Соединения металла и металла

Обновлено: 07.01.2025

Металлы (от лат. «metallum» — шахта, рудник) — группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.

Металлы широко распространены в природе и могут встречаться в различном виде: в самородном состоянии (Ag, Au, Rt, Cu), в виде оксидов (Fe3O4, Fe2O3, (NaK)2O×AlO3), солей (KCl, BaSO4, Ca3(PO4)2), а также сопутствуют различным минералам (Cd – цинковые руды, Nb, Tl – оловянные и т.д.).

Физические свойства металлов

Всем металлам присущи металлический блеск (однако In и Ag отражают свет лучше других металлов), твердость (самый твердый металл – Cr, самые мягкие металлы – щелочные), пластичность (в ряду Au, Ag, Cu, Sn, Pb, Zn, Fe наблюдается уменьшение пластичности), ковкость, плотность (самый легкий металл – Li, самый тяжелый – Os), тепло – и электропроводность, которые уменьшаются в ряду Ag, Cu, Au, Al, W, Fe.

В зависимости от температуры кипения все металлы подразделяют на тугоплавкие (Tкип > 1000 С) и легкоплавкие (Tкип < 1000 С). Примером тугоплавких металлов может быть – Au, Cu, Ni, W, легкоплавких – Hg, K, Al, Zn.

Среди металлов присутствуют s-, p-, d- и f-элементы. Так, s- элементы – это металлы I и II групп Периодической системы (ns 1 , ns 2 ), р- элементы – металлы, расположенные в группах III – VI (ns 2 np 1-4 ). Металлы d-элементы имеют большее число валентных электронов по сравнению с металлами s- и p-элементами. Общая электронная конфигурация валентных электронов металлов d-элементов – (n-1)d 1-10 ns 2 . Начиная с 6 периода появляются металлы f-элементы, которые объединены в семейства по 14 элементов (за счет сходных химических свойств) и носят особые названия лантаноидов и актиноидов. Общая электронная конфигурация валентных электронов металлов f-элементов – (n-2)f 1-14 (n-1)d 0-1 ns 2 .

Химические свойства металлов

Металлы способны реагировать с простыми веществами, такими как кислород (реакция горения), галогены, азот, сера, водород, фосфором и углеродом:

2Na + Cl2 = 2NaCl (хлорид натрия)

2K +S = K2S (сульфид калия)

2Na + H2 = NaH (гидрид натрия)

3Ca + 2P = Ca3P2 (фосфид кальция)

Металлы взаимодействуют друг с другом, образуя интерметаллические соединения:

Щелочные и некоторые щелочноземельные металлы (Ca, Sr, Ba) взаимодействуют с водой с образованием гидроксидов:

В ОВР металлы являются восстановителями – отдают валентные электроны и превращаются в катионы. Восстановительная способность металла — его положение в электрохимическом ряду напряжений металлов. Так, чем левее в ряду напряжений стоит металл, тем более сильные восстановительные свойства он проявляет.

Металлы, стоящие в ряду активности до водорода способны реагировать с кислотами:

Получение металлов

Щелочные, щелочноземельные металлы и алюминий получают электролизом расплавов солей или оксидов этих элементов:

Тяжелые металлы получают восстановлением из руд при высоких температурах и в присутствии катализатора (пирометаллургия) (1) или восстановлением из солей в растворе (гидрометаллургия) (2):

Cu2O + C = 2Cu + CO (1)

Некоторые металлы получают термическим разложением их неустойчивых соединений:

Примеры решения задач

Задание При взаимодействии 6,0 г металла с водой выделилось 3,36 л водорода (н.у.). Определите этот металл, если он в своих соединениях двухвалентен.
Решение Т.к. металл двухвалентен, его реакция с водой будет описываться уравнением, которое в общем виде будет выглядеть следующим образом:

Согласно написанному выше уравнению, количества вещества металла и выделяющегося в ходе реакции водорода будут равны:

МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ

(металлиды), твёрдые фазы сплавов металлов друг с другом (интерметаллич. соединения) или с нек-рыми неметаллами (напр., с Н, В, N, С, Si), обладающие металлическими св-вами. В отличие от твёрдых растворов М. с. относятся к т. н. промежуточным фазам, т. е. имеют крист. решётку, отличную от решёток, образующих фазу компонентов. На диаграммах состояния М. с. характеризуются б. или м. узкой областью гомогенности (т. е. их состав может отличаться от определённого стехиометрического), и от др. фаз диаграммы отделены двухфазными областями.

По своей природе М. с. делят на ряд классов: электронные соединения, структура к-рых определяется электронной концентрацией; т. н. фазы внедрения, построенные на базе тв. растворов внедрения в решётку металла малых атомов неметаллов (напр., Н, N); нек-рые интерметаллич. соединения (и н т е р м е т а л л и д ы), имеющие сложные решётки (s-фазы, фазы Лавеса). Многие интерметаллиды не обладают металлич. св-вами и поэтому не явл. М. с. К М. с. можно отнести и упорядоченные тв. растворы, образующиеся в результате фазового перехода 1-го рода.

Физический энциклопедический словарь. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

Смотреть что такое "МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ" в других словарях:

МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ — то же, что металлиды … Большой Энциклопедический словарь

металлические соединения — то же, что металлиды. * * * МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ, то же, что металлиды (см. МЕТАЛЛИДЫ) … Энциклопедический словарь

Металлические соединения — интерметаллические соединения, то же, что Металлиды … Большая советская энциклопедия

МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ — (металлиды), обладают металлич. св вами, в частности электрич. проводимостью, что обусловлено металлич. характером хим. связи. К М. с. относятся соед. металлов друг с другом интер металлиды и мн. соед. металлов (в осн. переходных) с неметаллами.… … Химическая энциклопедия

МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ — то же, что металлиды … Естествознание. Энциклопедический словарь

МЕТАЛЛИЧЕСКИЕ КРИСТАЛЛЫ — кристаллич. в ва, все атомы к рых объединены металлическими связями валентные электроны металла делокализованы по всему пространству кристаллич. решетки, образуемой его положит. ионами. Структуры М. к. характеризуются плотной и плот нейшей… … Химическая энциклопедия

Соединения на высокопрочных болтах — Соединения на высокопрочных болтах – вид соединения, основанного на трении, возникающем между соприкасающимися поверхностями собранных деталей в результате сильного их сжатия высокопрочными болтами. [Справочник проектировщика. Металлические … Энциклопедия терминов, определений и пояснений строительных материалов

Соединения в строительных конструкциях — Соединения в строительных конструкциях – служат для образования необходимых связей между конструктивными элементы с целью создания узлов, увеличения размеров конструкции и обеспечения её работы как единого целого в соответствии с… … Энциклопедия терминов, определений и пояснений строительных материалов

Соединения (строит.) — Соединения в строительных конструкциях служат для осуществления необходимой связи конструктивных элементов между собой, обеспечения надёжности строительной конструкции, её работы как единого целого в соответствии с требованиями эксплуатации и… … Большая советская энциклопедия

металлические конструкции — строительные конструкции, выполненные из металла. Подразделяются на стальные и из лёгких сплавов. По характеру соединения элементов делятся на сварные, клёпаные и с болтовыми соединениями. Металлоконструкции обладают высокой прочностью, надёжны в … Энциклопедия техники

(металлиды), обладают металлич. св-вами, в частности электрич. проводимостью, что обусловлено металлич. характером хим. связи. К М. с. относятся соед. металлов друг с другом - интер-металлиды и мн. соед. металлов (в осн. переходных) с неметаллами. Металлич. св-ва обычно сильнее проявляются в богатых металлами соед.-низших карбидах, нитридах, сульфидах, оксидах и т. д.

К М. с. относятся фазы внедрения (фазы Хэгга), структура к-рых состоит из атомов металла, расположенных так же, как и в характерных для металлов плотных упаковках (гексагoн., гранецентрир. или объемноцентрир. кубич.), а атомы неметаллов (Н, N, С, В, Р, О) расположены в пустотах этой плотной упаковки. Фазы внедрения могут образовываться, если отношение радиусов атомов металла и неметалла равно или менее 0,59 (правило Хэгга). Когда это отношение больше 0,59, возникают более сложные структуры. В фазах внедрения, как правило, подрешетка атомов металла отличается от структуры исходного металла. Так, у кароидов Ti и V типа MX гранецентрир. кубич. кристаллич. решетка (хотя эти металлы не кристаллизуются в такой решетке). Для фаз внедрения характерно образование более или менее широких областей гомогенности, верх. границей к-рых является стехиометрич. состав.

Фазы состава М 4 Х обычно имеют кубич. гранецентрир. подрешетку металлич. атомов, М 2 Х-гексагон. компактную, MX-кубическую (гранецентрир. или объемноцентрир.) или простую гексагональную. Т. к. в плотнейших гексагoн. и кубич. упаковках число октаэдрич. пустот равно числу металлич. атомов, а число тетраэдрических - вдвое больше, при размещении атомов неметаллов в октаэдрич. пустотах предельный состав отвечает ф-ле MX, в тетраэдрических-МХ 2 . К фазам внедрения относятся в осн. гидриды, карбиды, нитриды, частично оксиды, фосфиды и бориды переходных металлов.

Силициды, германиды и т. п. из-за больших атомных радиусов неметалла, как правило, не образуют фазы внедрения, однако и среди них имеются соед. с металлоподобными структурами (типа b-W). Низшие сульфиды, селениды, арсе-ниды переходных металлов (в частности, со структурами типа NaCl или NiAs) часто обладают металлич. св-вами. Близкий к фазам внедрения характер имеют бронзы оксидные.

К М. с. относятся многие т. наз. ф а з ы Ц и н т л я -бинарные, тройные и более сложные соед., включающие наиб. активные s-металлы наряду с металлами и неметаллами IIIa-VIa гр., характеризующиеся образованием групп одинаковых атомов (металла или неметалла). Примеры фаз Цинтля - высшие бориды (СаВ 6 с октаэдрич. группировками В 6 и др.), Li 21 Si 5 , в к-ром м. б. выделены группы [Li 22 Si 4 ] 6+ и [Li 20 Si 6 ] 4- , двойной силицид Li 8 MgSi 6 , в к-ром существуют группы Li 8 MgSi и кольцевая группа Si 5 .

К М. с. относятся также сверхпроводниковые соед. (см. Сверхпроводники)- ф а з ы Ш е в р ё л я, напр. Mo 6 S 8 и соед. внедрения на его основе М х Мо 6 S 8 (напр., Cu 2 Mo 6 S 8 ), высокотемпературные оксидные сверхпроводники, напр. Ba 2 YCu 3 O 0,65+x (при 0,23 < х 0,3), фторидные сверхпроводники, напр. Hg 3-x AsF 6 , и др.

Лит. см. при статьях Интерметаллиды, Металлы и др.

Химическая энциклопедия. — М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Полезное

МЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ — (металлиды), твёрдые фазы сплавов металлов друг с другом (интерметаллич. соединения) или с нек рыми неметаллами (напр., с Н, В, N, С, Si), обладающие металлическими св вами. В отличие от твёрдых растворов М. с. относятся к т. н. промежуточным… … Физическая энциклопедия

Химические свойства металлов

Свойства металлов начинают изучать на уроках химии в 8–9 классе. В этом материале мы подробно разберем химические свойства этой группы элементов, а в конце статьи вы найдете удобную таблицу-шпаргалку для запоминания.

20 декабря 2021

· Обновлено 20 декабря 2021

Ждём вас 8 октября в 13:00. Вместе с педагогами, психологами и другими экспертами в образовании и воспитании ответим на главные вопросы мам и пап.

Металлы — это химические элементы, атомы которых способны отдавать электроны с внешнего энергетического уровня, превращаясь в положительные ионы (катионы) и проявляя восстановительные свойства.

В окислительно-восстановительных реакциях металлы способны только отдавать электроны, являясь сильными восстановителями. В роли окислителей выступают простые вещества — неметаллы (кислород, фосфор) и сложные вещества (кислоты, соли и т. д.).

Металлы в природе встречаются в виде простых веществ и соединений. Активность металла в химических реакциях определяют, используя электрохимический ряд, который предложил русский ученый Н. Н. Бекетов. По химической активности выделяют три группы металлов.

Ряд активности металлов

Металлы средней активности

Общие химические свойства металлов

Взаимодействие с неметаллами

Щелочные металлы сравнительно легко реагируют с кислородом, но каждый металл проявляет свою индивидуальность:

оксид образует только литий

натрий образует пероксид

калий, рубидий и цезий — надпероксид

Остальные металлы с кислородом образуют оксиды:

2Zn + O2 = 2ZnO (при нагревании)

Металлы, которые в ряду активности расположены левее водорода, при контакте с кислородом воздуха образуют ржавчину. Например, так делает железо:

С галогенами металлы образуют галогениды:

Медный порошок реагирует с хлором и бромом (в эфире):

При взаимодействии с водородом образуются гидриды:

Взаимодействие с серой приводит к образованию сульфидов (реакции протекают при нагревании):

Реакции с фосфором протекают до образования фосфидов (при нагревании):

Основной продукт взаимодействия металла с углеродом — карбид (реакции протекают при нагревании).

Из щелочноземельных металлов с углеродом карбиды образуют литий и натрий:

Калий, рубидий и цезий карбиды не образуют, могут образовывать соединения включения с графитом:

С азотом из металлов IA группы легко реагирует только литий. Реакция протекает при комнатной температуре с образованием нитрида лития:

Взаимодействие с водой

Все металлы I A и IIA группы реагируют с водой, в результате образуются растворимые основания и выделяется H2. Литий реагирует спокойно, держась на поверхности воды, натрий часто воспламеняется, а калий, рубидий и цезий реагируют со взрывом:

Металлы средней активности реагируют с водой только при условии, что металл нагрет до высоких температур. Результат данной реакции — образование оксида.

Неактивные металлы с водой не взаимодействуют.

Взаимодействие с кислотами

Если металл расположен в ряду активности левее водорода, то происходит вытеснение водорода из разбавленных кислот. Данное правило работает в том случае, если в реакции с кислотой образуется растворимая соль.

2Na + 2HCl = 2NaCl + H2

При взаимодействии с кислотами-окислителями, например, азотной, образуется продукт восстановления кислоты, хотя протекание реакции также неоднозначно.

Схема взаимодействия металлов с сернистой кислотой

Схема взаимодействия металлов с азотной кислотой

Металлы IА группы:

Металлы IIА группы

Такие металлы, как железо, хром, никель, кобальт на холоде не взаимодействуют с серной кислотой, но при нагревании реакция возможна.

Взаимодействие с солями

Металлы способны вытеснять из растворов солей другие металлы, стоящие в ряду напряжений правее, и могут быть вытеснены металлами, расположенными левее:

Zn + CuSO4 = ZnSO4 + Cu

На металлы IА и IIА группы это правило не распространяется, так как они реагируют с водой.

Реакция между металлом и солью менее активного металла возможна в том случае, если соли — как вступающие в реакцию, так и образующиеся в результате — растворимы в воде.

Взаимодействие с аммиаком

Щелочные металлы реагируют с аммиаком с образованием амида натрия:

Взаимодействие с органическими веществами

Металлы IА группы реагируют со спиртами и фенолами, которые проявляют в данном случае кислотные свойства:

Также они могут вступать в реакции с галогеналканами, галогенпроизводными аренов и другими органическими веществами.

Взаимодействие металлов с оксидами

Для металлов при высокой температуре характерно восстановление неметаллов или менее активных металлов из их оксидов.

3Са + Cr2O3 = 3СаО + 2Cr (кальциетермия)

Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков

Практикующий детский психолог Екатерина Мурашова

Вопросы для самоконтроля

С чем реагируют неактивные металлы?

С чем связаны восстановительные свойства металлов?

Верно ли утверждение, что щелочные и щелочноземельные металлы легко реагируют с водой, образуя щелочи?

Методом электронного баланса расставьте коэффициенты в уравнении реакции по схеме:

Mg + HNO3 → Mg(NO3)2 + NH4NO3 + Н2O

Как металлы реагируют с кислотами?

Подведем итоги

От активности металлов зависит их химические свойства. Простые вещества — металлы в окислительно-восстановительных реакциях являются восстановителями. По положению металла в электрохимическом ряду можно судить о том, насколько активно он способен вступать в химические реакции (т. е. насколько сильно у металла проявляются восстановительные свойства).

Напоследок поделимся таблицей, которая поможет запомнить, с чем реагируют металлы, и подготовиться к контрольной работе по химии.

Все металлы, в зависимости от их окислительно-восстановительной активности объединяют в ряд, который называется электрохимическим рядом напряжения металлов (так как металлы в нем расположены в порядке увеличения стандартных электрохимических потенциалов) или рядом активности металлов:

Li, K, Ва, Ca, Na, Mg, Al, Zn, Fe, Ni, Sn, Pb, H2, Cu, Hg, Ag, Рt, Au

Наиболее химически активные металлы стоят в ряду активности до водорода, причем, чем левее расположен металл, тем он активнее. Металлы, занимающие в ряду активности, место после водорода считаются неактивными.

Взаимодействие с простыми веществами

Металлы способны реагировать с простыми веществами, такими как кислород (реакция горения), галогены, азот, сера, водород, фосфором и углеродом. В реакцию взаимодействия с кислородом вступают все металлы (исключение составляют Au, Pt), в результате чего возможно образование трех различных продуктов — пероксидов, оксидов и надпероксидов:

K + O2 = KO2 (надпероксид калия)

Металлы средней активности (начиная с Al) и неактивные металлы реагируют с кислородом только при нагревании:

В реакцию взаимодействия с азотом способны вступать только активные металлы, в результате чего образуются азиды, причем при н.у. с азотом реагирует только литий, остальные активные металлы – только при нагревании:

Только активные металлы способны взаимодействовать с углеродом и водородом, причем в случае реакции с водородом – это только щелочные и щелочноземельные металлы:

С серой реагируют все металлы кроме Au и Pt:

Также металлы способны взаимодействовать с галогенами и фосфором:

Все реакции взаимодействия с простыми веществами носят окислительно-восстановительный характер, металлы в них окисляются, проявляя свойства восстановителей, т.е. демонстрируют способность отдавать электроны:

Fe -2e = Fe 2+ процесс окисления, железо — восстановитель

S +2e = S 2- процесс восстановления, сера – окислитель

Взаимодействие металлов друг с другом

Взаимодействие металлов с водой

Активные металлы (щелочные и некоторые щелочноземельные металлы — Ca, Sr, Ba) способны взаимодействовать с водой с образованием гидроксидов:

Металлы, характеризующиеся средней активностью (начиная с Al) вступают в реакцию с водой в более жестких условиях (наличие щелочной или кислотной среды и др. условия); при этом образуется соответствующий оксид и выделяется водород:

Неактивные металлы с водой не реагируют.

Реакции взаимодействия металлов с водой также относятся к ОВР и металлы в них являются восстановителями.

Взаимодействие металлов с кислотами

Неактивные металлы взаимодействуют с кислотами при особых условиях. Так, концентрированная серная кислота способна растворять медь (1), а при взаимодействии меди с концентрированной азотной кислотой в зависимости от её концентрации (60% или 30%) образуются различные продукты реакции (2, 3):

Взаимодействие металлов с солями

Более активные металлы способны взаимодействовать с солями, образованными менее активными металлами, и вытеснять их (металлы) из солей:

Читайте также: