Сопротивление металлического проводника и его зависимость от размеров и вещества проводника
Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.
Сопротивление обозначается латинскими буквами R или r.
За единицу электрического сопротивления принят Ом.
Сопротивление различных проводников зависит от материала, из которого они изготовлены. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.
Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Удельное сопротивление обозначается буквой греческого алфавита ρ. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.
Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.
Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.
Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь площадь поперечного сечения проводника:
где - R - сопротивление проводника, ом, l - длина в проводника в м, S - площадь поперечного сечения проводника, мм 2 .
Еще одной причиной, влияющей на сопротивление проводников, являетсятемпература.
Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов.
ЭДС источника тока. Закон Ома для полной цепи с ЭДС.
При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.
Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника(ЭДС):
Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).
Эта формула выражет закон Ома для полной цепи: сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.
Сопротивление r неоднородного участка можно рассматривать как внутреннее сопротивление источника тока.
63. Соединение проводников.
Проводники в электрических цепях могут соединяться последовательно и параллельно.
При последовательном соединении проводников сила тока во всех проводниках одинакова:
I1 = I2 = I. |
По закону Ома, напряжения U1 и U2 на проводниках равны
U1 = IR1, U2 = IR2. |
Общее напряжение U на обоих проводниках равно сумме напряжений U1 и U2:
U = U1 + U2 = I(R1 + R2) = IR, |
где R – электрическое сопротивление всей цепи. Отсюда следует:
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!
Сопротивление металлического проводника и его зависимость от размеров и вещества проводника
Но даже среди металлов можно выделить те, которые лучше проводят ток. Значит, есть и те металлы, которые проводят ток хуже. Как же сравнивать эту способность веществ? Так мы подходим к введению новой характеристики проводников.
Называется эта характеристика «электрическое сопротивление«. На данном уроке мы рассмотрим ее связь с проводимостью различный веществ, узнаем причины ее возникновения и разберемся, от каких других величин и свойств она зависит.
Зависимость показаний амперметра и вольтметра от используемого проводника в цепи
Для начала проведем интересный опыт. Соберем электрическую цепь из источника тока, ключа, амперметра и вольтметра. Также мы будем включать в эту цепь проводники из различных материалов. Они закреплены на специальной панели. К этим же проводникам мы будем параллельно подключать вольтметр (рисунок 1).
Проводники у нас обозначены следующим образом: AB — железная проволока, CD — никелиновая проволока, EF — медная проволока.
Эти проводники имеют одинаковую длину и сечение.
Сначала подключим в цепь железную проволоку AB. Зафиксируем показания амперметра и вольтметра после замыкания ключа.
Теперь переключимся на никелиновую проволоку CD. Мы заметим, что сила тока в цепи уменьшилась.
Испробуем третий проводник: медную проволоку EF. Теперь сила тока значительно увеличилась.
Вы не забыли, что в нашем опыте был еще и вольтметр? Мы поочередно подключали его к каждому из проводников.
Каждый раз мы получали одинаковое значение напряжения. Оно не изменялось.
Зависимость силы тока от свойств проводников
Вы уже знаете, что сила тока зависит от напряжения. Ведь напряжение является характеристикой электрического поля.
Но в нашем опыте напряжение оставалось постоянным. Значит, сила тока имеет еще одну зависимость.
Сила тока в цепи зависит от свойств проводников, включенных в электрическую цепь.
Электрическое сопротивление
Что же это за свойства? Их совокупность в электричестве получила свое определение. Принято говорить, что разные проводники обладают различным электрическим сопротивлением.
Электрическое сопротивление — это физическая величина, характеризующая свойство проводника препятствовать прохождению электрического тока.
Обозначается электрическое сопротивление буквой $R$.
Единица измерения сопротивления
Что принимают за единицу сопротивления проводника? Как ее называют?
Электрическое сопротивление измеряется в омах.
За единицу сопротивления принимают $1 \space Ом$ — сопротивление такого проводника, в котором при напряжении на концах $1 \space В$ сила тока равна $1 \space А$:
$1 \space Ом = \frac$.
Дольные и кратные единицы сопротивления
Какие единицы сопротивления, кроме ома, используют?
На практике часто используют дополнительные единицы измерения сопротивления: миллиом ($мОм$), килоом ($кОм$), мегаом ($МОм$).
$1 \space мОм = 0.001 \space Ом$;
$1 \space кОм = 1000 \space Ом$;
$1 \space МОм = 1 \space 000 \space 000 \space Ом$.
Причины электрического сопротивления
В чем же причина сопротивления?
Вспомните урок «Электрический ток в металлах«. Электроны, двигаясь под действием электрического поля, обретают некоторое направление. Но при этом хаотичность их движения сохраняется. Мы еще сравнивали такое движение со стайкой мошкары, которую относит ветром.
Итак, электроны приведены в упорядоченное движение электрическим полем. При этом они взаимодействуют с ионами кристаллической решетки. Что при этом происходит? Упорядоченное движение замедляется. Теперь меньшее число электронов проходит через поперечное сечение проводника за $1 \space с$. Значит, уменьшается сила тока.
Сделаем вывод из наших рассуждений.
Причина сопротивления — это взаимосвязь движущихся электронов с ионами кристаллической решетки.
Логично, что разные проводники будут обладать разными значениями сопротивления. Все дело будет в различиях строения их кристаллической решетки. Кроме того, значение будут иметь длина проводника и площадь его поперечного сечения. Об этом мы поговорим в следующих уроках.
Электрическое сопротивление наглядно: интересные опыты
Упражнение №1
Начертите схему цепи, изображённой на рисунке 1, и объясните опыт, проведённый по данному рисунку.
Схема электрической цепи изображена на рисунке 2. Проводник обозначен прямоугольником.
В ходе этого опыта используют различные проводники. При этом фиксируют значения приборов. Сила тока изменяется в зависимости от того, какой проводник включен в цепь. Напряжение же на концах разных проводников все время остается постоянным.
Этот опыт доказывает связь силы тока и свойства проводника, называемого электрическим сопротивлением.
Упражнение №2
Выразите в омах значения следующих сопротивлений: $100 \space мОм$; $0.7 \space кОм$; $20 \space МОм$.
Дано:
$I_1 = 100 \space мОм$
$I_2 = 0.7 \space кОм$
$I_3 = 20 \space МОм$
Показать решение и ответ
Решение:
$I_1 = 100 \space мОм = 100 \cdot 0.001 \space Ом = 0.1 \space Ом$,
$I_2 = 0.7 \space кОм = 0.7 \cdot 1000 \space Ом = 700 \space Ом$,
$I_3 = 20 \space МОм = 20 \cdot 1 \space 000 \space 000 \space Ом = 20 \space 000 \space 000 \space Ом$.
Ответ: $I_1 = 0.1 \space Ом$, $I_2 = 700 \space Ом$, $I_3 = 20 \space 000 \space 000 \space Ом$.
Упражнение №3
Сила тока в спирали электрической лампы равна $0.5 \space А$ при напряжении на её концах в $1 \space В$. Определите сопротивление спирали.
Дано:
$I = 0.5 \space А$
$U = 1 \space В$
Мы знаем, что $1 \space Ом = \frac$.
Получается, что $R = \frac$. К этой формуле мы пришли из определения единицы измерения сопротивления.
Зависимость электрического сопротивления от сечения, длины и материала проводника
Сопротивление различных проводников зависит от материала, из которого они изготовлены.
Можно проверить это практически на следующем опыте.
Рисунок 1. Опыт, показывающий зависимость электрического сопротивления от материала проводника
Подберем два или три проводника из различных материалов, возможно меньшего, но одинакового поперечного сечения, например, один медный, другой стальной, третий никелиновый. Укрепим на планке два зажима а и б на расстоянии 1 —1,5 м один от другого (рис. 1) и подключим к ним аккумулятор через амперметр. Теперь поочередно между зажимами а и б будем на 1—2 сек включать сначала медный, потом стальной и, наконец, никелиновый проводник, наблюдая в каждом случае за отклонением стрелки амперметра. Нетрудно будет заметить, что наибольший по величине ток пройдет по медному проводнику, а наименьший — по никелиновому.
Из этого следует, что сопротивление медного проводника меньше , чем стального, а сопротивление стального проводника меньше , чем никелинового.
Таким образом, электрическое сопротивление проводника зависит от материала, из которою он изготовлен.
Для характеристики электрического сопротивления различных материалов введено понятие о так называемом удельном сопротивлении.
Определение: Удельным сопротивлением называется сопротивление проводника длиной в 1 м и сечением в 1 мм 2 при температуре +20 С°.
Удельное сопротивление обозначается буквой ρ («ро») греческого алфавита.
Каждый материал, из которого изготовляется проводник, обладает определенным удельным сопротивлением. Например, удельное сопротивление меди равно 0,0175 Ом*мм 2 /м, т. е. медный проводник длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,0175 Ом.
Ниже приводится таблица удельных сопротивлений материалов, наиболее часто применяемых в электротехнике.
Удельные сопротивления материалов, наиболее часто применяемых в электротехнике
Любопытно отметить, что например, нихромовый провод длиною 1 м обладает примерно таким же сопротивлением, как медный провод длиною около 63 м (при одинаковом сечении).
Разберем теперь, как влияют размеры проводника , т. е. длина и поперечное сечение, на величину его сопротивления.
Воспользуемся для этого схемой, изображенной на рис. 1. Включим между зажимами а и б для большей наглядности опыта проволоку из никелина. Заметив показание амперметра, отключим от зажима б проводник, которой соединяет прибор с минусом аккумулятора, и освободившимся концом проводника прикоснемся к никелиновой проволоке на некотором удалении от зажима а (рис. 2). Уменьшив таким образом длину проводника, включенного в цепь, нетрудно заметить по показанию амперметра, что ток в цепи увеличился.
Рисунок 2. Опыт, показывающий зависимость электрического сопротивления от длины проводника
Это говорит о том, что с уменьшением длины проводника сопротивление его уменьшается. Если же перемещать конец проводника по никелиновой проволоке вправо, т. е. к зажиму б, то, наблюдая за показаниями амперметра, можно сделать вывод, что с увеличением длины проводника сопротивление его увеличивается.
Таким образом, сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление..
Выясним теперь, как зависит сопротивление проводника от его поперечного сечения, т. е. от толщины.
Подберем для этого два или три проводника из одного и того же материала (медь, железо или никелин), но различного поперечного сечения и включим их поочередно между зажимами а и б, как указано на рис. 1.
Наблюдая каждый раз за показаниями амперметра, можно убедиться, что чем тоньше проводник, тем меньше ток в цепи, а следовательно, тем больше сопротивление проводника. И, наоборот, чем толще проводник, тем больше ток в цепи, а следовательно, тем меньше сопротивление проводника.
Значит, сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.
Чтобы лучше уяснить эту зависимость, представьте себе две пары сообщающихся сосудов (рис. 3), причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая.
Рисунок 3. Вода по толстой трубке перейдет быстрее, чем по тонкой
Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой. Это значит, что толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.
Обобщая результаты произведенных нами опытов, можно сделать следующий общий вывод:
электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь его поперечного сечения..
Математически эта зависимость выражается следующей формулой:
где R—сопротивление проводника в Ом;
ρ — удельное сопротивление материала в Ом*мм 2 /м;
l — длина проводника в м;
S—площадь поперечного сечения проводника в мм 2 .
Примечание. Площадь поперечного сечения круглого проводника вычисляется по формуле
где π —постоянная величина, равная 3,14;
Указанная выше зависимость дает возможность определить длину проводника или его сечение, если известны одна из этих величин и сопротивление проводника.
Так, например, длина проводника определяется по формуле:
Если же необходимо определить площадь поперечного сечения проводника, то формула принимает следующий вид:
Решив это равенство относительно ρ, получим выражение для определения удельного сопротивления проводника:
Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Определив по формуле удельное сопротивление проводника, можно найти материал, обладающий таким удельным сопротивлением.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Зависимость сопротивления проводника от температуры
Практически в электротехнике выло выявлено, что с увеличением температуры сопротивление проводников из металла возрастает, а с понижением уменьшается. Для всех проводников из металла это изменение сопротивления почти одинаково и в среднем равно 0,4% на 1°С.
Если быть точным, то на самом деле при изменении температуры проводника изменяется его удельное сопротивление, которое имеет следующую зависимость:
где ρ и ρ0, R и R0 - соответственно удельные сопротивления и сопротивления проводника при температурах t и 0°С (шкала Цельсия), α - температурный коэффициент сопротивления, [α] = град -1 .
Изменение удельного сопротивления проводника приводит к изменения самого сопротивления, что видно из следующего выражения:
Зная электронную теорию строения вещества можно дать следующее объяснение увеличению сопротивления металлических проводников с повышением температуры. При увеличении температуры проводник получает тепловую энергию, которая несомненно передается всем атомам вещества, в результате чего .возрастает их тепловое движение. Увеличившееся тепловое движение атомов создает большее сопротивление направленному движению свободных электронов (увеличивается вероятность столкновения свободных электронов с атомами), от этого и возрастает сопротивление проводника.
С понижением температуры направленное движение электронов облегчается (уменьшается возможность столкновения свободных электронов с атомами), и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов. Сверхпроводимость, т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре —273° С, называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.
График звисимости сопротивления металлического проводника от температуры представлен на рисунке 1.
Рисунок 1. График зависимости удельного сопротивления металлического проводника от температуры
Необходимо сказать, что сопротивление электролитов и полупроводников (уголь, селен и другие) с увеличением температуры уменьшается.
Температурная зависимость сопротивления электролита объясняется также в основном изменением удельного сопротивления,однако всегда температурный коэффициент сопротивления - α
Поэтому кривая зависимости сопротивленя электролита от температуры имеет вид, представленый на рисунке 2.
Рисунок 1. График зависимости удельного сопротивления электролита от температуры
Ддя полупроводников характер изменения удельного сопротивления от температуры будет схож с таковым для элетролитов.
Читайте также: