Сопротивление металлического проводника это

Обновлено: 08.01.2025

Электрическое сопротивление проводника: что это такое

Электрическое сопротивление — это физическая величина, которая характеризует свойство проводника препятствовать прохождению электрического тока.

Обозначение: R или r.

Единица измерения — Ом. 1 Ом — это сопротивление проводника, в котором при напряжении 1 Вольт проходит ток силой 1 Ампер.

Резистор — это прибор с постоянным сопротивлением.

Реостат — прибор с переменным сопротивлением.

Сущность электрического сопротивления металлических проводников: свободные электроны при движении по проводнику встречают атомы и другие электроны и, взаимодействуя с ними, теряют часть своей энергии.

Различные металлические проводники, имеющие различное строение, оказывают различное сопротивление.

Суть сопротивления жидких проводников и газов: заряженные частицы молекул встречают сопротивление при своем движении.

От чего зависит электрическое сопротивление

Сопротивление зависит от:

  1. Материала проводника. Каждый материал имеет свое удельное сопротивление. Поэтому разные материалы по-разному оказывают влияние на сопротивление: рост или понижение величины.
  2. Длины проводника. Чем больше длина, тем больше сопротивление. Величины находятся в прямой пропорциональной зависимости.
  3. Площади поперечного сечения. Чем меньше площадь сечения, тем больше сопротивление. Причина: величины обратно пропорциональные.
  4. Температура. Когда температура понижается, сопротивление металлических проводников уменьшается. В среднем увеличение или уменьшение сопротивления равно 0,4 % на 1°. Сопротивление жидких проводников и угля с повышением температуры уменьшается.

Формулы нахождения сопротивления

Сопротивление однородного проводника постоянного сечения:

  • R — сопротивление (Ом);
  • ρ — удельное сопротивление проводника (Ом*м);
  • l — длина проводника (м);
  • S — площадь поперечного сечения проводника (м², но чаще в мм²).

Удельное сопротивление — это физическая величина, показывающая, каким сопротивлением обладает изготовленный из этого вещества проводник длиной 1 м и площадью поперечного сечения 1 мм².

Таблица удельных сопротивлений для некоторых материалов (каждому материалу соответствует свое значение):

Сопротивление проводника по закону Ома (для участка цепи):

  • R — сопротивление(Ом);
  • U — напряжение (В);
  • I — сила тока (А).

Сопротивление проводника по закону Ома (для полной цепи):

  • R — внешнее сопротивление (Ом);
  • r — внутреннее сопротивление (Ом);
  • ε — ЭДС (В);
  • I — сила тока (А).

Кроме сопротивления, для характеристики проводника рассматривают величину, которая называется электрической проводимостью.

Электрическая проводимость — это физическая величина, обратная сопротивлению. Обозначается G, измеряется в сименсах — См.

Удельная проводимость — это физическая величина, обратная удельному сопротивлению.

Формула площади поперечного сечения: S=πD²/4, где D — диаметр проводника.

Примеры решения задач

Рассчитать сопротивление проводника, если известно, что на него подают напряжение 5 В и сила тока, проходящая через него 0,1 А.

По закону Ома для участка цепи можно записать: R = U / I = 5 / 0 , 1 = 50 О м .

Какое сопротивление имеет медный провод длиной 10 м и площадью поперечного сечения 0,17 мм²?

Так как провод медный, то ρ=0,017 Ом*мм²/м.

Воспользуемся формулой изменения сопротивления: R = ρ l / S = 0 , 017 * 10 / 0 , 17 = 1 О м .

Температурный коэффициент сопротивления

Электрическое сопротивление проводника в общем случае зависит от материала проводника, от его длины и от поперечного сечения, или более кратко — от удельного сопротивления и от геометрических размеров проводника. Данная зависимость общеизвестна и выражается формулой:

Электрическое сопротивление проводника

Известен каждому и закон Ома для однородного участка электрической цепи, из которого видно, что ток тем меньше, чем сопротивление выше. Таким образом, если сопротивление проводника постоянно, то с ростом приложенного напряжения ток должен бы линейно расти. Но в реальности это не так. Сопротивление проводников не постоянно.

Зависимость тока от напряжения

За примерами далеко ходить не надо. Если к регулируемому блоку питания (с вольтметром и амперметром) подключить лампочку, и постепенно повышать напряжение на ней, доводя до номинала, то легко заметить, что ток растет не линейно: с приближением напряжения к номиналу лампы, ток через ее спираль растет все медленнее, причем лампочка светится все ярче.

Лампа накаливания

Нет такого, что с увеличением вдвое приложенного к спирали напряжения, вдвое возрос и ток. Закон Ома как-будто не выполняется. На самом деле закон Ома выполняется, и точно, просто сопротивление нити накала лампы непостоянно, оно зависит температуры.

Проводимость металлов

Вспомним, с чем связана высокая электрическая проводимость металлов. Она связана с наличием в металлах большого количества носителей заряда — составных частей тока — электронов проводимости. Это электроны, образующиеся из валентных электронов атомов металла, которые для всего проводника являются общими, они не принадлежат каждый отдельному атому.

Под действием приложенного к проводнику электрического поля, свободные электроны проводимости переходят из хаотичного в более-менее упорядоченное движение — образуется электрический ток. Но электроны на своем пути встречают препятствия, неоднородности ионной решетки, такие как дефекты решетки, неоднородная структура, вызванные ее тепловыми колебаниями.

Электроны взаимодействуют с ионами, теряют импульс, их энергия передается ионам решетки, переходит в колебания ионов решетки, и хаос теплового движения самих электронов усиливается, от того проводник и нагревается при прохождении по нему тока.

В диэлектриках, полупроводниках, электролитах, газах, неполярных жидкостях — причина сопротивления может быть иной, однако закон Ома, очевидно, не остается постоянно линейным.

Таким образом, для металлов, рост температуры приводит к еще большему возрастанию тепловых колебаний кристаллической решетки, и сопротивление движению электронов проводимости возрастает. Это видно по эксперименту с лампой: яркость свечения увеличилась, но ток возрос слабее. То есть изменение температуры повлияло на сопротивление нити накаливания лампы.

В итоге становится ясно, что сопротивление металлических проводников зависит почти линейно от температуры. А если принять во внимание, что при нагревании геометрические размеры проводника меняются слабо, то и удельное электрическое сопротивление почти линейно зависит от температуры. Зависимости эти можно выразить формулами:

Температурный коэффициент сопротивления

Обратим внимание на коэффициенты. Пусть при 0°C сопротивление проводника равно R0, тогда при температуре t°C оно примет значение R(t), и относительное изменение сопротивления будет равно α*t°C. Вот этот коэффициент пропорциональности α и называется температурным коэффициентом сопротивления . Он характеризует зависимость электрического сопротивления вещества от его текущей температуры.

Данный коэффициент численно равен относительному изменению электрического сопротивления проводника при изменении его температуры на 1К (на один градус Кельвина, что равноценно изменению температуры на один градус Цельсия).

Темперытурный коэффициент сопротивления разных материалов

Для металлов ТКС (температурный коэффициент сопротивления α) хоть и относительно мал, но всегда больше нуля, ведь при прохождении тока электроны тем чаще сталкиваются с ионами кристаллической решетки, чем выше температура, то есть чем выше тепловое хаотичное их движение и чем выше их скорость. Сталкиваясь в хаотичном движении с ионами решетки, электроны металла теряют энергию, что мы и видим в результате — сопротивление при нагревании проводника возрастает. Данное явление используется технически в термометрах сопротивления.

Термометр сопротивления

Итак, температурный коэффициент сопротивления α характеризует зависимость электрического сопротивления вещества от температуры и измеряется в 1/К — кельвин в степени -1. Величину с обратным знаком называют температурным коэффициентом проводимости.

Что касается чистых полупроводников, то для них ТКС отрицателен, то есть сопротивление снижается с ростом температуры, это связано с тем, что с ростом температуры все больше электронов переходят в зону проводимости, растет при этом и концентрация дырок. Этот же механизм свойственен для жидких неполярных и твердых диэлектриков.

Полярные жидкости свое сопротивление резко уменьшают с ростом температуры из-за снижения вязкости и роста диссоциации. Это свойство применяется для защиты электронных ламп от разрушительного действия больших пусковых токов.

У сплавов, легированных полупроводников, газов и электролитов тепловая зависимость сопротивления более сложна чем у чистых металлов. Сплавы с очень малым ТКС, такие как манганин и константан, применяют в электроизмерительных приборах.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

От чего зависит удельное сопротивление проводника

Удельное сопротивление и обратная ей величина — электропроводность — для проводников из химически чистых металлов являются характерной физической величиной, но, несмотря на это, величины удельного сопротивления их известны сравнительно с малой точностью.

Объясняется это тем, что на величину удельного сопротивления металлов сильно влияют различные случайные, трудно контролируемые обстоятельства.

Прежде всего часто ничтожные примеси к чистому металлу увеличивают его удельное сопротивление.

Кабель с медными жилами

Наиболее важный для электротехники металл — медь, из которого изготовливаются провода и кабели для распределения электрической энергии, оказывается особенно чувствительным в этом отношении.

Ничтожная примесь углерода в 0,05% повышает сопротивление меди на 33% сравнительно с сопротивлением химически чистой меди, примесь 0,13% фосфора увеличивает сопротивление меди на 48%, 0,5% железа — на 176%, следы цинка в количестве, трудно измеримом по своей малости, на 20%.

Влияние примесей на сопротивление других металлов менее значительно, чем в случае меди.

Что такое электрическое сопротивление

Удельное сопротивление металлов, химически чистых или вообще имеющих определенный химический состав, зависит от способа термической и механической обработки их.

Прокатка, протягивание, закалка и отжиг могут изменить удельное сопротивление металла на несколько процентов.

Объясняется это тем, что расплавленный металл при отвердевании кристаллизуется, образуя многочисленные и беспорядочно распределенные небольшие одиночные кристаллы.

Всякая механическая обработка частично разрушает эти кристаллы и сдвигает группы их одну относительно другой, вследствие чего общая электропроводность куска металла изменяется обычно в сторону увеличения сопротивления.

Длительный отжиг при благоприятной температуре, различной для различных металлов, сопровождается восстановлением кристаллов и обычно уменьшает сопротивление.

Существуют приемы, дающие возможность получать при застывании расплавленных металлов более или менее значительные одиночные кристаллы (монокристаллы).

Если металл дает кристаллы правильной системы, то удельное сопротивление одиночных кристаллов такого металла одинаково по всем направлениям. Если же кристаллы металла принадлежат к гексагональной, тетрагональной или тригональной системе, то величина удельного сопротивления монокристалла зависит от направления тока.

Предельные (экстремальные) значения получаются в направлении оси симметрии кристалла и в направлении, перпендикулярном оси симметрии, во всех других направлениях удельное сопротивление имеет промежуточные значения.

Медная проволока для изготовления кабельных изделий

Куски металла, получаемые обычными способами, с беспорядочным распределением мелких кристаллов имеют удельное сопротивление, равное некоторой средней величине, если при затвердевании не устанавливается более или менее упорядоченное распределение кристаллов.

Из этого ясно, что удельное сопротивление образцов далее химически чистых металлов, кристаллы которых не принадлежат к правильной системе, не может иметь вполне определенных значений.

Значения удельных сопротивлений наиболее распространенных проводниковых металлов и сплавов при 20° С: Удельное сопротивление и электропроводность веществ

Влияние температуры на величину удельного сопротивления у различных металлов было предметом многочисленных и тщательных исследований, так как вопрос об этом влиянии имеет большое теоретическое и практическое значение.

У чистых металлов температурный коэффициент сопротивления, по большей части близок к температурному коэффициенту теплового линейного расширения газов, т. е. не очень отличается от 0,004, поэтому в промежутке от 0 до 100°С сопротивление приблизительно пропорционально абсолютной температуре.

При температурах ниже 0° сопротивление убывает быстрее, чем абсолютная температура, и тем быстрее, чем ниже температура. При температурах, близких к абсолютному нулю, сопротивление некоторых металлов делается практически равным нулю. При высоких температурах выше 100° у большинства металлов температурный коэффициент медленно растет, т. е. сопротивление увеличивается несколько быстрее, чем температура.

Электрический нагревательный кабель

У так называемых ферромагнитных металлов (железо, никель и кобальт) сопротивление растет гораздо быстрее, чем температура. Наконец у платины и палладия наблюдается увеличение сопротивления, несколько отстающее от увеличения температуры.

Для измерения высоких температур применяют так называемый платиновый термометр сопротивления, состоящий из куска тонкой проволоки чистой платины, намотанный в виде спирали на трубку изолирующего вещества или даже вплавленную в стенки кварцевой трубки. Измеряя сопротивление проволоки, можно определить ее температуру по таблице или по кривой для промежутка температур от -40 до 1000°С.

Из других веществ, обладающих металлической проводимостью, следует отметить уголь, графит, антрацит, которые отличаются от металлов отрицательным температурным коэффициентом.

Сопротивление селена в одной из его модификаций (металлический, кристаллический селен, серый) изменяется в сторону значительного уменьшения при действии на него лучей света. Явление это относится к области фотоэлектрических явлений.

В случае селена и многих других, ему подобных, электроны, отрывающиеся от атомов вещества при поглощении им лучей света, не вылетают через поверхность тела наружу, а остаются внутри вещества, вследствие чего электропроводность вещества естественно возрастает. Явление носит название внутреннего фотоэлектрического явления.

Электрическое сопротивление проводников

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.

Электронная теория так объясняет сущность электрического сопротивления металлических проводников. Свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии.

Электрическое сопротивление — физическая величина, характеризующая способность проводника препятствовать прохождению электрического тока

Движущиеся электроны (от положительного полюса источника к отрицательному) ударяются о колеблющиеся ионы кристаллической решетки в проводнике и замедляют их движение

Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Точно тем же объясняется сопротивление жидких проводников и газов прохождению электрического тока. Однако не следует забывать, что в этих веществах не электроны, а заряженные частицы молекул встречают сопротивление при своем движении.

Аналоговый мультиметр

Омметр - прибор для измерения электрического сопротивления

Сопротивление обозначается латинскими буквами R или r .

За единицу электрического сопротивления принят ом в честь Георга Симона Ома (1784–1854), немецкого физика, изучавшего взаимосвязь между напряжением, током и сопротивлением.

Ом есть сопротивление столба ртути высотой 106,3 см с поперечным сечением 1 мм 2 при температуре 0° С.

Если, например, электрическое сопротивление проводника составляет 4 ом, то записывается это так: R = 4 ом или r = 4 ом.

Для измерения сопротивлений большой величины принята единица, называемая мегомом.

Один мегом равен одному миллиону ом.

Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.

Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению.

Обратной величиной электрического сопротивления является физическая величина, называемая электропроводностью.

Медные токоведущие шины в распределительном устройстве

Медные токоведущие шины в распределительном устройстве

Электрической проводимостью (электропроводностью) называется способность материала пропускать через себя электрический ток.

Так как проводимость есть величина, обратная сопротивлению, то и выражается она как 1/ R , обозначается проводимость латинской буквой g.

Единицей электрической проводимости является сименс. Она была так названа в честь немецкого ученого Вернера Сименса (1816 - 1892).

Слово сопротивление также относится к пассивному электрическому компоненту, правильное название которого — резистор, характеризующийся одним свойством — электрическим сопротивлением.

Причина включения резистора в электрическую цепь обычно состоит в том, чтобы уменьшить величину электрического тока или получить определенное падение напряжения. Резистор часто неправильно называют сопротивлением и это может привести к двусмысленности . Величину сопротивления резисторов обозначают либо написанием числа на резисторе, либо, что чаще, цветными полосками.

Резисторы для электронных схем

Резисторы для электронных схем

Влияние материала проводника, его размеров и окружающей температуры на величину электрического сопротивления.

Величина электрического сопротивления определяется материалом, формой и температурой проводника. Величина сопротивления зависит от длины проводника (прямопропорционально), от содержания в поперечном сечении проводника (обратно пропорционально), от материала проводника (удельное электрическое сопротивление) и от температуры.

Так как сопротивление различных проводников зависит от материала, из которого они изготовлены, то для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм 2 . Удельное сопротивление обозначается буквой греческого алфавита р. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Например, удельное сопротивление меди равно 0,017, т. е. медный проводник длиной 1 м и сечением 1 мм 2 обладает сопротивлением 0,017 ом. Удельное сопротивление алюминия равно 0,03, удельное сопротивление железа - 0,12, удельное сопротивление константана - 0,48, удельное сопротивление нихрома - 1-1,1.

Вещества, обладающие высоким удельным сопротивлением, являются изоляторами. Наиболее совершенным изолятором является янтарь, а также в качестве изоляторов применяют ПВХ, слюду, стекло, фарфор и т. д.

удельное сопротивление

удельная проводимость

Электрический провод с медной жилой

Электрический провод с медной жилой

Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.

Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой, т. е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.

Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь поперечного сечения проводника :

где - R - сопротивление проводника, ом, l - длина в проводника в м, S - площадь поперечного сечения проводника, мм 2 .

Площадь поперечного сечения круглого проводника вычисляется по формуле:

S = ( Пи х d 2 )/ 4

где Пи - постоянная величина, равная 3,14; d - диаметр проводника.

А так определяется длина проводника:

Эта формула дает возможность определить длину проводника, его сечение и удельное сопротивление, если известны остальные величины, входящие в формулу.

Если же необходимо определить площадь поперечного сечения проводника, то формулу приводят к следующему виду:

Преобразуя ту же формулу и решив равенство относительно р, найдем удельное сопротивление проводника:

Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Для этого надо определить удельное сопротивление проводника и, пользуясь таблицей, найти материал, обладающий таким удельным сопротивлением.

Поперечный разрез силового кабеля на 400 кВ

Поперечный разрез силового кабеля на 400 кВ с изоляцией из сшитого полиэтилена и медной жилой. Сечение кабеля - 1600 мм 2 . Такой кабель используется в воздушно-кабельной линии электропередачи 380 кВ в Берлине. Линия протяженностью 34 км построена в 2000-м году.

Это нужно запомнить:

1. Если к одному и тому же источнику электрического напряжения последовательно подключить проводники из разных материалов, но одинаковой длины и одинакового сечения, то мы будем измерять амперметром, что по каждому проводнику протекает электрический ток разной величины. Каждый материал оказывает различное сопротивление прохождению тока.

2. Если мы используем для измерения проводники из одного и того же материала, которые будут иметь одинаковый диаметр, но всегда разную длину, то амперметр будет определять разный проходящий ток для каждой длины проводника. Наибольший ток будет течь по самому короткому проводу.

3. Если мы используем для измерения проводники из одного материала одинаковой длины, но разного сечения, то мы будем измерять разные значения тока для каждого проводника с разным сечением. Наибольший ток будет течь по проводу с наибольшим сечением.

Медные клеммные колодки для соединения жил проводов и кабелей в электрощитах

Медные клеммные колодки для соединения жил проводов и кабелей в электрощитах

Еще одной причиной, влияющей на сопротивление проводников, является температура .

Сопротивление проводников и полупроводников зависит от температуры. Сопротивление проводников увеличивается с повышением температуры (положительный температурный коэффициент электрического сопротивления), а сопротивление полупроводников, углерода и некоторых специальных сплавов металлов с повышением температуры уменьшается (отрицательный температурный коэффициент электрического сопротивления). Электрическое сопротивление всегда имеет положительное значение. Хорошие проводники имеют малое сопротивление, плохие — высокое.

Различные проводники имеют разное сопротивление. Соединительные провода в электрической цепи имеют низкое сопротивление, чтобы как можно меньше уменьшить ток, проходящий через цепь. С другой стороны, резистивные проводники, используемые в нагревательных кабелях и электрических нагревательных приборах и резистивные нити накаливания лампочек имеют относительно высокое сопротивление, которые значительно нагреваются из-за своего высокого сопротивления при достаточном напряжении.

Нагревательный элемент для электрической плиты

Нагревательный элемент для электрической плиты

Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. Это увеличение или уменьшение сопротивления для проводников из чистых металлов почти одинаково и в среднем равно 0,4% на 1° C . Сопротивление жидких проводников и угля с увеличением температуры уменьшается.

Электронная теория строения вещества дает следующее объяснение увеличению сопротивления металлических проводников с повышением температуры.

При нагревании проводник получает тепловую энергию, которая неизбежно передается всем атомам вещества, в результате чего возрастает интенсивность их движения. Возросшее движение атомов создает большее сопротивление направленному движению свободных электронов, отчего и возрастает сопротивление проводника.

С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов .

Сверхпроводимость , т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре - 273° C , называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.

Этот материал проводит электричество без сопротивления до 15°C, но только под высоким давлением

Новый сверхпроводящий материал, который был открыт в 2021 году, зажатый между алмазами, может проводить электричество без электрического сопротивления при комнатной температуре

При очень низких температурах, близких к абсолютному нулю, колебательное движение молекул настолько мало, что свободные электроны движутся в них без всякого сопротивления. Ток, введенный в такой сильно охлаждаемый проводник, протекает непрерывно и без малейших потерь.

Постепенно охлаждая образцы платины и золота, голландский физик и химик Хейке Камерлинг-Оннес (1853 - 1926) обнаружил, что их электрическое сопротивление уменьшается. Когда он проделал свой опыт с ртутью, то при температуре около 4,27 К ее сопротивление стало резко падать, а при температуре около 4,22 К полностью исчезло. В последующие годы он открыл сверхпроводимость и в других металлах.

В 2015 году физик Института химии им. Макса Планка Михаил Еремец и его команда сжали водород и серу для достижения сверхпроводимости при -70°C. Спустя несколько лет две исследовательские группы экспериментировали с соединениями лантана и водорода при высоком давлении. Эксперименты показали, что сверхпроводимость возможна при более высоких температурах, таких как -23°C и -13°C, но некоторые эксперименты были успешными и при 7°C.

Что еще почитать:

Как правильно рассчитать удельное сопротивление проводника в физике

Сопротивление проводника зависит от его длины, площади поперечного сечения и характеристик материала, из которого он изготовлен. Зависимость сопротивления от длины проводника прямо пропорциональная, а от площади его сечения — обратно пропорциональная.

Удельное сопротивление

Удельное сопротивление проводника — это физическая величина, характеризующая вещество, из которого состоит проводник, способность материала противостоять прохождению электрического тока.

Удельное сопротивление обозначается греческой буквой ρ (ро) и является табличной величиной.

Единицей измерения удельного сопротивления является Ом·м или О м · м м 2 м . 1 Ом·м равен такому удельному сопротивлению вещества, при котором проводник длиной 1 м и площадью сечения 1 м 2 имеет сопротивление 1 Ом. Соответственно, указанная в таблице величина удельного сопротивления материала — это сопротивление проводника из данного материала длиной 1 м и с площадью поперечного сечения 1 м 2 .

Удельное сопротивление вещества зависит также от температуры проводника. В следующих таблицах даны значения удельного сопротивления некоторых материалов при t=20 °С.

Удельное сопротивление металлов

Металл ρ , О м · м м 2 м
серебро0,016
медь0,0175
золото0,023
алюминий0,026-0,029
вольфрам0,054
цинк0,059
железо0,099
олово0,12
свинец0,22

Удельное сопротивление сплавов

Сплав металлов ρ , О м · м м 2 м
сталь0,103-0,137
латунь0,025-0,108
бронза0,095-0,1

Расчет сопротивления проводника

где R — сопротивление проводника,

ρ — удельное сопротивление материала, из которого состоит проводник,

S — площадь поперечного сечения проводника,

l — длина проводника.

Расчет удельного сопротивления

Зная сопротивление проводника и его размеры, можно вычислить удельное сопротивление материала, из которого изготовлен проводник:

Расчет длины и площади сечения проводника

Из этой же формулы выводим формулы для нахождения длины и площади сечения проводника.

Закон Ома

Сопротивление можно узнать, если известны напряжение и сила тока в проводнике.

В соответствии с законом Ома для участка цепи сила тока имеет прямую зависимость от напряжения и обратную от сопротивления. Следовательно, сопротивление равно отношению напряжения к силе тока.

U — напряжение,

I — сила тока.

Дано: по алюминиевому кабелю длиной 1500 м пущен ток. Площадь поперечного сечения кабеля равна 8 м м 2 .

Найти: сопротивление кабеля.

Решение:

Удельное сопротивление алюминия равно 0 , 028 О м · м м 2 м . R = ρ l S = 0 , 028 О м · м м 2 м · 1500 м 8 м м 2 = 5 , 25 О м .

Ответ: сопротивление кабеля 5 , 25 О м .

Дано: площадь поперечного сечения провода из меди — 1 , 7 м м 2 , сопротивление проводника — 8 Ом.

Найти: длину медного провода.

Удельное сопротивление меди равно 0 , 017 О м · м м 2 м .

Длина провода l = R S ρ = 8 О м · 1 , 7 м м 2 0 , 017 О м · м м 2 м = 800 м .

Читайте также: