Соли с двумя металлами

Обновлено: 08.01.2025

Соли — являются сложными веществами, в состав которых включены катионы металлов (чаще всего) и анионы кислотных остатков.

Согласно ИЮПАК, соли представляют собой химические соединения, в компонентный состав которых включены катионы и анионы. По другому определению название «соли» применимо к веществам, получаемым в процессе химических реакций между кислотами и основаниями, что сопровождается выделением воды.

Помимо катионов металлов, компонентами солей могут выступать:

  • катионы аммония ( N H 4 ) + ;
  • катионы фосфония ( P H 4 ) + ;
  • производные органического происхождения перечисленных катионов;
  • комплексные катионы.

Анионами в солях являются анионы кислотного остатка разных органических и неорганических кислот Бренстеда, в том числе карбанионы и комплексные анионы.

В распространенных случаях соли имеют вид кристаллических веществ с ионной кристаллической решеткой. К примеру, кристаллы галогенидов щелочных и щелочноземельных металлов (NaCl, CsCl, C a F 2 ) состоят из анионов, которые размещены, согласно принципу плотнейшей шаровой упаковки, и катионов, встающие на пустые места в этой упаковке. Ионные кристаллы солей могут быть сложены из кислотных остатков, которые объединены в бесконечные анионные фрагменты и трехмерные каркасы с катионами в полостях (силикаты).

Рассмотренное строение обуславливает физические свойства солей:

  • повышенные показатели температурного режима плавления;
  • в твердом агрегатном состоянии вещества обладают диэлектрическими свойствами;
  • проводят электрический ток в растворах и расплавах.

Некоторые соли обладают характером химических связей, который является промежуточным между ионным и ковалентным. Например, хлорид алюминия A l C l 3 , в газовой фазе состои из молекул A l C l 3 или A l 2 C l 6 .

Особенно важны для науки ионные жидкости в виде солей, которые плавятся при температуре ниже 100 °С. Ионные жидкости характеризуются не только аномальной температурой плавления, но и обладают почти нулевым давлением насыщенного пара и высокой вязкостью. Уникальные свойства данных солей объясняются следующими факторами:

  • низкая симметрия катиона;
  • слабое взаимодействие между ионами;
  • хорошие распределение заряда катиона.

Ключевое свойство солей заключается в степени их растворимости в воде. Согласно данному критерию вещества классифицируют на следующие классы:

  • растворимые;
  • мало растворимые;
  • нерастворимые.

Виды химических солей, формулы

При рассмотрении солей в виде продуктов замещения атомов водорода в кислотах на металлы или гидроксогрупп в основаниях на кислотные остатки допустимо использовать следующую классификацию солей:

  1. Средние (нормальные) соли, продукты поного замещения всех атомов водорода в молекулах кислоты на катионы металла ( N a 2 C O 3 , K 3 P O 4 ) .
  2. Кислые соли, продукты неполного замещения атомов водорода в кислотах на катионы металла ( N a H C O 3 , K 2 H P O 4 ) . Данные вещества формируются в процессе нейтрализации основания избытком кислоты, то есть синтезируются при условии недостатка основания или избытка кислоты.
  3. Основные соли, являются продуктами неполного замещения гидроксогрупп основания (OH-) кислотными остатками ( ( C u O H ) 2 C O 3 ). Такие соли образуются при избытке основания или недостатке кислоты.
  4. Комплексные соли ( N a 2 [ Z n ( O H ) 4 ] , K 4 [ F e ( C N ) 6 ] ) содержат сложные по составу катионы или анионы, которые при написании формулы соли заключают в квадратные скобки [].

В зависимости от количества имеющихся в структуре катионов и анионов выделяют следующие типы солей:

  1. Простые соли в форме веществ, которые состоят из одного вида катионов и одного вида анионов (NaCl).
  2. Двойные соли, в составе которых пара различных катионов ( K A l ( S O 4 ) 2 · 12 H 2 O ) .
  3. Смешанные соли, содержат два различных аниона (Ca(OCl)Cl).

Кроме перечисленных типов солей, выделяют гидратные соли (кристаллогидраты). Данные вещества включают в состав молекулы кристаллизационной воды, к примеру, N a 2 S O 4 · 10 H 2 O .

Внутренние соли существуют в форме биполярных ионов, которые образуются в результе самоионизации молекулы — процесса, при котором один из участков молекулы приобретает положительных заряд, а другой — отрицательный.

К примеру, это явление характерно для аминокислот:

Соли вступают в химические реакции с кислотами и основаниями в том случае, когда по итогам взаимодействия образуется осадок, газ, малодиссоциирующие вещества, к примеру, вода.

B a C l 2 + H 2 S O 4 ⟶ B a S O 4 ↓ + 2 H C l B a C l 2 + H 2 S O 4 ⟶ B a S O 4 ↓ + 2 H C l

N a H C O 3 + H C l ⟶ N a C l + H 2 O + C O 2 ↑ N a H C O 3 + H C l ⟶ N a C l + H 2 O + C O 2 ↑

N a 2 S i O 3 + 2 H C l ⟶ 2 N a C l + H 2 S i O 3 ↓ N a 2 S i O 3 + 2 H C l ⟶ 2 N a C l + H 2 S i O 3 ↓

Соли могут взаимодействовать с металлами. Общее правило такое: более активный металл вытесняет менее активный из раствора его соли (металл, стоящий в ряду активности правее вытесняет металл, стоящий в ряду активности левее):

C u + H g C l 2 ⟶ C u C l 2 + H g C u + H g C l 2 ⟶ C u C l 2 + H g

Соли взаимодействуют между собой в ходе реакций обмена. Такие реакции протекают, когда образуется газ, осадок или вода. Как правило, изменение степеней окисления элементов при этом не происходит.

C a C l 2 + N a 2 C O 3 ⟶ C a C O 3 ↓ + 2 N a C l C a C l 2 + N a 2 C O 3 ⟶ C a C O 3 ↓ + 2 N a C l

A g N O 3 + N a C l ⟶ A g C l ↓ + N a N O 3 A g N O 3 + N a C l ⟶ A g C l ↓ + N a N O 3

Реакции между солями также могут сопровождаться изменением степеней окисления, если у участников реакции ярко выражены окислительные или восстановительные свойства:

K 2 C r 2 O 7 + 3 N a 2 S O 3 + 4 H 2 S O 4 ⟶ C r 2 ( S O 4 ) 3 + 3 N a 2 S O 4 + K 2 S O 4 + 4 H 2 O K 2 C r 2 O 7 + 3 N a 2 S O 3 + 4 H 2 S O 4 ⟶ C r 2 ( S O 4 ) 3 + 3 N a 2 S O 4 + K 2 S O 4 + 4 H 2 O

Определенные виды солей разлагаются при повышении температуры. Состав продуктов разложения зависит от природы соли:

C u C O 3 ⟶ C u O + C O 2 ↑ C u C O 3 ⟶ C u O + C O 2 ↑

C a ( N O 3 ) 2 ⟶ C a ( N O 2 ) 2 + O 2 ↑ C a ( N O 3 ) 2 ⟶ C a ( N O 2 ) 2 + O 2 ↑

N H 4 N O 3 ⟶ N 2 O ↑ + 2 H 2 O N H 4 N O 3 ⟶ N 2 O ↑ + 2 H 2 O

N H 4 N O 2 ⟶ N 2 ↑ + 2 H 2 O N H 4 N O 2 ⟶ N 2 ↑ + 2 H 2 O

В процессе растворения в воде большинство солей полностью диссоциируют на ионы, поскольку в основном соли представляют собой сильные электролиты.

В качестве примера классических сильных электролитов можно привести соли щелочных металлов, которые в растворенном виде имеют вид гидратированных ионов. Однако, к примеру, 0,1 M раствор F e C l 3 включает в состав катионы:

  • 10 % ( F e ) 3 + ;
  • 42 % ( F e C l ) 2 + ;
  • 40 % ( F e C l 2 ) + ;
  • 6 % ( F e O H ) 2 + ;
  • 2 % ( F e ( O H ) 2 ) + .

Определенные виды солей в растворенном виде обладают способностью вступать в реакции гидролиза. Процесс протекает обратимо в случае солей слабых кислот ( N a 2 C O 3 ) или слабых оснований ( C u C l 2 ) , и необратимо — для солей и слабых кислот, и слабых оснований ( A l 2 S 3 ) .

Массовая доля

Массовая доля — отношение массы растворенного вещества к общей массе раствора.

Массовая доля представляет собой один из методов выражения концентрации растворов. Для обозначения показателя используют букву ω или W. Единицы измерения: доли единицы или проценты.

Массовую долю конкретного компонента в смеси определяют по формуле:

Переход от массовой доли к титру можно описать с следующей формулой:

В данном случае:

  • Т — титр раствора г/мл;
  • ρ — плотность раствора, г/мл;
  • ω — массовая доля растворенного вещества в процентах.

Понятие массовой доли можно рассмотреть на практическом примере. Допустим, что необходимо приготовить 3 кг раствора, содержащего 4% безводной соли. Требуется определить, какое количество N a 2 B 4 O 7 · 10 H 2 O и воды (в граммах) нужно взять.

Молярная масса N a 2 B 4 O 7 составляет:

M ( N a 2 B 4 O 7 ) = 202 г/моль

Молярная масса кристаллогидрата равна:

M ( N a 2 B 4 O 7 · 10 H 2 O ) = 382 г/моль

Масса N a 2 B 4 O 7 в готовом растворе составит:

m ( N a 2 B 4 O 7 ) = m ( p - p a ) · ω ( N a 2 B 4 O 7 ) = 3000 · 0 , 04 = 120 г

На основе представленных данных можно определить количество вещества N a 2 B 4 O 7 :

n ( N a 2 B 4 O 7 ) = m ( N a 2 B 4 O 7 ) / M ( N a 2 B 4 O 7 ) = 120 / 202 = 0 , 594 моль

n ( N a 2 B 4 O 7 ) = n ( N a 2 B 4 O 7 · 10 H 2 O )

Далее следует вычислить массу кристаллогидрата:

m ( N a 2 B 4 O 7 · 10 H 2 O ) = n ( N a 2 B 4 O 7 · 10 H 2 O ) · М ( N a 2 B 4 O 7 · 10 H 2 O ) = 0 , 594 · 382 = 226 , 93 г

Масса воды составит:

m ( H 2 O ) = m ( p - p a ) - m ( N a 2 B 4 O 7 · 10 H 2 O ) = 2773 , 07 г

В результате расчетов получим, что для приготовления раствора потребуется 226,93г N a 2 B 4 O 7 · 10 H 2 O и 2773,07г воды.

Способы получения солей, сферы применения

С целью получения солей используют разные химические реакции.

Химическая реакция кислот и металлов, основных и амфотерных оксидов/гидроксидов:

H 2 S O 4 + M g ⟶ M g S O 4 + H 2 ↑ H 2 S O 4 + M g ⟶ M g S O 4 + H 2 ↑

3 H 2 S O 4 + A l 2 O 3 ⟶ A l 2 ( S O 4 ) 3 + 3 H 2 O 3 H 2 S O 4 + A l 2 O 3 ⟶ A l 2 ( S O 4 ) 3 + 3 H 2 O

Химическая реакция кислотных оксидов cо щелочами, основными и амфотерными оксидами/гидроксидами:

C a ( O H ) 2 + C O 2 ⟶ C a C O 3 ↓ + H 2 O C a ( O H ) 2 + C O 2 ⟶ C a C O 3 ↓ + H 2 O

C a O + S i O 2 ⟶ C a S i O 3 C a O + S i O 2 ⟶ C a S i O 3

A l 2 O 3 + 3 S O 3 ⟶ A l 2 ( S O 4 ) 3 A l 2 O 3 + 3 S O 3 ⟶ A l 2 ( S O 4 ) 3

M g ( O H ) 2 + C O 2 ⟶ M g C O 3 ↓ + H 2 O M g ( O H ) 2 + C O 2 ⟶ M g C O 3 ↓ + H 2 O

Z n ( O H ) 2 + S O 3 ⟶ Z n S O 4 + H 2 O Z n ( O H ) 2 + S O 3 ⟶ Z n S O 4 + H 2 O

Соли взаимодействуют с кислотами, другими солями (в том случае, когда образуется осадок, газ или малодиссоциирующее вещество):

C a C O 3 + 2 H C l ⟶ C a C l 2 + H 2 O + C O 2 ↑ C a C O 3 + 2 H C l ⟶ C a C l 2 + H 2 O + C O 2 ↑

C u C l 2 + N a 2 S ⟶ 2 N a C l + C u S ↓ C u C l 2 + N a 2 S ⟶ 2 N a C l + C u S ↓

2 N a 2 C O 3 + 2 M g C l 2 + H 2 O ⟶ [ M g ( O H ) ] 2 C O 3 + C O 2 ↑ + 4 N a C l 2 N a 2 C O 3 + 2 M g C l 2 + H 2 O ⟶ [ M g ( O H ) ] 2 C O 3 + C O 2 ↑ + 4 N a C l

Химические реакции между простыми веществами:

F e + S ⟶ F e S F e + S ⟶ F e S

Взаимодействие оснований с неметаллами, к примеру, с галогенами:

C a ( O H ) 2 + C l 2 ⟶ C a ( O C l ) C l + H 2 O C a ( O H ) 2 + C l 2 ⟶ C a ( O C l ) C l + H 2 O

Получение кристаллогидратов в распространенных случаях связано с кристаллизацией соли из водных растворов. Также известны кристаллосольваты солей, которые выпадают из неводных растворителей ( к примеру например , C a B r 2 · 3 C 2 H ) 5 O H ) .

Соли нашли широкое применение в хозяйственной деятельности человека, в том числе, в сфере производства и в быту:

Химические свойства солей

Химические свойства солей

Впервые школьники знакомятся с химическими свойствами солей в 8 классе, и для понимания дальнейшего материала без этой темы никуда. Наша статья поможет освежить знания перед контрольной или экзаменом: вспомним, какие бывают соли и как они образуются, рассмотрим типичные реакции с ними.

31 декабря 2021

· Обновлено 31 декабря 2021

Ждём вас 8 октября в 13:00. Вместе с педагогами, психологами и другими экспертами в образовании и воспитании ответим на главные вопросы мам и пап.

Соли — это сложные вещества, в состав которых входят катионы металла и анионы кислотного остатка. Иногда в состав солей входят водород или гидроксид-ион.

Классификация и номенклатура солей

Так как соли — это продукт полного или частичного замещения металлом атома водорода в кислоте, по составу их можно классифицировать следующим образом.

Кислые соли

Образованы неполным замещением атомов водорода на металл в кислоте.

В наименованиях кислых солей указывают количество водорода приставками «гидро-» или «дигидро-», название кислотного остатка и название металла. Если металл имеет переменную валентность, то в скобках указывают валентность.

Примеры кислых солей и их наименования:

LiHCO3 — гидрокарбонат лития,

NaHSO4 — гидросульфат натрия,

NaH2PO4 — дигидрофосфат натрия.

Средние соли

Образованы полным замещением атомов водорода в кислоте на металл.

Наименования средних солей складываются из названий кислотного остатка и металла. При необходимости указывают валентность.

Примеры средних солей с названиями:

CuSO4 — сульфат меди (II),

CaCl2 — хлорид кальция.

Основные соли

Продукт неполного замещения гидроксогрупп на кислотный остаток.

В наименованиях основных солей указывают количество гидроксид-ионов приставкой «гидроксо-» или «дигидроксо-», название кислотного остатка и название металла с указанием валентности.

Пример: Mg(OH)Cl — гидроксохлорид магния.

Двойные соли

В состав входят два разных металла и один кислотный остаток.

Наименование складывается из названия аниона кислотного остатка и названий металлов с указанием валентности (если металл имеет переменную валентность).

Примеры двойных солей и их наименования:

KNaSO4 — сульфат калия-натрия,

Смешанные соли

Содержат один металл и два разных кислотных остатка.

Наименования смешанных солей складываются из названия кислотных остатков (по усложнению) и названия металла с указанием валентности (при необходимости).

Примеры смешанных солей с наименованиями:

CaClOCl — хлорид-гиполхорит кальция,

PbFCl — фторид-хлорид свинца (II).

Комплексные соли

Образованы комплексным катионом или анионом, связанным с несколькими лигандами.

Называют комплексные соли по схеме: координационное число + лиганд с окончанием «-о» + комплексообразователь с окончанием «-ат» и указанием валентности + внешняя сфера, простой ион в родительном падеже.

Пример: K[Al(OH)4] — тетрагидроксоалюминат калия.

Гидратные соли

В состав входит молекула кристаллизационной воды.

Число молекул воды указывают численной приставкой к слову «гидрат» и добавляют название соли.

Пример: СuSO4∙5H2O — пентагидрат сульфата меди (II).

Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков

Практикующий детский психолог Екатерина Мурашова

Получение солей

Получение средних солей

Средние соли можно образовать в ходе следующих реакций:

Так получают только соли бескислородных кислот.

Металл, стоящий левее H2 в ряду активности, с раствором кислоты:

Mg + 2HCl = MgCl2 + H2

Металл с раствором соли менее активного металла:

Основный оксид + кислотный оксид:

Основный оксид и кислота:

Основание с кислотным оксидом:

Основание с кислотой (реакция нейтрализации):

Взаимодействие соли с кислотой:

Взаимодействие возможно, если одним из продуктов реакции будет нерастворимая соль, вода или газ.

Реакция раствора основания с раствором соли:

Взаимодействие растворов двух солей с образованием новых солей:

Получение кислых солей

Кислые соли образуются при взаимодействии:

Кислот с металлами:

Кислот с оксидами металлов:

Гидроксидов металлов с кислотами:

Кислот с солями:

Аммиака с кислотами:

Получение кислых солей возможно, если кислота в избытке.

Также кислые соли образуются в ходе реакции основания с избытком кислотного оксида:

Получение основных солей

Взаимодействие кислоты с избытком основания:

Добавление (по каплям) небольших количеств щелочей к растворам средних солей металлов:

Взаимодействие солей слабых кислот со средними солями:

Получение комплексных солей

Реакции солей с лигандами:

Получение двойных солей

Двойные соли получают совместной кристаллизацией двух солей:

Химические свойства средних солей

Растворимые соли являются электролитами, следовательно, могут распадаться на ионы. Средние соли диссоциируют сразу:

Нитраты разлагаются в зависимости от активности металла соли:

Металл Левее Mg, кроме Li От Mg до Cu Правее Cu
Продукты MeNO3 + O2 MexOy + NO2 + O2 Me + NO2 + O2
Пример 2NaNO3 = 2NaNO2 + O2 2Cu(NO3)2 = 2CuO + 4NO2 + O2 2AgNO3= 2Ag + 2NO2 + O2

Соли аммония разлагаются с выделением азота или оксида азота (I), если в составе анион, проявляет окислительные свойства. В остальных случаях разложение солей аммония сопровождается выделением аммиака:

Взаимодействие солей с металлами:

Более активные металлы вытесняют менее активные металлы из растворов солей.

Некоторые соли подвержены гидролизу:

Обменные реакции соли и кислоты, соли с основаниями и взаимодействие солей с солями:

Окислительно-восстановительные реакции, обусловленные свойствами катиона или аниона:

Химические свойства кислых солей

Диссоциация. Кислые соли диссоциируют ступенчато:

Термическое разложение с образованием средней соли:

Взаимодействие солей со щелочью. В результате образуется средняя соль:

Химические свойства основных солей

Реакции солей с кислотами — образование средней соли:

Диссоциация — так же как и кислые соли, основные соли диссоциируют ступенчато.

Химические свойства комплексных солей

Избыток сильной кислоты приводит к разрушению комплекса и образованию двух средних солей и воды:

Недостаток сильной кислоты приводит к образованию средней соли активного металла, амфотерного гидроксида и воды:

Взаимодействие слабой кислоты с солью образует кислую соль активного металла, амфотерный гидроксид и воду:

При действии углекислого или сернистого газа получаются кислая соль активного металла и амфотерный гидроксид:

Реакция солей, образованных сильными кислотами с катионами Fe3+, Al3+ и Cr3+, приводит к взаимному усилению гидролиза. Продукты реакции — два амфотерных гидроксида и соль активного металла:

Разлагаются при нагревании:

Вопросы для самопроверки

С чем взаимодействуют средние соли?

Назовите типичные реакции солей.

Из предложенного списка солей выберите те, которые не реагируют с цинком: нитрит калия, бромид железа, карбонат цезия, сульфат меди.

Химические свойства металлов

Химические свойства металлов

Свойства металлов начинают изучать на уроках химии в 8–9 классе. В этом материале мы подробно разберем химические свойства этой группы элементов, а в конце статьи вы найдете удобную таблицу-шпаргалку для запоминания.

20 декабря 2021

· Обновлено 20 декабря 2021

Металлы — это химические элементы, атомы которых способны отдавать электроны с внешнего энергетического уровня, превращаясь в положительные ионы (катионы) и проявляя восстановительные свойства.

В окислительно-восстановительных реакциях металлы способны только отдавать электроны, являясь сильными восстановителями. В роли окислителей выступают простые вещества — неметаллы (кислород, фосфор) и сложные вещества (кислоты, соли и т. д.).

Металлы в природе встречаются в виде простых веществ и соединений. Активность металла в химических реакциях определяют, используя электрохимический ряд, который предложил русский ученый Н. Н. Бекетов. По химической активности выделяют три группы металлов.

Ряд активности металлов

Металлы средней активности

Общие химические свойства металлов

Взаимодействие с неметаллами

Щелочные металлы сравнительно легко реагируют с кислородом, но каждый металл проявляет свою индивидуальность:

оксид образует только литий

натрий образует пероксид

калий, рубидий и цезий — надпероксид

Остальные металлы с кислородом образуют оксиды:

2Zn + O2 = 2ZnO (при нагревании)

Металлы, которые в ряду активности расположены левее водорода, при контакте с кислородом воздуха образуют ржавчину. Например, так делает железо:

С галогенами металлы образуют галогениды:

Медный порошок реагирует с хлором и бромом (в эфире):

При взаимодействии с водородом образуются гидриды:

Взаимодействие с серой приводит к образованию сульфидов (реакции протекают при нагревании):

Реакции с фосфором протекают до образования фосфидов (при нагревании):

Основной продукт взаимодействия металла с углеродом — карбид (реакции протекают при нагревании).

Из щелочноземельных металлов с углеродом карбиды образуют литий и натрий:

Калий, рубидий и цезий карбиды не образуют, могут образовывать соединения включения с графитом:

С азотом из металлов IA группы легко реагирует только литий. Реакция протекает при комнатной температуре с образованием нитрида лития:

Взаимодействие с водой

Все металлы I A и IIA группы реагируют с водой, в результате образуются растворимые основания и выделяется H2. Литий реагирует спокойно, держась на поверхности воды, натрий часто воспламеняется, а калий, рубидий и цезий реагируют со взрывом:

Металлы средней активности реагируют с водой только при условии, что металл нагрет до высоких температур. Результат данной реакции — образование оксида.

Неактивные металлы с водой не взаимодействуют.

Взаимодействие с кислотами

Если металл расположен в ряду активности левее водорода, то происходит вытеснение водорода из разбавленных кислот. Данное правило работает в том случае, если в реакции с кислотой образуется растворимая соль.

2Na + 2HCl = 2NaCl + H2

При взаимодействии с кислотами-окислителями, например, азотной, образуется продукт восстановления кислоты, хотя протекание реакции также неоднозначно.

Схема взаимодействия металлов с сернистой кислотой

Схема взаимодействия металлов с азотной кислотой

Металлы IА группы:

Металлы IIА группы

Такие металлы, как железо, хром, никель, кобальт на холоде не взаимодействуют с серной кислотой, но при нагревании реакция возможна.

Взаимодействие с солями

Металлы способны вытеснять из растворов солей другие металлы, стоящие в ряду напряжений правее, и могут быть вытеснены металлами, расположенными левее:

Zn + CuSO4 = ZnSO4 + Cu

На металлы IА и IIА группы это правило не распространяется, так как они реагируют с водой.

Реакция между металлом и солью менее активного металла возможна в том случае, если соли — как вступающие в реакцию, так и образующиеся в результате — растворимы в воде.

Взаимодействие с аммиаком

Щелочные металлы реагируют с аммиаком с образованием амида натрия:

Взаимодействие с органическими веществами

Металлы IА группы реагируют со спиртами и фенолами, которые проявляют в данном случае кислотные свойства:

Также они могут вступать в реакции с галогеналканами, галогенпроизводными аренов и другими органическими веществами.

Взаимодействие металлов с оксидами

Для металлов при высокой температуре характерно восстановление неметаллов или менее активных металлов из их оксидов.

3Са + Cr2O3 = 3СаО + 2Cr (кальциетермия)

Вопросы для самоконтроля

С чем реагируют неактивные металлы?

С чем связаны восстановительные свойства металлов?

Верно ли утверждение, что щелочные и щелочноземельные металлы легко реагируют с водой, образуя щелочи?

Методом электронного баланса расставьте коэффициенты в уравнении реакции по схеме:

Mg + HNO3 → Mg(NO3)2 + NH4NO3 + Н2O

Как металлы реагируют с кислотами?

Подведем итоги

От активности металлов зависит их химические свойства. Простые вещества — металлы в окислительно-восстановительных реакциях являются восстановителями. По положению металла в электрохимическом ряду можно судить о том, насколько активно он способен вступать в химические реакции (т. е. насколько сильно у металла проявляются восстановительные свойства).

Напоследок поделимся таблицей, которая поможет запомнить, с чем реагируют металлы, и подготовиться к контрольной работе по химии.

Основания

Основания

Из этой статьи вы узнаете, что такое основания, а также какие виды оснований бывают, с чем они взаимодействуют и как их получают. Другими словами, все, что нужно знать об основаниях в рамках курса химии за 8‑й класс.

17 февраля 2022

· Обновлено 12 июля 2022

Основания (гидроксиды) — это сложные вещества, которые состоят из катиона металла и гидроксильной группы (OH).

Общая формула оснований: Me(OH)n, где Me — химический символ металла, n — индекс, который зависит от степени окисления металла.

Примеры оснований: NaOH, Ba(OH)2, Fe(OH)2.

Названия оснований

Названия гидроксидов строятся по систематической номенклатуре следующим образом:

Пишем слово «гидроксид».

Указываем название второго химического элемента в родительном падеже.

Если второй элемент имеет переменную валентность, то указываем валентность элемента в этом соединении в скобках римской цифрой.

Примеры названий оснований:

Ni(OH)2 — гидроксид никеля (II);

Al(OH)3 — гидроксид алюминия.

У некоторых оснований существуют и тривиальные названия. Собрали их в таблице.

Тривиальные названия некоторых оснований

Классификация оснований

По растворимости в воде

В зависимости от растворимости в воде выделяют:

щелочи. Эти основания растворимы в воде: NaOH, KOH, Ba(OH)2 и другие. Ca(OH)2, хотя малорастворим, тоже относится к щелочам из-за своей едкости;

нерастворимые основания. К таким основаниям относятся Fe(OH)2, Cu(OH)2 и другие;

амфотерные гидроксиды. К амфотерным относятся те основания, которые образованы металлами со степенью окисления +3 или +4. Эти основания отличаются тем, что проявляют как основные свойства, так и кислотные.

Также есть основания, которые относятся к амфотерным, но образованы металлом с иной степенью окисления: Zn(OH)2, Pb(OH)2, Sn(OH)2, Be(OH)2.

Напомним, что растворимость мы проверяем по таблице растворимости кислот и оснований в воде.

По числу гидроксогрупп

В зависимости от количества гидроксильных групп, способных замещаться на кислотный остаток, выделяют следующие виды оснований:

однокислотные: KOH, NaOH;

Физические свойства оснований

Основания при обычных условиях — это твердые кристаллические вещества без запаха, нелетучие, чаще всего белого цвета. В таблице приведены основания, которые имеют иную окраску.

Гидроксид лития LiOH

Гидроксид магния Mg(OH)2

Гидроксид кальция Ca(OH)2

Пошаговый гайд от Екатерины Мурашовой о том, как перестать делать уроки за ребёнка и выстроить здоровые отношения с учёбой.

Учёба без слёз (бесплатный гайд для родителей)

Химические свойства оснований

Растворы щелочей изменяют окраску индикатора

Гидроксид-ионы, которые содержатся в растворе щелочи, взаимодействуют с индикатором, образуя новые соединения. Признак реакции — окраска раствора.

Взаимодействие с кислотными оксидами

Щелочи вступают в реакцию с любыми кислотными оксидами. Нерастворимые основания взаимодействуют только с кислотными оксидами, которые соответствуют сильным кислотам.

Кислотный оксид + основание = соль + вода

Щелочи вступают в реакцию со всеми кислотами. Нерастворимые основания могут взаимодействовать только с сильными кислотами.

Основание + кислота = соль + вода

Взаимодействие основания с кислотой называют реакцией нейтрализации — это частный случай реакции обмена.

Основания взаимодействуют с растворимыми солями по обменному механизму. В результате такой реакции должен выделиться осадок или газ (CO2, SO2, NH3).

Основание + соль = другое основание + другая соль

Термическое разложение

При нагревании нерастворимые основания разлагаются на соответствующий оксид (степень окисления металла остается неизменной) и воду.

Нерастворимое основание оксид металла + вода

Взаимодействие амфотерных гидроксидов со щелочами

Продукты реакции зависят от условий ее проведения.

При сплавлении двух оснований:

Амфотерный гидроксид (тв) + щелочь (тв) = средняя соль + вода

Если реакция проводится в растворе:

Амфотерный гидроксид (р-р) + щелочь (р-р) = комплексная соль

Получение оснований

Взаимодействие металла с водой

Активные металлы (металлы групп IA и IIA, кроме Be и Mg) активно взаимодействуют с водой при обычных условиях с образованием щелочей.

Нерастворимые основания данным способом получить невозможно, за исключением Mg(OH)2.

Металл + вода = гидроксид металла + водород

Гидроксид магния можно получить данным способом, но только при нагревании:

Взаимодействие оксидов щелочных и щелочноземельных металлов с водой

Этим способом получают только растворимые в воде основания.

Оксид металла + вода = щелочь

Электролиз

Гидроксид натрия и калия в промышленности получают с помощью электролиза — через раствор хлорида калия проводят постоянный электрический ток:

Электролиз хлорида натрия протекает по аналогичной схеме.

Получение нерастворимых оснований при взаимодействии соли со щелочью

Растворимая соль + щелочь = нерастворимое основание + другая соль

Вопросы для самопроверки

Вспомните определение оснований и приведите 2 примера этих веществ.

Какие виды оснований существуют? Чем они отличаются?

К какому виду оснований относится Zn(OH)2?

Взаимодействуют ли основания с основными оксидами? Приведите примеры веществ, с которыми основания вступают в реакцию.

Можно ли получить гидроксид алюминия с помощью взаимодействия алюминия с водой?

Основания и другие темы по химии изучать интереснее, когда понимаешь, как применять знания в реальной жизни. На онлайн-курсах по химии в Skysmart преподаватели приводят яркие примеры: от процессов в природе до использования химических реакций в промышленности. Приходите учиться — вводный урок бесплатный!

Химические свойства и способы получения солей

Перед изучением этого раздела рекомендую прочитать следующую статью:

Соли – это сложные вещества, которые состоят из катионов металлов и анионов кислотных остатков.

Классификация солей


Получение солей

1. Соли можно получить взаимодействием кислотных оксидов с основными.

кислотный оксид + основный оксид = соль

Например , оксид серы (VI) реагирует с оксидом натрия с образованием сульфата натрия:

2. Взаимодействие кислот с основаниями и амфотерными гидроксидами. При этом щелочи взаимодействуют с любыми кислотами: и сильными, и слабыми.

Щелочь + любая кислота = соль + вода

Например , гидроксид натрия реагирует с соляной кислотой:

HCl + NaOH → NaCl + H2O

При взаимодействии щелочей с избытком многоосновной кислоты образуются кислые соли.

Например , гидроксид калия взаимодействует с избытком фосфорной кислоты с образованием гидрофосфата калия или дигидрофосфата калия:

Нерастворимые основания реагируют только с растворимыми кислотами.

Нерастворимое основание + растворимая кислота = соль + вода

Например , гидроксид меди (II) реагирует с серной кислотой:

Все амфотерные гидроксиды — нерастворимые. Следовательно, они ведут себя как нерастворимые основания при взаимодействии с кислотами:

Амфотерный гидроксид + растворимая кислота = соль + вода

Например , гидроксид цинка (II) реагирует с соляной кислотой:

Также соли образуются при взаимодействии аммиака с кислотами (аммиак проявляет основные свойства).

Аммиак + кислота = соль

Например , аммиак реагирует с соляной кислотой:



3. Взаимодействие кислот с основными оксидами и амфотерными оксидами. При этом растворимые кислоты взаимодействуют с любыми основными оксидами.

Растворимая кислота + основный оксид = соль + вода

Растворимая кислота + амфотерный оксид = соль + вода

Например , соляная кислота реагирует с оксидом меди (II):

2HCl + CuO → CuCl2 + H2O


4. Взаимодействие оснований с кислотными оксидами. Сильные основания взаимодействуют с любыми кислотными оксидами.

Щёлочь + кислотный оксид → соль + вода

Например , гидроксид натрия взаимодействует с углекислым газом с образованием карбоната натрия:

При взаимодействии щелочей с избытком кислотных оксидов, которым соответствуют многоосноосновные кислоты, образуются кислые соли.

Например , при взаимодействии гидроксида натрия с избытком углекислого газа образуется гидрокарбонат натрия:

NaOH + CO2 → NaHCO3

Нерастворимые основания взаимодействуют только с кислотными оксидами сильных кислот.

Например , гидроксид меди (II) взаимодействует с оксидом серы (VI), но не вступает в реакцию с углекислым газом:



5. Соли образуются при взаимодействии кислот с солями. Нерастворимые соли взаимодействуют только с более сильными кислотами (более сильная кислота вытесняет менее сильную кислоту из соли). Растворимые соли взаимодействуют с растворимыми кислотами, если в продуктах реакции есть осадок, газ или вода или слабый электролит.

Например: карбонат кальция CaCO3 (нерастворимая соль угольной кислоты) может реагировать с более сильной серной кислотой.

Силикат натрия (растворимая соль кремниевой кислоты) взаимодействует с соляной кислотой, т.к. в ходе реакции образуется нерастворимая кремниевая кислота:


6. Соли можно получить окислением оксидов, других солей, металлов и неметаллов (в щелочной среде) в водном растворе кислородом или другими окислителями.

Например , кислород окисляет сульфит натрия до сульфата натрия:

7. Еще один способ получения солей — взаимодействие металлов с неметаллами . Таким способом можно получить только соли бескислородных кислот.

Например , сера взаимодействует с кальцием с образованием сульфида кальция:

Ca + S → CaS

8. Соли образуются при растворении металлов в кислотах . Минеральные кислоты и кислоты-окислители (азотная кислота, серная концентрированная кислота) реагируют с металлами по-разному.

Кислоты-окислители реагируют с металлами с образованием продуктов восстановления азота и серы. Водород в таких реакциях не выделяется!

Минеральные кислоты реагируют по схеме:

металл + кислота → соль + водород

При этом с кислотами реагируют только металлы, расположенные в ряду активности левее водорода. А образуется соль металла с минимальной степенью окисления.

Например , железо растворяется в соляной кислоте с образованием хлорида железа (II):

Fe + 2HCl → FeCl2 + H2


9. Соли образуются при взаимодействии щелочей с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород, в расплаве — средняя соль и водород.

! Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например , железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6 H2 + O = 2Na[ Al +3 (OH)4] + 3 H2 0

10. Соли образуются при взаимодействии щелочей с неметаллами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах. Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):

NaOH +О2

NaOH +N2

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например , хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH + Cl2 0 = NaCl — + NaOCl + + H2O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH + Cl2 0 = 5NaCl — + NaCl +5 O3 + 3H2O

Кремний окисляется щелочами до степени окисления +4.

Например , в растворе:

2NaOH + Si 0 + H2 + O= Na2Si +4 O3 + 2H2 0

Фтор окисляет щёлочи:

2F2 0 + 4NaO -2 H = O2 0 + 4NaF — + 2H2O

Более подробно про эти реакции можно прочитать в статье Окислительно-восстановительные реакции.

11. Соли образуются при взаимодействии солей с неметалами. При этом протекают окислительно-восстановительные реакции. Один из примеров таких реакций — взаимодействие галогенидов металлов с другими галогенами. При этом более активный галоген вытесняет менее активный из соли.

Например , хлор взаимодействует с бромидом калия:

2KBr + Cl2 = 2KCl + Br2

Но не реагирует с фторидом калия:

KF +Cl2

1. В водных растворах соли диссоциируют на катионы металлов Ме + и анионы кислотных остатков. При этом растворимые соли диссоциируют почти полностью, а нерастворимые соли практически не диссоциируют, либо диссоциируют только частично.

Например , хлорид кальция диссоциирует почти полностью:

CaCl2 → Ca 2+ + 2Cl –

Кислые и основные соли диссоциируют cтупенчато. При диссоциации кислых солей сначала разрываются ионные связи металла с кислотными остатком, затем диссоциирует кислотный остаток кислой соли на катионы водорода и анион кислотного остатка.

Например , гидрокарбонат натрия диссоциирует в две ступени:

NaHCO3 → Na + + HCO3

HCO3 – → H + + CO3 2–

Основные соли также диссоциируют ступенчато.

Например , гидроксокарбонат меди (II) диссоциирует в две ступени:

CuOH + → Cu 2+ + OH –

Двойные соли диссоциируют в одну ступень.

Например , сульфат алюминия-калия диссоциирует в одну ступень:

Смешанные соли диссоциируют также одноступенчато.

Например , хлорид-гипохлорит кальция диссоциирует в одну ступень:

CaCl(OCl) → Ca 2+ + Cl — + ClO –

Комплексные соли диссоциируют на комплексный ион и ионы внешней сферы.

Например , тетрагидроксоалюминат калия распадается на ионы калия и тетрагидроксоалюминат-ион:


2. Соли взаимодействуют с кислотными и амфотерными оксидами . При этом менее летучие оксиды вытесняют более летучие при сплавлении.

соль1 + амфотерный оксид = соль2 + кислотный оксид

соль1 + твердый кислотный оксид = соль2 + кислотный оксид

соль + основный оксид ≠

Например , карбонат калия взаимодействует с оксидом кремния (IV) с образованием силиката калия и углекислого газа:

Карбонат калия также взаимодействует с оксидом алюминия с образованием алюмината калия и углекислого газа:

3. Соли взаимодействуют с кислотами. Закономерности взаимодействия кислот с солями уже рассмотрены в данной статье в разделе «Получение солей».

4. Растворимые соли взаимодействуют с щелочами. Реакция возможна, только если образуется газ, осадок, вода или слабый электролит, поэтому с щелочами взаимодействуют, как правило, соли тяжелых металлов или соли аммония.

Растворимая соль + щелочь = соль2 + основание

Например , сульфат меди (II) взаимодействует с гидроксидом калия, т.к. образуется осадок гидроксида меди (II):

Хлорид аммония взаимодействует с гидроксидом натрия:

Кислые соли взаимодействуют с щелочами с образованием средних солей.

Кислая соль + щелочь = средняя соль + вода

Например , гидрокарбонат калия взаимодействует с гидроксидом калия:


5. Растворимые соли взаимодействуют с солями. Реакция возможна, только если обе соли растворимые, и в результате реакции образуется осадок.

Растворимая соль1 + растворимая соль2 = соль3 + соль4

Растворимая соль + нерастворимая соль ≠

Например , сульфат меди (II) взаимодействует с хлоридом бария, т.к. образуется осадок сульфата бария:

Некоторые кислые соли взаимодействуют с кислыми солями более слабых кислот. При этом более сильные кислоты вытесняют более слабые:

Кислая соль1 + кислая соль2 = соль3 + кислота

Например , гидрокарбонат калия взаимодействует с гидросульфатом калия:

Некоторые кислые соли могут реагировать со своими средними солями.

Например , фосфат калия взаимодействует с дигидрофосфатом калия с образованием гидрофосфата калия:


6. C оли взаимодействуют с металлами. Более активные металлы (расположенные левее в ряду активности металлов) вытесняют из солей менее активные.

Например , железо вытесняет медь из раствора сульфата меди (II):

CuSO4 + Fe = FeSO4 + Cu

А вот серебро вытеснить медь не сможет:

CuSO4 + Ag ≠

Обратите внимание! Если реакция протекает в растворе, то добавляемый металл не должен реагировать с водой в растворе. Если мы добавляем в раствор соли щелочной или щелочноземельный металл, то этот металл будет реагировать преимущественно с водой, а с солью будет реагировать незначительно.

Например , при добавлении натрия в раствор хлорида цинка натрий будет взаимодействовать с водой:

2H2O + 2Na = 2NaOH + H2

Образующийся гидроксид натрия, конечно, будет реагировать с хлоридом цинка:

ZnCl2 + 2NaOH = 2NaCl + Zn(OH)2

Но сам-то натрий с хлоридом цинка, таким образом, взаимодействовать напрямую не будет!

ZnCl2(р-р) + Na ≠

А вот в расплаве эта реакция при определенных условиях уже может протекать, так как в расплаве никакой воды нет.

ZnCl2(р-в) + 2Na = 2NaCl + Zn

И еще один нюанс. Чтобы получить расплав, соль необходимо нагреть. Но многие соли при нагревании разлагаются. И реагировать с металлом, естественно, при этом не могут. Таким образом, реагировать с металлами в расплаве могут только те соли, которые не разлагаются при нагревании. А разлагаются при нагревании почти все нитраты, нерастворимые карбонаты и некоторые другие соли.

Например , нитрат меди (II) в расплаве не реагирует с железом, так как при нагревании нитрат меди разлагается:

Образующийся оксид меди, конечно, будет реагировать с железом:

CuO + Fe = FeO + Cu

Но сам-то нитрат меди, получается, с железом реагировать напрямую не будет!


При добавлении меди (Cu) в раствор соли менее активного металла – серебра (AgNO3) произойдет химическая реакция:

2AgNO3 + Cu = Cu(NO3)2 + 2Ag

При добавлении железа (Fe) в раствор соли меди (CuSO4) на железном гвозде появился розовый налет металлической меди:

При добавлении цинка в раствор нитрата свинца (II) на цинке образуется слой металлического свинца:

7. Некоторые соли при нагревании разлагаются .

Соли, в составе которых есть сильные окислители, разлагаются с окислительно-восстановительной реакцией. К таким солям относятся:

NH4NO3 → N2O + 2H2O

NH4NO2 → N2 + 2H2O

(NH4)2Cr2O7 → N2 + 4H2O + Cr2O3

2AgNO3 → 2Ag +2NO2 + O2

2AgCl → 2Ag + Cl2

Некоторые соли разлагаются без изменения степени окисления элементов. К ним относятся:

MgСO3 → MgO + СО2

2NaНСО3 → Na2СО3 + СО2 + Н2О

  • Карбонат, сульфат, сульфит, сульфид, хлорид, фосфат аммония:

NH4Cl → NH3 + HCl

(NH4)2CO3 → 2NH3 + CO2 + H2O

(NH4)2SO4 → NH4HSO4 + NH3


7. Соли проявляют восстановительные свойства . Как правило, восстановительные свойства проявляют либо соли, содержащие неметаллы с низшей степенью окисления, либо соли, содержащие неметаллы или металлы с промежуточной степенью окисления.

Например , йодид калия окисляется хлоридом меди (II):

4KI — + 2Cu +2 Cl2 → 4KCl + 2Cu + l + I2 0


8. Соли проявляют и окислительные свойства . Как правило, окислительные свойства проявляют соли, содержащие атомы металлов или неметаллов с высшей или промежуточной степенью окисления. Окислительные свойства некоторых солей рассмотрены в статье Окислительно-восстановительные реакции.

Читайте также: