Соли щелочных металлов не подвергаются гидролизу по катиону

Обновлено: 07.01.2025

Гидролизом называют химическую реакцию, которая происходит при взаимодействии какого-либо вещества (в данном случае соли) с водой.

Гидролизу подвергаются средние и кислые соли, в образовании которых участвовали сильная кислота и слабое основание (FeSO4, ZnCl2), слабая кислота и сильное основание (NaCO3, CaSO3), слабая кислота и слабое основание ((NH4)2CO3, BeSiO3). Если соль получена путем взаимодействия сильных кислоты и основания (NaCl, K2SO4) реакция гидролиза не протекает.

Соли, подвергающиеся гидролизу

Гидролизу подвергаются соли, в составе которых присутствует «слабый ион», те. Они должны быть образованы слабой кислотой и сильным основанием (гидролиз по аниону), сильной кислотой и слабым основанием (гидролиз по катиону) или слабой кислотой и слабым основанием (гидролиз по катиону и аниону). Рассмотрим более конкретно.

Гидролиз солей по аниону

Разберем на примере ацетата калия (CH3COOK). Соль образована гидроксидом калия (KOH– сильное) и уксусной кислотой (CH3COOH– слабая). Одноосновная. Запишем уравнение гидролиза:

CH3COOK ↔ СH3COO — + K + (диссоциация соли);

СH3COO — + K + + HOH ↔ CH3COOH + K + + OH — (ионное уравнение);

CH3COOK + H2O↔ CH3COOH + KOH (молекулярное уравнение).

Наличие гидроксид-ионов свидетельствует о щелочном характере среды.

Гидролиз солей по катиону

Разберем на примере нитрата бериллия (Be(NO3)2). Соль образована гидроксидом бериллия (Be(OH)2 – слабое) и азотной кислоты (HNO3 – сильная). Запишем уравнение гидролиза:

а) первая ступень

Be 2+ + 2NO3 — + HOH ↔ BeOH + + H + + 2NO3 — (ионное уравнение);

б) вторая ступень

Be(OH)NO3 ↔ BeOH + + NO3 — (диссоциация соли);

BeOH + + NO3 — + HOH ↔ Be(OH)2 + H + + 2NO3 — (ионное уравнение);

Be(OH)NO3 + HOH ↔ Be(OH)2 + HNO3 (молекулярное уравнение).

Наличие ионов водорода свидетельствует о кислом характере среды.

Гидролиз солей и по катиону, и по аниону

Разберем на примере сульфида серы (FeS). Соль образована гидроксидом железа (II) (Fe(OH)2 – слабое) и сероводородной кислоты (H2S – слабая). Запишем уравнение гидролиза:

FeS ↔ Fe 2+ + S 2- (диссоциация соли);

FeS — + HOH ↔ Fe(OH)2↓+ H2S↑ (молекулярное уравнение).

Уравнение в ионной форме в этом случае не записывают. Среда нейтральная.

Примеры решения задач

Хлорид железа (III)

Она не подвергается гидролизу. Реакция среды водного раствора нитрата калия будет нейтральная. Вариант 2.

б) хлорид железа (III) представляет собой соль, образованную сильной кислотой (серной) и слабым основанием (гидроксидом железа (III)). Гидролиз протекает по катиону:

Fe +3 + HOH ↔ FeOH 2+ + H + .

Наличие ионов водорода свидетельствует о том, что реакция среды водного раствора хлорида железа (III) кислая. Вариант 1.

в) сульфат аммония образованную сильной кислотой (азотной) и слабым основанием (гидроксидом аммония). Гидролиз протекает по катиону:

Наличие ионов водорода свидетельствует о том, что реакция среды водного раствора сульфата аммония кислая. Вариант 1.

г) ацетат калия представляет собой соль, образованную слабой кислотой (уксусной) и сильным основанием (гидроксидом калия). Гидролиз протекает по аниону:

Наличие гидроксид-ионов свидетельствует о том, что реакция среды водного раствора ацетата калия щелочная. Вариант 3.

Задания 23. Гидролиз солей. Среда водных растворов.

Установите соответствие между названием соли и отношением этой соли к гидролизу: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

А) хлорид аммония

Б) сульфат калия

В) карбонат натрия

Г) сульфид алюминия

1) гидролизуется по катиону

2) гидролизуется по аниону

3) гидролизу не подвергается

4) гидролизуется по катиону и аниону

Запишите в таблицу номера выбранных веществ под соответствующими буквами.

Ответ: 1324

А) гидрокарбонат калия

Б) сульфат аммония

В) нитрат натрия

Г) ацетат алюминия

3) гидролизуется по катиону и аниону

4) гидролизу не подвергается

Ответ: 2143

Установите соответствие между названием соли и средой раствора этой соли: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Б) сульфат железа (II)

В) карбонат калия

Г) хлорид алюминия

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: 3131

Б) сульфит натрия

В) хлорид аммония

Г) хлорид натрия

Ответ: 2214

А) пропионат натрия

В) ацетат аммония

Ответ: 2132

А) нитрат свинца

Б) сульфид натрия

1) гидролизуется по аниону

2) гидролизуется по катиону

Ответ: 2131

Установите соответствие между названием вещества и средой раствора этого вещества: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

А) фенолят натрия

Б) хлорид аммония

В) сульфат железа (II)

Г) сульфид калия

Ответ: 3223

Установите соответствие между названием соединения и средой водного раствора этого соединения: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

А) формиат калия

А) ортофосфат калия

Б) сульфат меди (II)

В) карбонат лития

Г) нитрат натрия

Ответ: 1213

А) стеарат натрия

Б) фосфат аммония

В) сульфид натрия

Г) сульфат бериллия

Ответ: 2321

А) ацетат аммония

Б) силикат натрия

В) нитрат свинца (II)

Ответ: 3214

Установите соответствие между формулой соли и отношением этой соли к гидролизу: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Ответ: 1342

Ответ: 4221

Ответ: 4312

Установите соответствие между формулой соли и окраской лакмуса в ее растворе: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Ответ: 2313

Установите соответствие между названиями веществ и продуктами их гидролиза: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Б) сульфид алюминия

Г) иодид фосфора (III)

Ответ: 3641

Б) нитрид магния

В) хлорид меди (II)

Г) тринитрат целлюлозы

А) сульфат цинка

Б) нитрат рубидия

Г) гидрофосфат натрия

Ответ: 1233

А) сульфид алюминия

В) нитрат магния

Г) сульфит калия

Ответ: 3212

А) иодид алюминия

Б) сульфид аммония

В) сульфат хрома (III)

Г) пропионат натрия

Ответ: 1312

Установите соответствие между названием соли и средой водного раствора этой соли: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

А) фторид натрия

В) сульфит натрия

Г) сульфат натрия

Ответ: 3132

Установите соответствие между формулой соли и средой водного раствора этой соли: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Ответ: 1232

Установите соответствие между формулой соли и её отношением к гидролизу: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Ответ: 4123

Ответ: 3412

1.4.7. Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная.

Для того, чтобы понять, что такое гидролиз солей, вспомним для начала, как диссоциируют кислоты и щелочи.

Общим между всеми кислотами является то, что при их диссоциации обязательно образуются катионы водорода (Н + ), при диссоциации же всех щелочей всегда образуются гидроксид-ионы (ОН − ).

В связи с этим, если в растворе, по тем или иным причинам, больше ионов Н + говорят, что раствор имеет кислую реакцию среды, если ОН − — щелочную реакцию среды.

Если с кислотами и щелочами все понятно, то какая же реакция среды будет в растворах солей?

На первый взгляд, она всегда должна быть нейтральной. И правда же, откуда, например, в растворе сульфида натрия взяться избытку катионов водорода или гидроксид-ионов. Сам сульфид натрия при диссоциации не образует ионов ни одного, ни другого типа:

Тем не менее, если бы перед вами оказались, к примеру, водные растворы сульфида натрия, хлорида натрия, нитрата цинка и электронный pH-метр (цифровой прибор для определения кислотности среды) вы бы обнаружили необычное явление. Прибор показал бы вам, что рН раствора сульфида натрия больше 7, т.е. в нем явный избыток гидроксид-ионов. Среда раствора хлорида натрия оказалась бы нейтральной (pH = 7), а раствора Zn(NO3)2 кислой.

Единственное, что соответствует нашим ожиданиям – это среда раствора хлорида натрия. Она оказалась нейтральной, как и предполагалось.

Но откуда же взялся избыток гидроксид-ионов в растворе сульфида натрия, и катионов-водорода в растворе нитрата цинка?

Попробуем разобраться. Для этого нам нужно усвоить следующие теоретические моменты.

Любую соль можно представить как продукт взаимодействия кислоты и основания. Кислоты и основания делятся на сильные и слабые. Напомним, что сильными называют те кислоты, и основания, степень диссоциации, которых близка к 100%.

примечание: сернистую (H2SO3) и фосфорную (H3PO4) чаще относят к кислотам средней силы, но при рассмотрении заданий по гидролизу нужно относить их к слабым.

Кислотные остатки слабых кислот, способны обратимо взаимодействовать с молекулами воды, отрывая от них катионы водорода H + . Например, сульфид-ион, являясь кислотным остатком слабой сероводородной кислоты, взаимодействует с ней следующим образом:

S 2- + H2O ↔ HS − + OH −

Как можно видеть, в результате такого взаимодействия образуется избыток гидроксид-ионов, отвечающий за щелочную реакцию среды. То есть кислотные остатки слабых кислот увеличивают щелочность среды. В случае растворов солей содержащих такие кислотные остатки говорят, что для них наблюдается гидролиз по аниону.

Кислотные остатки сильных кислот, в отличие от слабых, с водой не взаимодействуют. То есть они не оказывают влияния на pH водного раствора. Например, хлорид-ион, являясь кислотным остатком сильной соляной кислоты, с водой не реагирует:

То есть, хлорид-ионы, не влияют на pН раствора.

Из катионов металлов, так же с водой способны взаимодействовать только те, которым соответствуют слабые основания. Например, катион Zn 2+ , которому соответствует слабое основание гидроксид цинка. В водных растворах солей цинка протекают процессы:

Zn 2+ + H2O ↔ Zn(OH) + + H +

Zn(OH) + + H2O ↔ Zn(OH) + + H +

Как можно видеть из уравнений выше, в результате взаимодействия катионов цинка с водой, в растворе накапливаются катионы водорода, повышающие кислотность среды, то есть понижающие pH. Если в состав соли, входят катионы, которым соответствуют слабые основания, в этом случае говорят что соль гидролизуется по катиону.

Катионы металлов, которым соответствуют сильные основания, с водой не взаимодействуют. Например, катиону Na + соответствует сильное основание – гидроксид натрия. Поэтому ионы натрия с водой не реагируют и никак не влияют на pH раствора.

Таким образом, исходя из вышесказанного соли можно разделить на 4 типа, а именно, образованные:

1) сильным основанием и сильной кислотой,

Такие соли не содержат ни кислотных остатков, ни катионов металлов, взаимодействующих с водой, т.е. способных повлиять на pH водного раствора. Растворы таких солей имеют нейтральную реакцию среды. Про такие соли говорят, что они не подвергаются гидролизу.

2) сильным основанием и слабой кислотой

В растворах таких солей, с водой реагируют только кислотные остатки. Среда водных растворов таких солей щелочная, в отношении солей такого типа говорят, что они гидролизуются по аниону

Примеры: NaF, K2CO3, Li2S и т.д.

3) слабым основанием и сильной кислотой

У таких солей с водой реагируют катионы, а кислотные остатки не реагируют – гидролиз соли по катиону, среда кислая.

4) слабым основанием и слабой кислотой.

С водой реагируют как катионы, так и анионы кислотных остатков. Гидролиз солей такого рода идет и по катиону, и по аниону. Нередко такие соли подвергаются необратимому гидролизу.

Что же значит то, что они необратимо гидролизуются?

Поскольку в данном случае с водой реагируют и катионы металла (или NH4 + ) и анионы кислотного остатка, в раcтворе одновременно возникают и ионы H + , и ионы OH − , которые образуют крайне малодиссоциирующее вещество – воду (H2O).

Это, в свою очередь, приводит к тому, что соли образованные кислотными остатками слабых оснований и слабых кислот не могут быть получены обменными реакциями, а только твердофазным синтезом, либо и вовсе не могут быть получены. Например, при смешении раствора нитрата алюминия с раствором сульфида натрия, вместо ожидаемой реакции:

Наблюдается следующая реакция:

Тем не менее, сульфид алюминия без проблем может быть получен сплавлением порошка алюминия с серой:

При внесении сульфида алюминия в воду, он также как и при попытке его получения в водном растворе, подвергается необратимому гидролизу.

Гидролиз

Гидролиз – взаимодействие веществ с водой. Гидролизу подвергаются разные классы неорганических и органических веществ: соли, бинарные соединения, углеводы, жиры, белки, эфиры и другие вещества. Гидролиз солей происходит, когда ионы соли способны образовывать с Н + и ОН — ионами воды малодиссоциированные электролиты.

AAAUAVA0

Гидролиз солей может протекать:

→ обратимо : только небольшая часть частиц исходного вещества гидролизуется.

→ необратимо : практически все частицы исходного вещества гидролизуются.

Для оценки типа гидролиза необходимо рассмотреть соль, как продукт взаимодействия основания и кислоты. Любая соль состоит из металла и кислотного остатка. Металлы соответствует основание или амфотерный гидроксид (с той же степенью окисления, что и в соли), а кислотному остатку — кислота. Например, карбонату натрия Na2CO3 соответствует основание — щелочь NaOH и угольная кислота H2CO3.

Обратимый гидролиз солей

Механизм обратимого гидролиза будет зависеть от состава исходной соли. Можно выделить 4 основных варианта, которые мы рассмотрим на примерах:

1. Соли, образованные сильным основанием и слабой кислотой , гидролизуются ПО АНИОНУ .

CH3COONa + HOH ↔ CH3COOH + NaOH

CH3COO — + Na + + HOH ↔ CH3COOH + Na + + OH —

сокращенное ионное уравнение:

CH3COO — + HOH ↔ CH3COOH + OH —

Таким образом, при гидролизе таких солей в растворе образуется небольшой избыток гидроксид-ионов OH — . Водородный показатель такого раствора рН>7 .

Гидролиз солей многоосновных кислот (H2CO3, H3PO4 и т.п.) протекает ступенчато, с образованием кислых солей:

CO3 2- + HOH ↔ HCO3 2- + OH —

или в молекулярной форме:

Продукты гидролиза по первой ступени подавляют вторую ступень гидролиза, в результате вторая ступень гидролиза протекает незначительно.

2. Соли, образованные слабым основанием и сильной кислотой , гидролизуются ПО КАТИОНУ . Пример такой соли: NH4Cl, FeCl3, Al2(SO4)3 Уравнение гидролиза:

При этом катион слабого основания притягивает гидроксид-ионы из воды, а в растворе возникает избыток ионов Н + . Водородный показатель такого раствора рН .

Соли, образованные многокислотными основаниями, гидролизуются ступенчато, образуя катионы основных солей. Например:

Fe 3+ + HOH ↔ FeOH 2+ + H +

FeCl3 + HOH ↔ FeOHCl2 + H Cl

FeOH 2+ + HOH ↔ Fe(OH)2 + + H +

FeOHCl2 + HOH ↔ Fe(OH)2Cl+ HCl

Fe(OH)2 + + HOH ↔ Fe(OH)3 + H +

Fe(OH)2Cl + HOH ↔ Fe(OH)3 + HCl

Гидролиз по второй и, в особенности, по третьей ступени практически не протекает при комнатной температуре.

3. Соли, образованные слабым основанием и слабой кислотой , гидролизуются И ПО КАТИОНУ, И ПО АНИОНУ .

В этом случае реакция раствора зависит от соотношения констант диссоциации образующихся кислот и оснований. В большинстве случаев реакция раствора будет примерно нейтральной, рН ≅ 7 . Точное значение рН зависит от относительной силы основания и кислоты.

4. Гидролиз солей, образованных сильным основанием и сильной кислотой , в водных растворах НЕ ИДЕТ .

Сведем вышеописанную информацию в общую таблицу:

табличка

Необратимый гидролиз

Необратимый гидролиз происходит, если при гидролизе выделяется газ, осадок или вода, т.е. вещества, которые при данных условиях не могут взаимодействовать между собой. Необратимый гидролиз является химической реакцией, т.к. реагирующие вещества взаимодействуют практически полностью.

Варианты необратимого гидролиза:

  1. Гидролиз, в который вступают растворимые соли 2х-валентных металлов (Be 2+ , Co 2+ , Ni 2+ , Zn 2+ , Pb 2+ , Cu 2+ и др.) с сильным ионизирующим полем (слабые основания) и растворимые карбонаты/гидрокарбонаты. При этом образуются нерастворимые основные соли (гидроксокарбонаты):

! Исключения: (соли Ca, Sr, Ba и Fe 2+ ) – в этом случае получим обычный обменный процесс:

МеCl2 + Na2CO3 = МеCO3 + 2NaCl (Ме – Fe, Ca, Sr, Ba).

  1. Взаимный гидролиз , протекающий при смешивании двух солей, гидролизованных по катиону и по аниону. Продукты гидролиза по второй ступени усиливают гидролиз по первой ступени и наоборот. Поэтому в таких процессах образуются не просто продукты обменной реакции, а продукты гидролиза (совместный или взаимный гидролиз). Соли металлов со степенью окисления +3 (Al 3+ , Cr 3+ ) и соли летучих кислот (карбонаты, сульфиды, сульфиты) при смешивании в растворе (взаимном гидролизе) образуют осадок гидроксида и газ (H2S, SO2, CO2):

Соли Fe 3+ при взаимодействии с карбонатами также при смешивании в растворе (взаимном гидролизе) образуют осадок гидроксида и газ:

! Исключения: при взаимодействии солей трехвалентного железа с сульфидами реализуется окислительно-восстановительная реакция:

2FeCl3 + 3K2S(изб) = 2FeS + S↓ + 6KCl (при избытке сульфида калия)

При взаимодействии солей трехвалентного железа с сульфитами также реализуется окислительно-восстановительная реакция.

Полные уравнения таких реакций выглядят довольно сложно. Поначалу я рекомендую составлять такие уравнения в 2 этапа: сначала составляем обменную реацию без участия воды, затем разлагаем полученный продукт обменной реакции водой. Сложив эти две реакции и сократив одинаковые вещества, мы получаем полное уравнение необратимого гидролиза.

3. Гидролиз галогенангидридов и тиоангидридов происходит также необратимо. Галогенангидриды разлагаются водой по схеме ионного обмена (H + OH — ) до соответствующих кислот (в случае водного гидролиза) и солей (в случае щелочного гидролиза). Степень окисления центрального элемента и остальных при этом не изменяется!

Галогенангидрид – это соединение, которое получается, если в кислоте ОН-группу заменить на галоген. При гидролизе галогенангидридов кислот образуются соответствующие данным элементам и степеням окисления кислоты и галогеноводородные кислоты.

Галогенангидриды некоторых кислот:

Кислота Галогенангидриды
H2SO4 SO2Cl2
H2SO3 SOCl2
H2CO3 COCl2
H3PO4 POCl3, PCl5

Тиоангидриды (сульфангидриды) — так называются, по аналогии с безводными окислами (ангидридами), сернистые соединения элементов (например, Sb2S3, As2S5, SnS2, CS2 и т. п.).

  1. Необратимый гидролиз бинарных соединений, образованных металлом и неметаллом:
  • сульфиды трехвалентных металлов вводе необратимо гидролизуются до сероводорода и и гидроксида металла:

при этом возможен кислотный гидролиз, в таком случае образуются соль металла и сероводород:

  • гидролиз карбидов приводит к образованию гидроксида металла в водной среде, соли металла в кислой де и соответствующего углеводорода — метана, ацетилена или пропина:
  1. Некоторые соли необратимо гидролизуются с образованием оксосолей :

BiCl3 + H2O = BiOCl + 2HCl,

SbCl3 + H2O = SbOCl + 2HCl.

Алюмокалиевые квасцы:

Количественно гидролиз характеризуется величиной, называемой степенью гидролиза .

Степень гидролиза (α) — отношение количества (концентрации) соли, подвергающейся гидролизу, к общему количеству (концентрации) растворенной соли. В случае необратимого гидролиза α≅1.

Факторы, влияющие на степень гидролиза:

1. Температура

Гидролиз — эндотермическая реакция! Нагревание раствора приводит к интенсификации процесса.

Пример : изменение степени гидролиза 0,01 М CrCl3 в зависимости от температуры:

65

2. Концентрация соли

Чем меньше концентрация соли, тем выше степень ее гидролиза.

Пример : изменение степени гидролиза Na2CO3 в зависимости от температуры:

2

По этой причине для предотвращения нежелательного гидролиза хранить соли рекомендуется в концентрированном виде.

3. Добавление к реакционной смеси кислоты или щелочи

Изменяя концентрация одного из продуктов, можно смещать равновесие реакции гидролиза в ту или иную сторону.

Читайте также: