены такие вещества, как:

песок (диоксид кремния);

и многие другие.

Изготовление сырой резины

Изготовление сырой резины

Готовое изделие поставляется заказчику либо в виде листов, либо смотанной в рулон ленты.

После перемешивания компонентов, полученную смесь направляют на вальцы или каландр, на этом оборудовании и происходит формирование рулонов или листов. После прохождения через этот станок каучуковая смесь приобретает форму листа, необходимой ширины и высоты.

Существует это сырье и в жидкой форме. По внешнему виду это вещество напоминает мед, с той разницей, что оно имеет черный цвет.

После получения листа, сформированного из заранее подготовленной смеси его, оклеивают полимерной пленкой. Все дело в липкости этого сырья.

Сырая резина оклеенная полимерной пленкой

Сырая резина оклеенная полимерной пленкой

Инструкциями по изготовлению сырой резины предусмотрены режимы, позволяющие производить качественное сырье с малыми расходами.

Это сырье может быть использовано для заделки пробоин в камерах, лодках и других РТИ. Для этого используют методику холодной вулканизации. В результате отверстие будет заделано, но не надолго. Для выполнения полноценного ремонта обеспечить выполнение горячей вулканизации сырой резины. В этом случае, происходит образование длинноразмерых молекул, связанных между собой серой. Ремонт с применением технологии горячей вулканизации резины повсеместно применяют на станциях технического обслуживания автомобилей. Производство практически всех видов резиново-технических изделий происходит при –температуре вулканизации сырой резины в 150 градусов Цельсия.

Компоненты сырой резины

Для получения сырой резины требуется использование натурального или искусственного каучука. При его нагреве до 50 градусов каучук становится мягким и податливым и именно в таком состоянии его перемешивают с другими компонентами. Эти компоненты и обеспечивают резине заданные технические свойства.

В состав сырой резины входят следующие группы материалов

  • ускорители;
  • умягчители;
  • антиокислители.

Каждое вещество из этих групп оказывает на готовое изделие определенное влияние. Например, оксид цинка относят к ускорителям (катализаторам). Это вещество обеспечивает быстрое взаимодействие всех ингредиентов, соответственно процесс получения готового изделия ускоряется.

Оксид цинка для сырой резины

Оксид цинка для сырой резины

После того как смесь из сырой резины получена, начинается процесс ее старения. То есть она теряет некоторые свои свойства, например, эластичность. Такой процесс называют скорчингом. Для замедления этого процесса в состав сырой резины вводят специальные вещества антиокислители.

Сажа строительная Мел строительный

Такие компоненты, как мел, сажа и некоторые другие существенно повышают прочностные характеристики готовых изделий. Использование сторонних компонентов не только повышает эксплуатационные характеристики, но и приводит к снижению стоимости готового изделия. Все дело в том, что наличие дополнительных ингредиентов приводит к снижению объема натурального каучука. Пластификаторы, добавляемые к синтетическому каучуку, повышают износостойкость резины.

Виды сырой резины

Существует несколько видов сырой резины, их можно классифицировать по виду поставки.

Вальцованная резина – эта смесь поставляется в мешках по 30 кг и не может храниться более 3 месяцев.

Вальцованная резина

Каландрированная рулонная смесь поставляется с толщиной в несколько миллиметров. Вес рулона колеблется от 15 до 30 кг.

Каландрированная рулонная смесь

Каландрированная рулонная смесь

Это сырье можно разделить на следующие классы:

  • общего назначения;
  • бензо- маслостойкую;
  • специализированную.

Для последующей обработки, применяют резину для вулканизации, ее обрабатывают в специальных формах.

Преимущества и недостатки сырой резины

Использование натурального или синтетического каучука придает сырой резине ряд свойств в частности, ее можно использовать при ремонте автомобильных покрышек.

Ремонт автопокрышки сырой резиной

Ремонт автопокрышки сырой резиной

В зависимости от состава этот материал имеет высокие прочностные характеристики. Но следует, отметит и то, что с течением времени, каучуковая смесь теряет свои свойства. В частности, она становится хрупкой, и время вулканизации будет соответственно увеличено.

Наличие среди компонентов соединений кремния приводит к тому, что готовые изделия будут обладать достаточной твердостью и устойчивостью к износу.

Сырая резина — применение

Основное применение этого материала – это ремонтные работы. Кроме этого ее применяют для создания различных прокладок, применяемых в трубопроводной арматуре.

Для ремонта камер и покрышек чаще все применяют листовую резину. При этом необходимо соблюдать определенные технологические правила. В частности, края поврежденного места необходимо зачистить или с помощью напильника или грубой абразивной шкурки. После этого необходимо выровнять края поврежденного места. Место, на которое будет нанесена заплатка, должно быть обработано обезжиривающим составом.

После этого можно положить на поврежденное место кусок этого материала, его размер должен превышать размер поврежденного места. Уложенную заплатку надо зафиксировать с помощью струбцины и выполнить вулканизацию. Для этого можно использовать или серийно выпускаемый вулканизатор или самостоятельно изготовленный.

Жидкая резина

Как уже отмечалось выше, кроме листового и рулонного вариантов, каучуковая смесь может иметь жидкую форму. Как правило, в ее основе лежат два компонента – отвердитель и наполнитель.

Этот продукт нашел свое применение в строительстве, его используют при обустройстве гидроизоляции. Этот материал отличает отличная адгезия к большинству строительных материалов, кирпичу, бетону и пр. Укладка изоляции с помощью напыления позволяет создавать цельное (бесшовное) покрытие. Кроме того, такой подход позволяет тщательно обрабатывать углы, воронки и другие труднообрабатываемые места.

Получаемое гидроизоляционное покрытия обходится дешевле, чем использование традиционных кровельных материалов. Это происходит за счет сокращения необходимого количества персонала и уменьшения затрат времени на выполнение работ по обустройству покрытия . Кроме того, компоненты, входящие в состав жидкого покрытия обеспечивают устойчивость не только к воздействию влаги или снега, кроме того, невосприимчивость по отношению к ультрафиолетовому излучению. Кроме перечисленных свойств следует отметить и то, что данная гидроизоляция полностью экологически безопасна.

Способы крепления резины к металлу в процессе вулканизации.

В промышлен­ности РТИ применяются несколько видов горячего крепления:

а) эбонитом в качестве промежуточного слоя;

б) термопреновым клеем;

в) нанесением тонкого слоя латуни на поверхность металла;

г) специальными клеями (из производных каучука, изоцианатными и др.).

Горячее крепление

Для изготовления деталей применяется сырая резина, приобретающая необходимые свойства в процессе вулканизации.

В процессе горячего крепления резина присоединяется к металлу либо непосредственно, либо через промежуточный слой.

Непосредственно прикрепляются к металлам эбонит или резина, в состав которых введены соединения меди, железа или некоторых других металлов. Объясняется это тем, что основным звеном, связывающим каучук с металлом, является сера, наличие которой в резиновой смеси является обязательным. Сера, находящаяся в резиновой смеси, вступая в реакцию с металлами, образует сульфидные соединения, обеспечивающие крепление резины к металлической поверхности. Наиболее активно сера вступает в реакцию с медью, в результате которой образуются сульфиды меди, дающие прочное соединение.

В качестве промежуточных слоев при креплении резины к металлам используются эбонит, латунь и различные клеи, обладающие способностью хорошо прилипать как к металлам, так и к резине в процессе ее вулканизации.

1) Крепление с применением латунирования - крепление через промежуточный слой латуни - является наиболее современным, известным методом,

С помощью этого метода крепят резину к стали, алюминию, бронзе и др.

Сущность способа заключается в предварительном электролитическом осаждении тонкого (0,00125—0,0015 мм) слоя латуни (например, из цианистых электролитов) на поверхность металлических деталей, подлежащих обрезиниванию, и непосредственном креплении резины к латунированной поверхности металла.

После промывки и сушки латунированная арматура поставляется на вулканизацию. Резиновая смесь должна быть свежекаландрованной или свежеэкструдированной. Формы с латунированными деталями иногда заполняют резиновой смесью методом литья под давлением.

Латунирование состоит из трех основных операций: обезжиривания, травления и электро­отложения, сопровождаемых промывками водой. Для удаления уг­лерода, остающегося на поверхности металла после травления, применяется механическая обработка стальными щетками (так на­зываемое крацевание). Для удаления пленки окислов применяется химическая обработка (так называемое декапирование). Основные операции проводятся в электролитических ваннах при определен­ных режимах. Промывка производится в горячей (40—80 °С) и хо­лодной проточной воде, а сушка — в термостате при 80—100 °С с продувкой воздуха

Достоинства метода: высокая прочность, наибольшая температуростойкость, масло- и бензостойкость, хорошее сопротивление ударам и вибрациям. При этом резина хорошо крепится только к латуни, свободной от оксидов или каких-либо поверхностных загрязнений.

Недостатки: метод пригоден в основном для крепления резины к небольшим деталям, т.к. на поверхность больших деталей сложной конфигурации трудно равномерно и прочно осадить латунь. Также метод требует сложных подготовительных операций, требующих специального оборудования.

Применяется для производства латунированного металлокорда, используемого для изготовления автопокрышек и безбандажных массивных шин.

2) Крепление через слой эбонита - наиболее простой и достаточно надежный способ крепления резины к металлам

Этим способом крепят резину к стали, дюралюминию, латуни, бронзе и другим сплавам.

Способ заключается в подготовке поверхности металла (очистке, обезжиривании), нанесении эбонитового клея и слоя эбонитовой смеси, наложении резиновой смеси, формовании и вулканизации под давлением.

Прочность соединения эбонитов с металлами достигает 15—20 МПа.
Высокая прочность крепления резины с металлом через эбонитовую прослойку обусловливается межмолекулярным взаимодействием полярных серосодержащих групп эбонита с металлом, малой деформируемостью эбонита и высокой прочностью связи между эбонитом и резиной в результате совместной вулканизации.

Наличие молекулярного контакта между резиной и слоем эбонитовой смеси к началу вулканизации не является обязательным, так как связи между ними возникают значительно позже, когда эбонитовая смесь и резина находятся в стадии размягчения и опрессование полностью заканчивается.

К преимуществам крепления через эбонитовую прослойку относятся простота и надежность метода. Однако имеются и существенные недостатки, обусловленные специфическими свойствами самого эбонита.

Недостатки метода: вулканизация эбонита - процесс длительный, что снижает производительность оборудования и плохо отражается на свойствах резины. Эбонит хрупок, чувствителен к ударам и вибрациям, что исключает использование изделий с эбонитовой прослойках в условиях динамического нагружения. Эбонит не температуростоек. При температуре выше 60 °С эбонит размягчается, что снижает прочность крепления в несколько раз. Термический коэффициент линейного расширения у эбонита в 3—5 раз больше, чем у металла, поэтому при резких изменениях температуры эбонит нередко отслаивается от металла, а при низких температурах — растрескивается.

Применяется в производстве массивных шин применяется довольно часто.

3) Специальные клеи.

Первыми клеями для холодного крепления были клеи на основе бутумов и нефтяных пеков, иногда в смеси с каучуком или гуттаперчей.

Широкое применение находят клеи на основе хлоропренового каучука. Значительная прочность крепления клеями из хлоркаучука объясняется тем, что высокое содержание хлора создает сильную поляризацию каучуковых молекул, образующих прослойку между металлом и резиной.

Для крепления резины из бутадиен-нитрильного каучука рекомендован клей из хлоркаучука с содержанием хлора 65—68%, дающий прочность крепления 300—400 Н/см2 при температуре до 100 °С; с дальнейшим повыше­нием температуры прочность такого клея сильно падает. Для крепления резин на натуральном каучуке применяют клей Q; для резин нефтестойких — клей S; имеются и другие виды этого клея, в том числе и для крепления без вулканизации. Базой этих клеев является гидрохло­рид каучука. Ряд клеев рекомендован Научно-исследовательским институтом резиновой промышленности, в том числе клей 88Н для крепления резины к металлу без нагрева и лейконат для кре­пления в процессе вулканизации. Лейконат представляет собой раствор триизоцианаттрифенилметана в дихлорэтане. Раствор этого же изоцианата в метиленхлориде известен под названием десмодура R. Прочность связи с применением изоцианатов дости­гает 500—1000 Н/см2. Крепление мягких резин с помощью изо­цианатов достаточно прочно и устойчиво к теплу, растворителям, к ударной нагрузке. Известно также применение клеев из хлори­рованных каучуков и фенольных смол и клеев из хлорирован­ных каучуков и изоцианатных растворов.

Крепление с помощью термопреновых клеев.

При действии на натуральный каучук серной кислоты и сульфокислот образуются термопрены. В зависимости от условий получения и количества серной кислоты можно получить термрпрены разной твердости.

Термопрены термопластичны, способны размягчаться при нагревании.

Получение термопренов. Сульфокислоты (нелетучи и равномерно распределяются в каучуке) 6-7% смешивают с натуральным каучуком на вальцах, полученную резиновцю смесь при 140°С нагревают в течении 3-5 ч. После термообработки промывают смесь для удаления кислот и сушат . Состав термопрена близок к (С5Н8)х.

Получают термопреновый клей, растворяя термопрен в бензине в обогреваемой клеемешалке при 50 °С. Соотношения термопрена и бензина в термопреновом клее 1 :8 и 1:12.

Подготовлен­ный к обкладке металл промазывают 2—3 раза термопреновым клеем, сначала жидким, а затем более густым, с тщательным просушиванием каждого слоя промазки. Далее следуют накладка и прикатка обкладочных смесей.

Вулканизация. Обкладку на термопреновой про­слойке целесообразно вулканизовать в котле при давлении пара 2,5—3-10 5 Па, затем следует охлаждение в котле под давлением, достигаемое подачей в котел сжатого воздуха и вбрызгиванием холодной воды. Давление воздуха дово­дится до 6-10 5 Па и поддерживается, пока температура не пони­зится до 60—70 °С, т. е. до температуры затвердевания термопрена, при которой и происходит сцепление термопрена с резиной и ме­таллом.

Применение термопренового клея позволяет прикрепить пред­варительно вулканизованную пластину мягкой резины к металлу или дереву.

Чтобы обеспечить лучшее сцепление вулканизованной резиновой обкладки с термопреновым слоем, поверхность пластины делают шероховатой, закатывая пластину перед вулканизацией на барабан с прослойкой грубой ткани. На швы обкладки наклады­вают ленточки из сырой, быстро вулканизующейся смеси. Разог­рев термопренового слоя и вулканизацию швов производят при 100 °С.

Удовлетворительная прочность крепления при использовании термопреновых клеев достигается только при охлаждении под давлением детали после вулканизации.

Недостатки: понижение прочности крепления с повышением температуры, т.е. невысокая теплостойкость. Однако несложность, и возможность термопренового крепления вулканизованной мягкой резины к металлу, с проч­ностью на отрыв порядка 100 Н/см2, сохраняют некоторую практическую зависимость. Прибавление 8% гексаметилентетра-мина (в пересчете на сухое вещество в термопреновом клее) повы­шает прочность крепления до 130 Н/см2.

Крепление с помощью латексно-альбуминных и термопреновых клеев.

Плёнка альбумина ( Альбумин - это серосодержащий водорастворимый белок, который коагулирует (слипается) при нагревании) обладает хорошей адгезией к металлу, но она не эластична. Поэтому к ней добавляют латекс, получая эластичную плёнку с хорошей адгезией.

На очищенную поверхность металла наносят 1-2, а иногда и большее число слоёв клея. Общее число слоёв клея при этом должно составлять толщину 2…3 мм. Каждый слой клея сушат при температуре 65-70°С в течение 30-60 минут, а затем металлическую деталь с нанесённым на неё клеем нагревают в термостате при 100-120° С также в течение 30-60 минут. После охлаждения детали на неё накладывают резиновую смесь передают деталь на вулканизацию.

Достоинства метода: нетоксичность латексно - альбуминных клеев.

Недостатки: необходимость тепловой обработки клеевых плёнок, нестабильность самого клея, необходимость применения натурального латекса.

Методы горячего крепления резины к металлу посредством латексно-альбуминных и термопреновых клеев в промышленности на данный момент практически не используются.

Крепление посредством клеёв на основе хлорированного и гидрохлорированного каучуков

В 50-х годах прошлого века были разработаны клеи на основе хлорированного (ХК) и гидрохлорированного (ГХК) каучуков, которые обеспечивали такую же прочность крепления резины к металлу, как латунь, а также такую же масло- и теплостойкость.

С 1946 года метод крепления резины к металлу посредством ХК и ГХК стал конкурировать с методом крепления посредством латунирования.

Для приготовления клеев следует брать ХК с содержанием хлора около 60%. Такой ХК во время вулканизации резинометаллической детали в течение 20-60 минут при 140-150°С сохраняет достаточную устойчивость. Он не горюч, стоек к действию холодной и горячей воды, кислот (серной, соляной, азотной), к действию щелочей и окислителей.

Раствор ХК (клей) применяют для крепления резины к чугуну, стали, алюминию и его сплавам, магнию, цинку и другим материалам.

Прибавление серы к клеям из ХК способствует повышению адгезии при креплении. С их помощью крепят резины из неопрена к латуни.
Клеями из ХК можно крепить к металлам резины из хлоропренового каучука (неопрена) и бутадиен-нетрильного каучука (СКН, Пербунан).

При креплении резин из натуральных каучуков и бутадиен-стирольных каучуков между клеем и резиной вводиться промежуточный слой клея из хлоропренового каучука или прослойка резины из него.

Резины из бутил-каучука крепятся плохо.

Достигаемая прочность крепления резины к металлу при испытания на отрыв: 40-60 кг/см2. С повышением температуры прочность падает до 20-30% начальной.

Достоинства метода: хорошая сопротивляемость старению, стойкость к действию кислот, щелочей и морской воды (в этом способ крепления резины к металлу посредством ХК превосходит даже крепление латунированием).

Недостатки: крепление неустойчиво к воздействию ароматических углеводородов, животных и растительных масел, эфиров и кетонов.

Гидрохлорированные каучуки впервые были получены при пропускании влажного HCl через хлороформенный раствор каучука. По окончании реакции происходит резкое падение вязкости раствора. Теоретическое содержание хлора в ГХК равен 33,9%. В технических продуктах содержится 28 … 30% хлора.

Читайте также: