Современные металлы и сплавы
О том, что свойства металлов меняются при их сплавлении, стало известно ещё в древности. 5 тысяч лет тому назад наши предки научились делать бронзу — смесь олова с медью. Бронза по твёрдости превосходит оба металла, входящие в её состав.
Свойства чистых металлов, как правило, не соответствуют необходимым требованиям, поэтому практически во всех сферах человеческой деятельности используют не чистые металлы, а их сплавы. Это материал, который образуется в результате затвердения расплава двух или нескольких отдельных веществ. В их состав, кроме металлов могут входить также неметаллы, например, такие как углерод или кремний.
Добавляя в определённом количестве примеси других металлов и неметаллов, можно получить многие тысячи материалов с самыми разнообразными свойствами, в том числе и такими, каких нет ни у одного из составляющих смесь элементов. Сплав по сравнению с исходным металлом может быть механически прочнее и твёрже, со значительно более высокой или низкой температурой плавления, устойчивее к коррозии, устойчивее к высоким температурам,практически не менять своих размеров при нагревании или охлаждении и т. д.
Применение в качестве конструкционных материалов
Сплавы, используемые для изготовления различных конструкций, должны быть прочными и легко обрабатываемыми. В строительстве и в машиностроении наиболее широко используются смеси железа и алюминия. Такие сплавы железа, как стали, отличаются высокой прочностью и твёрдостью. Их можно ковать, прессовать, сваривать.
Чугуны используют для изготовления массивных и очень прочных деталей. Например, раньше из чугуна отливали радиаторы центрального отопления, канализационные трубы, до сих пор изготавливают котлы, перила и опоры мостов. Изделия из чугуна изготавливаются с применением литья.
Сплавы алюминия, используемые в конструкциях, наряду с прочностью должны отличаться лёгкостью. Дюралюминий, силумин — соединения алюминия, они незаменимы в самолёто-, вагоно- и кораблестроении. В некоторых узлах самолётов используются смеси магния, очень лёгкие и жароустойчивые.
В ракетостроении применяют лёгкие и термостойкие соединения на основе титана. Для улучшения ударопрочности, коррозионной стойкости, износоустойчивости сплавы легируют — вводят специальные добавки. Добавка марганца делает сталь ударопрочной. Чтобы получить нержавеющую сталь, в состав смеси вводят хром.
Инструментальные сплавы
Предназначены для изготовления режущих инструментов, штампов и деталей точных механизмов. Такие соединения должны быть износостойкими и прочными, причём при разогревании их прочность не должна существенно уменьшаться. Таким требованиям отвечают, например, нержавеющие стали, которые прошли специальную обработку (закалку).
Добавление к сплавам веществ, улучшающих их свойства, называют легированием. Для придания необходимых свойств инструментальные стали, как правило, легируют вольфрамом, ванадием или хромом.
Применение в электротехнической промышленности, электронике и приборостроении
Сплавы служат незаменимым материалом при изготовлении особо чувствительных и высокоточных приборов, различного рода датчиков и преобразователей энергии. Например, на изготовление сердечников трансформаторов и деталей реле идёт смесь никеля. Отдельные детали электромоторов изготавливаются из соединений кобальта. Сплав никеля с хромом — нихром, отличающийся высоким сопротивлением — используется для изготовления нагревательных элементов печей и бытовых электроприборов.
Из сеодинений меди в электротехнической промышленности и в приборостроении наиболее широкое применение находят латуни и бронзы. Латуни незаменимы при изготовлении приборов, деталью которых являются запорные краны. Такие приборы используются в сетях подачи газа и воды. Бронзы идут на изготовление пружин и пружинящих контактов.
Применение легкоплавких сплавов
Главным востребованным свойством является заданная низкая температура плавления. Это свойство, в частности, используется для пайки микросхем. Кроме того, эти соединения должны иметь определённую плотность, прочность на разрыв, химическую инертность, теплопроводность.
Легкоплавкие смеси производят из висмута, свинца, кадмия, олова и других металлов. Такие сплавы используют в термодатчиках, термометрах, пожарной сигнализации, например, сплав Вуда. А также в литейном деле для производства выплавляемых моделей, для фиксации костей и протезирования в медицине. Соединение натрия с калием (температура плавления –12,5 °С) используется как теплоноситель для охлаждения ядерных реакторов. Легкоплавкие смеси используются в литейном деле, незаменимы в датчиках пожарной сигнализации
Применение в ювелирном деле
Применение в чистом виде драгоценных металлов в ювелирном деле не всегда оправдано и целесообразно из-за их дороговизны, физических и химических особенностей. Для придания ювелирным изделиям из золота большей твёрдости и износостойкости используются сплавы с другими металлами. Самая лучшая добавка — это серебро (понижает температуру плавления) и медь (повышает твёрдость). Чистое золото используют очень редко, так как оно слишком мягкое, легко деформируется и царапается.
Из смеси золота с 10–30 % других благородных металлов (платины или палладия) изготавливают форсунки лабораторных приборов, а из соединений с 25–30 % серебра — ювелирные изделия и электрические контакты.
Сплавы в искусстве
Оловянная бронза (смесь меди с оловом) — один из первых освоенных человеком соединений металлов. Она обладает большей, по сравнению с чистой медью, твёрдостью, прочностью и более легкоплавка. Бронзы успешно применяют для получения сложных по конфигурации отливок, включая художественное литьё. Классической маркой бронзы является колокольная бронза.
Одно из новых направлений в искусстве — производство художественных литых изделий из чугуна. Литые изделия из чугуна существенно превосходят по качеству кованые изделия. Чугун — металл гораздо более хрупкий и не такой ковкий, как сталь. Но даже из такого, казалось бы, грубого материала можно получать настоящие произведения литейного искусства способом литья, например, такие как литые лестницы или решётки на окна. Такие изделия подвержены лишь поверхностной коррозии и не требуют тщательного ухода.
Какие они, металлы будущего?
Металл – материал, без которого не обходится ни одна отрасль хозяйства. Создаются новые сплавы, которые используются в электронике, космических исследованиях, атомной энергетике. Редкоземельные металлы используют для развития современных технологий, без которых мы себя не представляем.
Мировые залежи редкоземельных металлов
Экономика мира многих государств зависит от наличия редкоземельных металлов, которые используются в высокотехнологических отраслях экономики. Развитие электроники, создание медицинских имплантатов, освоение космического пространства, все это, требует новых материалов. В природе редкие металлы встречаются крайне редко, что видно и из названия. Разработка многих очень затратная. Не все они соответствуют необходимым стандартам для новых разработок.
К такой группе металлов можно отнести 17 элементов, которые обладают схожими физико-химическими свойствами. Это церий, скандий, тулий и другие элементы. Чаще всего они встречаются в виде оксидов, что затрудняет их разработку.
Добавление этих элементов к сплавам металла улучшает их свойства, дает возможность использовать для развития передовых технологий. Наличие таких сплавов сильно влияет на развитие экономики. На сегодня основные залежи редкоземельных металлов находятся в Китае, Австралии и некоторых районах Африки.
Передовым странам, для развития экономики приходится делать научные разработки новых материалов, которые могут заменить редкоземельные металлы. В этом направлении работают многие американские и европейские научно-исследовательские институты. Они добились больших результатов над созданием новых соединений металлов, которые так необходимы экономике всех развитых стран.
Создание редких сплавов
Нано технологии позволяют создавать новые металлические сплавы. Прогресс не стоит на месте и требует усовершенствования металлических сплавов
1. Легкая гибкая сталь.
В Корее, ученые разработали новый сплав, который прочный как сталь, но намного легче титана. Для его создания была использована нано технология. Сплав состоит из амальгамы стали, алюминия, углерода, марганца и никеля. Цена такого металла не будет дорогой, потому, что он содержит в своем составе распространенные полезные ископаемые.
Развитие медицины, электроники, космонавтики требуют металлических материалов, которые обладают высокой прочностью, легкостью, не подвержены коррозии.
2. Синтетический пористый материал Microlattice
Этот материал представляет собой суперлегкий сплав, который на 99.9% состоит из воздуха. Если его положить на раскрытый одуванчик, он будет лежать на его поверхности, без всякого вреда для цветка. Его структура напоминает человеческую кость. Благодаря инновационным технологиям удалось создать металл, который состоит из сплетенных между собой полых трубок. Такое строение позволяет сделать его очень легким. Его вес в 100 раз меньше пенопласта. Несмотря на это металл очень прочный и выдерживает огромные нагрузки.
Стенки трубок, из которых сделан металл, в 1000 раз тоньше человеческого волоса, составляют 100 нанометров. Сделать такую структуру удалось с помощью инновационной технологии аддитивного производства, которая напоминает 3Д печать. Сеть трубок копируют конструкцию поддержания мостов. На этой основе построена Эйфелева башня. Лабораторный метод создания металла использует специальные полимеры, которые формируют всю систему за один раз, быстро реагируют на свет.
Метод 3Д при формировании материала заключается в том, что свет проходит через специальный фильтр, который находится в жидком полимере, за несколько секунд формируется трехмерная решетка.
Металл имеет свойства видоизменяться в зависимости от предназначения. Для этого в жидкий полимер добавляют разные примеси в виде керамики или других металлов. Такие манипуляции помогут получить дополнительные свойства металла. Разработали этот материал американские ученые.
3. Пластмассовый металл
Ученые разработали металл, который обладает свойствами пластмассы (тягучесть при низких температурах) и прочности как у стали. Эти свойства расширяют сферу деятельности таких материалов. Способность металла гнуться, принимать любую форму и переходить в тягучее состояние дало возможность использовать его в разработке имплантатов и микроэлектронике. Основой такого материала являются «аморфные металлические стекла». Этот материал ждет большое будущее.
4. Гидрофобный металл
Способность металлической поверхности отталкивать воду, превращая ее в резиновые мячики, которые с легкостью отскакивают с поверхности металла, являют собой новую разработку американских ученых. Это совершенно новая технология, которая заключается в специальной лазерной обработке поверхности. Такое научное открытие поможет в самолетостроении и строительстве кораблей. Использовать металл, чтобы защитить судна от обледенения и коррозии.
5. Нано технология соединения кремния и магния
Научные разработки для получения легких и прочных металлов увенчались успехом, когда соединили магний и кремний. Этот металл получился плотным и легким, что очень важно для самолетостроения. Сделать объединение двух металлов получилось благодаря особой технологии, когда карбидокремниевые частицы распыляются в магний. Такой подход позволил сделать металл прочным и пластичным. Он не поддается действию высоких температур. Эта особенность металла позволяет использовать его в самолетостроении, где плотность и легкость очень важны. Также в перспективе он будет использоваться в медицине и электронике.
6. Самый прочный металл
На стадии разработки сверхпрочный металл, который сделан на основе углерода, азота, гафния. Его температура плавления 4126 градусов, это 2/3 от температуры поверхности солнца. Этот материал еще не имеет названия. Его образец был использован для изготовления когтей для Росомахи, героя фильма «Люди Икс». Работы по усовершенствованию еще продолжаются. Основное направление его использования – космическая отрасль.
Какие бывают виды металлов и сплавов?
Металлы окружают нас повсюду: их них сделаны автомобили, каркасы домов, бытовая техника, смартфоны и многие другие изобретения человечества. Но много ли мы о них знаем? Первое, что нужно знать о металлах — это то, что они делятся на черные и цветные. Из этих разновидностей металлы разделяются еще на несколько больших групп, в зависимости от их свойств. Давайте сразу же перейдем к конкретике. В этом материале мы вкратце разберемся, по каким признакам металлы разделяются по разным группам и в каких отраслях они применяются.
На сегодняшний день науке известно более 90 видов металлов и все они используются в самых разных сферах
Характеристика металлов
Металлы — это группа из более 90 простых веществ из периодической таблицы Менделеева. В природе они редко обнаруживаются в чистом виде, поэтому их чаще всего добывают из руды. Так называют вид полезных ископаемых, которые представляют собой соединение нескольких химических компонентов, вроде минералов и тех же самых металлов. Металлам характерны несколько свойств, по которым их разделяют по группам:
- твердость — сопротивление к проникновению в материал другого, более твердого тела;
- прочность — стойкость к разрушению под воздействием внешней нагрузки;
- упругость — изменение формы материала под воздействием внешних сил и восстановление ее после того, как эти силы перестают на нее воздействовать;
- пластичность — изменение формы материала под внешним воздействием и сохранение ее после устранения этого воздействия;
- износостойкость — сохранение хорошего внешнего вида и физических свойств материала после сильного трения;
- вязкость — способность материала вытягиваться под воздействием внешних сил;
- усталость — свойство материала выдерживать многократные нагрузки;
- жароустойчивость — сопротивление окислительным процессам при нагревании до высоких температур.
Недавно ученые создали улучшенный алюминиевый сплав 6063, который уничтожает бактерии. Считается, что из него можно будет изготавливать ручки дверей больниц и других общественных мест.
Черные металлы
Три главные особенности черных металлов: большая плотность, высокая температура плавления и темная окраска. Так как с черными металлами в чистом виде тяжело работать, в них добавляют легирующие компоненты — примеси для изменения физических и химических свойств основного материала.
Чтобы придать черным металлам форму, их сначала нагревают до высоких температур, а потом прессуют
Черные металлы делятся на 5 подгрупп:
Железные металлы
К ним относятся кобальт, никель и марганец. Они применяются как добавки к железу — чаще всего, из сплавов получают прочную сталь, которая используется в изготовлении различных деталей для крупной техники, ножей и других изделий.
Из стали изготавливаются прочные и красивые ножи причем не только кухонные
Тугоплавкие металлы
К этой подгруппе относятся ниобий, молибден, вольфрам и рений. Их общей чертой является то, что ох температура плавления выше, чем у железа — то есть, составляет более 1539 градусов Цельсия. Из них, как правило, изготавливают детали для техники и нити накаливания для различных лампочек.
Нити накаливания в лампочках, как правило, сделаны из вольфрама
Урановые металлы
В эту группу входят уран, калифорний и другие радиоактивные металлы. Они используются исключительно в отрасли атомной энергетики.
В древние времена уран использовался для изготовления желтой посуды
Редкоземельные металлы
В эту классификацию входят лаптан, празеодим, неодим и другие металлы. Все они серебристо-белого цвета и имеют практически полностью одинаковые химические свойства. Свое название редкоземельные материалы получили потому, что их трудно найти в земной коре. Они используются в атомной энергетике и машиностроении. Например, из редкоземельных металлов можно создавать стекла, которые не пропускают через себя ультрафиолетовые лучи.
Редкоземельный элемент скандий используется в ртутно-газовых лампах
Щелочноземельные металлы
В эту подгруппу входят бериллий, магний, кальций, радий и другие металлы. Все они окрашены природой в серый цвет и при комнатной температуре всегда остаются в твердом состоянии. В чистом виде они практически нигде не применяются, за исключением атомных реакторов.
Щелочноземельный элемент бериллий используют для изготовления рентгеновских трубок, через которые лучи выходят наружу
Цветные металлы
Цветные металлы стоят дороже черных, потому что более востребованы в мире. Они нужны при изготовлении автомобилей, строительстве домов и в области высоких технологий — именно они являются основными материалами при изготовлении смартфонов и другой электроники. В сфере строительства они нужны для изготовления всевозможных арматур, балок, уголков и так далее.
Железо и его сплавы относятся к черным металлам, а все остальное — это цветные металлы
Цветные металлы принято разделять на три группы:
Тяжелые металлы
Самыми яркими представителями этой категории цветных металлов считаются медь, латунь и бронза. Наибольшим спросом среди них пользуется медь, потому что она — отличный проводник электрического тока и широко применяется в электронике. Из латуни изготавливают различные проволоки, подшипники и другие металлические элементы. Из бронзы нередко делают памятники, потому что она не боится дождя, снега и механических повреждений.
Легкие металлы
Самые популярные легкие металлы, это алюминий, магний и титан. Их довольно легко расплавить, а также они легче черных металлов. Благодаря устойчивости к коррозии, высокой пластичности и небольшой массе, алюминий активно используется в строительстве самолетов и автомобилей. Магний широко применяется в изготовлении корпусов для различной техники, начиная с фотоаппаратов и заканчивая двигателями. Титан отличается высокой прочностью и небольшой массой, поэтому применяется при изготовлении космических ракет.
В воздухе алюминий мгновенно покрывается пленкой, которая защищает ее от возникновения ржавчины
Благородные металлы
К благородным металлам относятся золото, серебро и платина. Из-за сложности добычи и своей красоты, они считаются самыми дорогими разновидностями металлов. Их стоимость постоянно меняется и их можно купить в банках, тем самым вложив в них свои деньги. Также благородные металлы широко используются в ювелирном деле. Из них изготавливаются кольца, браслеты и прочие украшения.
Про алюминий можно почитать в материале про самые ценные металлы в мире
Виды сплавов
Сплавами называют материалы, которые состоят из двух и более металлических компонентов. Как правило, сплавы состоят из основы, в которую входят несколько металлов, и так называемых легирующих элементов — они необходимы, чтобы придать сплаву мягкость, эластичность и другие свойства. Чаще всего в промышленности применяются смеси с использованием железа и алюминия, но вообще существует более 5 тысяч разновидностей сплавов.
В большинстве своем металлы, с которыми мы взаимодействуем — это сплавы
Сплавы делятся на два вида: литые и порошковые. Литые сплавы получаются путем смешивания расплавленных компонентов. А порошковый метод получения сплавов подразумевает прессование порошков нескольких металлов и их последующее спекания при высоких температурах.
Из металлических сплавов сегодня изготавливается практически все, вплоть до скамеек
По назначению сплавы делятся на конструкционные, инструментальные и специальные. Конструкционные сплавы предназначены для изготовления деталей автомобилей. Из инструментальных сплавов, как можно понять из названия, изготавливают инструменты — например, различные молотки и ножи. А специальные сплавы используются для изготовления деталей специального назначения — например, для предотвращения трения.
Как видно, металлов очень много и они сильно друг от друга отличаются. На тему металлов также рекомендую почитать материал, в котором я рассказал о самых интересных разновидностях этого материала. Вот знаете ли вы, как называется самый редкий металл на нашей планете и как его добывают?
СПЛАВЫ
СПЛАВЫ, материалы, имеющие металлические свойства и состоящие из двух или большего числа химических элементов, из которых хотя бы один является металлом. Многие металлические сплавы имеют один металл в качестве основы с малыми добавками других элементов. Самый распространенный способ получения сплавов – затвердевание однородной смеси их расплавленных компонентов. Существуют и другие методы производства – например, порошковая металлургия. В принципе, четкую границу между металлами и сплавами трудно провести, так как даже в самых чистых металлах имеются «следовые» примеси других элементов. Однако обычно под металлическими сплавами понимают материалы, получаемые целенаправленно добавлением к основному металлу других компонентов.
Почти все металлы, имеющие промышленное значение, используются в виде сплавов (см. табл. 1, 2). Так, например, все выплавляемое железо почти целиком идет на изготовление обычных и легированных сталей, а также чугунов. Дело в том, что сплавлением с некоторыми компонентами можно существенно улучшить свойства многих металлов. Если для чистого алюминия предел текучести составляет всего лишь 35 МПа, то для алюминия, содержащего 1,6% меди, 2,5% магния и 5,6% цинка, он может превышать 500 МПа. Аналогичным образом могут быть улучшены электрические, магнитные и термические свойства. Эти улучшения определяются структурой сплава – распределением и структурой его кристаллов и типом связей между атомами в кристаллах.
Многие металлы, скажем магний, выпускают высокочистыми, чтобы можно было точно знать состав изготавливаемых из него сплавов. Число металлических сплавов, применяемых в наши дни, очень велико и непрерывно растет. Их принято разделять на две большие категории: сплавы на основе железа и сплавы цветных металлов. Ниже перечисляются наиболее важные сплавы промышленного значения и указываются основные области их применения.
Сталь.
Сплавы железа с углеродом, содержащие его до 2%, называются сталями. В состав легированных сталей входят и другие элементы – хром, ванадий, никель. Сталей производится гораздо больше, чем каких-либо других металлов и сплавов, и все виды их возможных применений трудно было бы перечислить. Малоуглеродистая сталь (менее 0,25% углерода) в больших количествах потребляется в качестве конструкционного материала, а сталь с более высоким содержанием углерода (более 0,55%) идет на изготовление таких низкоскоростных режущих инструментов, как бритвенные лезвия и сверла. Легированные стали находят применение в машиностроении всех видов и в производстве быстрорежущих инструментов. См. также СТАНКИ МЕТАЛЛОРЕЖУЩИЕ.
Чугун.
Чугуном называется сплав железа с 2–4% углерода. Важным компонентом чугуна является также кремний. Из чугуна можно отливать самые разнообразные и очень полезные изделия, например крышки для люков, трубопроводную арматуру, блоки цилиндров двигателей. В правильно выполненных отливках достигаются хорошие механические свойства материала. См. также МЕТАЛЛЫ ЧЕРНЫЕ.
Сплавы на основе меди.
В основном это латуни, т.е. медные сплавы, содержащие от 5 до 45% цинка. Латунь с содержанием от 5 до 20% цинка называется красной (томпаком), а с содержанием 20–36% Zn – желтой (альфа-латунью). Латуни применяются в производстве различных мелких деталей, где требуются хорошая обрабатываемость и формуемость. Сплавы меди с оловом, кремнием, алюминием или бериллием называются бронзами. Например, сплав меди с кремнием носит название кремнистой бронзы. Фосфористая бронза (медь с 5% олова и следовыми количествами фосфора) обладает высокой прочностью и применяется для изготовления пружин и мембран.
Свинцовые сплавы.
Обычный припой (третник) представляет собой сплав примерно одной части свинца с двумя частями олова. Он широко применяется для соединения (пайки) трубопроводов и электропроводов. Из сурьмяно-свинцовых сплавов делают оболочки телефонных кабелей и пластины аккумуляторов. Сплавы свинца с кадмием, оловом и висмутом могут иметь точку плавления, лежащую значительно ниже точки кипения воды ( ~ 70 ° C); из них делают плавкие пробки клапанов спринклерных систем противопожарного водоснабжения. Пьютер, из которого ранее отливали столовые приборы (вилки, ножи, тарелки), содержит 85–90% олова (остальное – свинец). Подшипниковые сплавы на основе свинца, называемые баббитами, обычно содержат олово, сурьму и мышьяк.
Легкие сплавы.
Современная промышленность нуждается в легких сплавах высокой прочности, обладающих хорошими высокотемпературными механическими свойствами. Основными металлами легких сплавов служат алюминий, магний, титан и бериллий. Однако сплавы на основе алюминия и магния не могут применяться в условиях высокой температуры и в агрессивных средах.
Алюминиевые сплавы.
К ним относятся литейные сплавы (Al – Si), сплавы для литья под давлением (Al – Mg) и самозакаливающиеся сплавы повышенной прочности (Al – Cu). Алюминиевые сплавы экономичны, легкодоступны, прочны при низких температурах и легко обрабатываемы (они легко куются, штампуются, пригодны для глубокой вытяжки, волочения, экструдирования, литья, хорошо свариваются и обрабатываются на металлорежущих станках). К сожалению, механические свойства всех алюминиевых сплавов начинают заметно ухудшаться при температурах выше приблизительно 175 ° С. Но благодаря образованию защитной оксидной пленки они проявляют хорошую коррозионную стойкость в большинстве обычных агрессивных сред. Эти сплавы хорошо проводят электричество и тепло, обладают высокой отражательной способностью, немагнитны, безвредны в контакте с пищевыми продуктами (поскольку продукты коррозии бесцветны, не имеют вкуса и нетоксичны), взрывобезопасны (поскольку не дают искр) и хорошо поглощают ударные нагрузки. Благодаря такому сочетанию свойств алюминиевые сплавы служат хорошими материалами для легких поршней, применяются в вагоно-, автомобиле- и самолетостроении, в пищевой промышленности, в качестве архитектурно-отделочных материалов, в производстве осветительных отражателей, технологических и бытовых кабелепроводов, при прокладке высоковольтных линий электропередачи.
Примесь железа, от которой трудно избавиться, повышает прочность алюминия при высоких температурах, но снижает коррозионную стойкость и пластичность при комнатной температуре. Кобальт, хром и марганец ослабляют охрупчивающее действие железа и повышают коррозионную стойкость. При добавлении лития к алюминию повышаются модуль упругости и прочность, что делает такой сплав весьма привлекательным для авиакосмической промышленности. К сожалению, при своем превосходном отношении предела прочности к массе (удельной прочности) сплавы алюминия с литием обладают низкой пластичностью.
Магниевые сплавы.
Магниевые сплавы легки, характеризуются высокой удельной прочностью, а также хорошими литейными свойствами и превосходно обрабатываются резанием. Поэтому они применяются для изготовления деталей ракет и авиационных двигателей, корпусов для автомобильной оснастки, колес, бензобаков, портативных столов и т.п. Некоторые магниевые сплавы, обладающие высоким коэффициентом вязкостного демпфирования, идут на изготовление движущихся частей машин и элементов конструкции, работающих в условиях нежелательных вибраций.
Магниевые сплавы довольно мягки, плохо сопротивляются износу и не очень пластичны. Они легко формуются при повышенных температурах, пригодны для электродуговой, газовой и контактной сварки, а также могут соединяться пайкой (твердым), болтами, заклепками и клеями. Такие сплавы не отличаются особой коррозионной стойкостью по отношению к большинству кислот, пресной и соленой воде, но стабильны на воздухе. От коррозии их обычно защищают поверхностным покрытием – хромовым травлением, дихроматной обработкой, анодированием. Магниевым сплавам можно также придать блестящую поверхность либо плакировать медью, никелем и хромом, нанеся предварительно покрытие погружением в расплавленный цинк. Анодирование магниевых сплавов повышает их поверхностную твердость и стойкость к истиранию. Магний – металл химически активный, а потому необходимо принимать меры, предотвращающие возгорание стружки и свариваемых деталей из магниевых сплавов. См. также СВАРКА.
Титановые сплавы.
Титановые сплавы превосходят как алюминиевые, так и магниевые в отношении предела прочности и модуля упругости. Их плотность больше, чем всех других легких сплавов, но по удельной прочности они уступают только бериллиевым. При достаточно низком содержании углерода, кислорода и азота они довольно пластичны. Электрическая проводимость и коэффициент теплопроводности титановых сплавов малы, они стойки к износу и истиранию, а их усталостная прочность гораздо выше, чем у магниевых сплавов. Предел ползучести некоторых титановых сплавов при умеренных напряжениях (порядка 90 МПа) остается удовлетворительным примерно до 600 ° C, что значительно выше температуры, допустимой как для алюминиевых, так и для магниевых сплавов. Титановые сплавы достаточно стойки к действию гидроксидов, растворов солей, азотной и некоторых других активных кислот, но не очень стойки к действию галогеноводородных, серной и ортофосфорной кислот.
Титановые сплавы ковки до температур около 1150 ° C. Они допускают электродуговую сварку в атмосфере инертного газа (аргона или гелия), точечную и роликовую (шовную) сварку. Обработке резанием они не очень поддаются (схватывание режущего инструмента). Плавка титановых сплавов должна производиться в вакууме или контролируемой атмосфере во избежание загрязнения примесями кислорода или азота, вызывающими их охрупчивание. Титановые сплавы применяются в авиационной и космической промышленности для изготовления деталей, работающих при повышенных температурах (150–430 ° C), а также в некоторых химических аппаратах специального назначения. Из титанованадиевых сплавов изготавливается легкая броня для кабин боевых самолетов. Титаналюминиевованадиевый сплав – основной титановый сплав для реактивных двигателей и корпусов летательных аппаратов.
В табл. 3 приведены характеристики специальных сплавов, а в табл. 4 представлены основные элементы, добавляемые к алюминию, магнию и титану, с указанием получаемых при этом свойств.
Бериллиевые сплавы.
Пластичный бериллиевый сплав можно получить, например, вкрапляя хрупкие зерна бериллия в мягкую пластичную матрицу, такую, как серебро. Сплав этого состава удалось холодной прокаткой довести до толщины, составляющей 17% первоначальной. Бериллий превосходит все известные металлы по удельной прочности. В сочетании с низкой плотностью это делает бериллий пригодным для устройств систем наведения ракет. Модуль упругости бериллия больше, чем у стали, и бериллиевые бронзы применяются для изготовления пружин и электрических контактов. Чистый бериллий используется как замедлитель и отражатель нейтронов в ядерных реакторах. Благодаря образованию защитных оксидных слоев он устойчив на воздухе при высоких температурах. Главная трудность, связанная с бериллием, – его токсичность. Он может вызывать серьезные заболевания органов дыхания и дерматит. См. также КОРРОЗИЯ МЕТАЛЛОВ и статьи по отдельным металлам.
Читайте также: