Содержание тяжелых металлов в воздухе
атомно-абсорбционная спектрометрия
Нормативная документация:
- М-01В/2011. Методика измерения массовой концентрации металлов в выбросах загрязняющих веществ в атмосферу и в воздухе рабочей зоны промышленных предприятий.
- МВИ-М-34-04. Методика выполнения измерений массовой концентрации металлов в воздухе рабочей зоны и выбросах в атмосферу промышленных предприятий атомно-абсорбционным методом с электротермической атомизацией.
- РД 52.44.593-97. Методические указания. Определение массовой концентрации тяжелых металлов в аэрозолях воздуха. Методика выполнения измерений методом атомно-абсорбционной спектрометрии с беспламенной атомизацией.
Назначение и область применения методик:
Данная методика позволяет проводить измерения массовой концентрации элементов (металлов и неметаллов): алюминий, барий, бериллий, ванадий, висмут, вольфрам, железо, кадмий, кальций, калий, кобальт, кремний, магний, марганец, медь, молибден, мышьяк, натрий, никель, олово, ртуть, свинец, селен, сурьма, титан, теллур, хром, цинк, в пробах промышленных выбросов в атмосферу и воздуха рабочей зоны предприятий (металлургических, радиотехнических, металлообрабатывающих, и т.д. производств), при отборе проб аспирационным методом на аэрозольные фильтры АФА или фильтрующие материалы (стекловолокно, стекловату, или фторопластовое волокно) с последующим переводом элементов в анализируемый раствор. В анализируемом растворе измеряют массовую концентрацию ионов металлов: алюминия, бария, бериллия, ванадия, висмута, вольфрама, железа, кадмия, кальция, кобальта, магния, марганца, меди, молибдена, никеля, олова, свинца, титана, хрома, цинка, а также кремния, мышьяка, селена, теллура методом атомно-абсорбционной спектроскопии (ААС); калия и натрия - методом эмиссионной пламенной фотометриии, а также ртути - методом ААС с использованием техники холодных паров.
Диапазон измерений массовой концентрации металлов и неметаллов в анализируемых объектах:
Диапазон измерений массовой концентрации элемента (мг/м3)
Промышленные выбросы в атмосферу
Воздух рабочей зоны
От 0,00080 до 0,16
От 0,00050 до 0,10
От 0,0010 до 0,10
От 0,00030 до 0,50
От 0,0050 до 0,50
От 0,00150 до 15
Метод измерений заключается в отборе проб анализируемого объекта, переводе осажденных на фильтрующий материал соединений пробы газа (воздуха) в раствор и определении элементов в растворе атомно- абсорбционным методом, и методом пламенной фотометрии (натрия и калия).
При отборе проб измеряют, объем газовоздушной смеси, прошедший через ротаметр, температуру, разряжение (давление) у ротаметра и параметры в газоходе (для изокинетичного отбора проб промышленных выбросов) или параметры окружающего воздуха рабочей зоны.
В основе метода ААС лежит измерение степени поглощения резонансного светового излучения атомами определяемого элемента в высокотемпературной зоне пламени ацетилен-воздух или закись азота - ацетилен.
Выбор способа перевода пробы в раствор зависит от определяемых элементов.
Сухое озоление пробы с последующим растворением зольного остатка применяется при определении алюминия, бария, ванадия, вольфрама, железа, кальция, калия, кобальта, натрия, титана, хрома, цинка.
Для определения бериллия, висмута, молибдена, мышьяка, олова, свинца, селене, теллура, сурьмы применяется мокрое озоление: кислотное разложение фильтра с отобранной на него пробой.
Для определения кадмия, магния, марганца, меди, никеля, кремния возможно применение как сухого, так и мокрого озоления.
Для определения ртути применяется кислотное разложение при комнатной температуре.
Зависимости выходного сигнала определяемого элемента от его массовой концентрации в растворе устанавливается путем градуировки с помощью серии растворов, приготовленных из государственных стандартных образцов водных растворов ионов металлов.
Необходимое оборудование:
- спектрофотометр атомно-абсорбционный с электротермической и пламенной атомизацией, ртутно-гидридным генератором;
- набор ламп с полым катодом;
- стандартные образцы состава растворов катионов и вспомогательные реактивы;
- оборудование для отбора и подготовки проб, вспомогательное оборудование.
Данная методика позволяет проводить измерения массовой концентрации элементов: Al, Ba, Be, V, Bi, W, Fe, Ca, Cd, K, Co, Si, Mg, Mn, Cu, Mo, As, Na, Ni, Sn, Hg, Pb, Se, Sb, Ti, Cr, Zn атомно-абсорбционным спектрометрическим методом в воздухе рабочей зоны и выбросах в атмосферу промышленных предприятий. Диапазоны измерений массовых концентраций элементов:
Диапазон измерений массовой концентрации элементов, мг/м 3
Диапазон измерений массовой
концентрации элементов, мг/м 3
от 0,60 до 10000
от 0,013 до 1200
от 0,0025 до 500
от 0,009 до 1600
от 0,005 до 1200
от 0,0025 до 250
Примечание: Значения ПДК представлены для воздуха рабочей зоны.
Если приведено два норматива то это значит, что в числителе значение максимально-разовой ПДК, в знаменателе среднесменное значение, прочерк обозначает, что норматив установлен в виде средней сменной ПДК. Если приведено одно значение, то это означает, что оно установлено как максимальноразовая ПДК.
Метод измерения заключается в отборе металлосодержащих аэрозолей из газовой фазы способом внешней фильтрации на фильтры АФА-ХА, АФА-ВП или внутренней фильтрации в фильтровальные патроны с набивкой из асбеста и стеклоткани, с последующим переводом проб в раствор и определением Al, Ba, Be, V, Bi, W, Fe, Ca, Cd, Co, Si, Mg, Mn, Cu, Mo, Ni, Sn, Pb, Ti, Cr, Zn в растворе атомно-абсорбционным спектрометрическим методом с электротермической атомизацией.
В основе метода ААС лежит измерение степени поглощения резонансного светового излучения атомами определяемого элемента в высокотемпературной зоне (электротермическая атомизация).
Для измерений концентрации Hg, Se, Sb, As, применяют атомно-абсорбционный спектрометрический метод холодного пара.
Для измерений концентрации K и Na применяют атомно-эмисионный метод с возбуждением в пламени.
Выбор способа перевода пробы в раствор зависит от вида фильтровального материала и определяемого элемента.
Необходимое оборудование:
- спектрофотометр атомно-абсорбционный с электротермической и пламенной атомизацией, ртутно-гидридным генератором;
- набор ламп;
- стандартные образцы состава растворов катионов и вспомогательные реактивы;
- оборудование для отбора и подготовки проб, вспомогательное оборудование.
Настоящая методика позволяет проводить измерения свинца, кадмия, цинка, мышьяка, меди, марганца и никеля в атмосферных аэрозолях, отобранных на фильтры ФПА, атомно-абсорбционным методом с беспламенной атомизацией и автоматической коррекцией неселективного поглощения.
Методика выполнения измерений позволяет определять концентрации тяжелых металлов в атмосферных аэрозолях в диапазоне 0,1-20 нг/м 3 для свинца, 0,04-5,0 нг/м 3 для кадмия, 10-50 нг/м 3 для цинка, 0,2-4,0 нг/м 3 для мышьяка, 0,3-50 нг/м 3 для меди, 0,5-20 нг/м 3 для марганца и 0,1-5,0 нг/м 3 для никеля.
Метод основан на минерализации фильтров с отобранными на них аэрозолями, разложении зольного остатка разбавленной азотной кислотой, электротермической атомизации металла в графитовой кювете в потоке инертного газа и измерении поглощения резонансной линии спектра испускания лампы полого катода соответствующего металла.
Мешающие влияния неспецифического поглощения при измерении содержания соответствующего металла на атомно-абсорбционном спектрометре с графитовой кюветой устраняются автоматической коррекцией фона.
Необходимое оборудование:
- спектрофотометр атомно-абсорбционный с электротермической атомизацией;
- набор ламп;
- стандартные образцы состава растворов солей металлов и вспомогательные реактивы;
- оборудование для отбора и подготовки проб, вспомогательное оборудование.
Возможные варианты реализации методик измерения:
Загрязнение тяжелыми металлами окружающей среды
Серьезные экологические проблемы в городах вызывает загрязнение тяжелыми металлами, а это свыше 40 элементов таблицы Менделеева. В малых дозах они зачастую даже необходимы организму. Однако при превышении допустимых уровней эти вещества вызывают отравление, болезни и мутации.
Тяжелые металлы — загрязнители природной среды
Главный источник тяжелых металлов – промышленность. Выбросы проникают в водоемы, атмосферу, почву, а из нее – в сельхозкультуры. Самые токсичные – свинец, ртуть, мышьяк, кадмий и хром.
Ртуть
Ртути присвоен I класс опасности. Ее естественное состояние в земной коре – безвредные сульфидные остатки, но вследствие атмосферных процессов возникло загрязнение мирового океана. В нем было обнаружено 50 млн. т ртути. Если 5 000 т/год – естественный вынос, то еще столько же – результат деятельности человека.
В мире создается свыше 10 000 т ртути в год. В океане ртуть под воздействием анаэробов превращается в метилртуть и диметилртуть, опасные для всего живого. Метилртуть с кровью поступает в мозг, разрушая его, проникает в плаценту. При проглатывании и вдыхании паров металлической ртути чернеют и крошатся зубы. Ртутные соли просачиваются сквозь кожу, разъедая ее и слизистые.
Свинец
Свинцу присвоен I классу опасности. Он выделяется при выплавке из руды. Каждый год в мире используется до 180 000 т свинца, а наибольшее загрязнение наблюдается на автомобильных выхлопных газах. При движении машины в атмосферу выбрасывается свинец содержащийся в бензине. Основная масса оседает на землю, но часть остается в воздухе.
Еще свинцовая пыль покрывает почву в промышленных зонах. Другие источники загрязнения – угольные электростанции и бытовые печи, глиняная посуда с глазурью, красящие пигменты.
Неорганические соединения свинца расстраивают метаболизм, металл может замещать кальций в костях. Органические еще более токсичны.
Кадмий и цинк
1 млн. кг кадмия ежегодно выбрасывается в атмосферу вследствие его выплавки. Это 45% общего загрязнения. Другие 55% – следствие сжигания или переработки кадмийсодержащих изделий. Заводы по выплавке цинка – крупнейшие источники загрязнения данным металлом. Оба элемента проникают в водоемы, попадают в рыбу, скапливаются в печени и почках.
Значительные загрязнения цинком обнаруживаются вблизи автомагистралей. Источником загрязнения кадмием также являются удобрения. Элемент внедряется в растения, используемые в пищу, и отравляет организм. При этом кадмий намного токсичнее цинка, ему присвоен I класс опасности. Вдыхание воздуха, в котором его больше 5 мг/м3, в течение 8 ч. чревато смертью.
Сурьма, мышьяк, кобальт
Каждый год в мире производится около 70 т сурьмы. Она входит в состав сплавов, применяется для изготовления спичек, а в чистом виде идет на полупроводники. Хроническое отравление нарушает функции ЖКТ.
У мышьяка II класс опасности, он летучий и легко попадает в воздух. Сильнейшие источники загрязнения – гербициды, фунгициды и инсектициды. Элементарный мышьяк – слабый яд, но нарушает развитие плода. Отравление вызывает болезни ЦНС, изменения печени, атрофию костного мозга.
Кобальт задействуют в сталелитейном деле, изготовлении полимеров. Это элемент I класса опасности.
Медь и марганец
Медь относится ко II классу опасности. По воде и воздуху металл переносится на огромные расстояния. Аномальным содержание меди в почвах и растениях остается на расстоянии больше 8 км от плавильного завода. Ее излишки откладываются в тканях мозга, коже, печени, поджелудочной. Она провоцирует болезнь Вильсона.
У марганца тоже II класс опасности. Источники загрязнения – производства легированной стали, сплавов, электробатарей. Превышение нормы марганца в воздухе разрушает ЦНС.
Загрязнение почвы тяжелыми металлами
Самые долгие последствия вызывает загрязнение почв тяжелыми металлами вследствие добычи, плавки руд, промышленных выбросов, применения удобрений. Особенно опасны кадмий, медь, свинец, цинк, поскольку они стойкие, биоаккумулятивные и токсичные.
Последствия загрязнения почвы
Из-за загрязнения почв металлами ухудшается рост и метаболизм почвенных микробов. Это может затруднить поглощение растениями питательных веществ из почвы. Плюс тяжелые металлы токсичны для растений. Все это приводят к замедлению роста, низкой урожайности.
Растения, накопившие токсиканты, могут поступать в пищу. Это опасно для здоровья. Еще они из почвы проникают в питьевую воду, вызывая болезни.
Рекультивация земель, загрязненных тяжелыми металлами
Перед рекультивацией земель, загрязненных тяжелыми металлами, важно выявить источник загрязнения, реализовать меры по его ликвидации и уменьшению выбросов. Только так достигается эффективность работ.
Рекультивация земельных участков проводится несколькими способами:
- Выращивание устойчивых к загрязнению растений (колосовые зерновые, капуста, картофель, хлопчатник, свекла).
- Фиторекультивация растениями, накапливающими металлы.
- Контроль подвижности токсикантов в почве.
- Регулирование соотношения элементов в почве.
- Организация рекультивационного слоя.
Загрязнение водоемов тяжелыми металлами
Загрязнения нефтепродуктами и токсичными металлами ухудшают качество среды обитания водных биоресурсов. Они негативно влияют на кормовую базу рыб, выживаемость молоди и размножение взрослых особей.
Источники загрязнения водоемов – стоки горнодобывающих, металлургических заводов, химическая и легкая промышленность. Соли хрома сбрасывают фабрики по дублению кожи, хром с никелем используют для гальванического покрытия изделий из металла. Соединения цинка, кобальта, меди, титана – это красители.
Наибольшую опасность представляет загрязнение вод ртутью. При взаимодействии с микробами со дна образуются водорастворимые органические соединения высокой токсичности.
Некоторые металлы содержатся в пестицидах и удобрениях. Уровень загрязнения ими растет вследствие кислотных дождей, то есть закисления.
Предельно допустимые концентрации в воде
При оценке состояния экосистем учитывается загрязненность водных объектов токсичными веществами. Особенно опасны тяжелые металлы. Поэтому установлены их предельно допустимые концентрации, которые при ежедневном влиянии не допускают развития у людей патологий.
Металл | ПДК в обычной воде | ПДК в рыбохозяйственных прудах |
Ртуть | 0,5 мкг/л | до 0,1 мкг/л |
Свинец | 0,03 мг/л | 0,1 мг/л |
Кадмий | 1 мкг/л | до 0,5 мг/л |
Кобальт | 0,1 мкг/л | 0,01 мг/л |
Марганец | 0,1 мкг/л | 0,1 мкг/л |
Мышьяк | 50 мкг/л | 50 мкг/л |
Медь | 0,1 мкг/л | 0,001 мг/л |
Загрязнение атмосферы тяжелыми металлами
Техногенные выбросы металлов в виде аэрозолей поступают в атмосферу и переносятся на огромные расстояния, провоцируя глобальное загрязнение. С гидрохимическими стоками их часть попадает в бессточные водоемы, скапливается в воде и на дне. Это может вызвать вторичное загрязнение.
Металлы быстро распространяются в воде, выпадают в осадок в виде сульфатов и карбонатов и частично абсорбируются на органических осадках. При исчерпании абсорбционной способности осадков токсиканты проникают в воду, повышая ее кислотность, провоцируя зарастание водоемов и интенсивное выделение углекислого газа вследствие жизнедеятельности микроорганизмов.
Загрязнение пищевых продуктов тяжелыми металлами
Пищевые цепочки – один из основных путей поступления токсикантов в организм. Они начинаются от сельхозугодий и заканчиваются человеком. Растения поглощают металлы из почвы, в продукты животноводства они поступают через антибиотики, гормоны для стимуляции роста животных. Как конечное звено пищевой цепи, человек может получать еду с концентрация токсикантов до 1000 раз выше, чем в почвах.
Загрязнение пищевых продуктов происходит при готовке еды, контакте сырья с посудой во время термообработки. При консервировании жестяные банки становятся источником загрязнения свинцом. Он попадает в состав продуктов питания из свинцового припоя в швах.
Воздействие тяжелых металлов на организм человека
В индустриально-развитых странах наблюдается рост профессиональных болезней вследствие вредных производственных факторов. Это шум, вибрация от движущихся механизмов, воздействие электромагнитного поля, химических веществ. Наиболее опасны тяжелые металлы. При превышении допустимого уровня они становятся токсичными, откладываются в почках и печени, приводят к мутациям.
Распространенные заболевания на фоне интоксикации металлами:
- Никель провоцирует астму, врожденные пороки.
- Кобальт – некроз почечных канальцев, болезни легких.
- Хром и бериллий – дерматиты.
- Мышьяк – белокровие.
- Кадмий – почечную дисфункцию, разрушение костей.
- Цинк – остеопороз, цинковую лихорадку.
- Медь – аутоиммунные нарушения, желтуху, гипертонический криз.
- Молибден – ломкость костей, прекращение роста у детей.
- Марганец – атеросклероз.
- Ртуть – нарушения ЦНС, уродства.
- Селен – выпадение волос и ногтей, внезапную смерть.
- Ванадий – астму, нервные расстройства, изменение состава крови.
- Таллий – нарушения метаболизма.
Мышьяк, бериллий, кобальт, никель, хром и кадмий – еще и канцерогенны. Большие концентрации этих металлов в организме могут вызывать рак.
Загрязнение окружающей среды тяжелыми металлами
Загрязнение тяжелыми металлами окружающей среды становится все более серьезной проблемой и вызывает серьезную озабоченность из-за негативных последствий, которые оно вызывает во всем мире. Эти неорганические загрязнители выбрасываются в воду, почву и в атмосферу из-за быстро растущего сельского хозяйства и металлургической промышленности, неправильной утилизации отходов, удобрений и пестицидов. Некоторые металлы влияют на биологические функции и рост, в то время как другие металлы накапливаются в одном или нескольких органах, вызывая множество серьезных заболеваний, в том числе и рака.
С чем связано загрязнение окружающей среды тяжелыми металлами?
Тяжелые металлы – хорошо известные загрязнители окружающей среды из-за их токсичности, стойкости в окружающей среде и биоаккумуляционной природы. Различают следующие их источники:
- Естественные – включают выветривание металлосодержащих пород и извержения вулканов;
- Антропогенные – включают горнодобывающую промышленность и различные виды промышленной и сельскохозяйственной деятельности.
Горнодобывающая и промышленная переработка применяются в отрасли добычи полезных ископаемых. Их последующее применение для экономического развития привели к увеличению мобилизации этих элементов в окружающей среде. Из-за этого нарушены биогеохимические циклы.
Загрязнение водных и наземных экосистем токсичными тяжелыми металлами представляет собой экологическую проблему, вызывающую обеспокоенность населения. Являясь стойкими загрязняющими веществами, тяжелые металлы накапливаются в окружающей среде. Как следствие, они загрязняют пищевые цепи.
Накопление потенциально токсичных тяжелых металлов создает потенциальную угрозу здоровью их потребителей, включая людей. Наиболее опасные для окружающей среды тяжелые металлы и металлоиды включают Cr, Ni, Cu, Zn, Cd, Pb, Hg и As.
Проводятся всесторонние химические и токсикологические исследования опасных тяжелых металлов и металлоидов. Результаты показывают, что необходимо предпринять шаги для минимизации воздействия этих элементов на здоровье человека и окружающую среду.
Источники загрязнения тяжелыми металлами
Тяжелые металлы естественным образом присутствуют в земной коре с момента образования Земли. Увеличение использования их человеком привело к неизбежному выбросу токсичных металлов как в земную, так и в водную среду.
В большинстве случаев загрязнение тяжелыми металлами возникло из-за антропогенной деятельности. Она является основной причиной загрязнения из-за следующего:
- добычи металлов, плавки, литья;
- других отраслей, в которых используются металлы;
- выщелачивания металлов из различных источников, в том числе и из мусорных свалок;
- экскрементов, домашнего скота и куриного помета;
- стоков, автомобилей и дорожных работ.
Загрязнение почвы тяжелыми металлами связано с использованием достижений научно-технической революции в аграрном секторе. Это происходит, например, из-за применения пестицидов, инсектицидов, удобрений и т.п.
Естественные причины могут также увеличивать загрязнение тяжелыми металлами. К ним относятся вулканическая активность, коррозия металлов, испарение металлов из почвы и воды, повторное взвешивание отложений, эрозия почвы, геологическое выветривание.
Воздействие тяжелых металлов на окружающую среду
Загрязнение тяжелыми металлами становится серьезной проблемой во всем мире. Оно набирает обороты из-за увеличения использования и обработки таких металлов во время различных видов деятельности для удовлетворения потребностей быстро растущего населения. Почва, вода и воздух – основные компоненты окружающей среды, на которые влияет загрязнение тяжелыми металлами.
Загрязнение тяжелыми металлами почв
К попаданию в почву и ее загрязнению приводят:
- промышленные выбросы;
- удаление отходов с высоким содержанием металлов;
- этилированный бензин и краски;
- внесение удобрений на землю, пестициды, навоз;
- осадки сточных вод;
- остатки от сжигания угля и разлив нефтехимических веществ.
Было отмечено, что почвы являются основными поглотителями тяжелых металлов, выбрасываемых в окружающую среду в результате вышеупомянутой антропогенной деятельности. Большинство не подвергаются микробной или химической деградации, поскольку они не разлагаются. Их общие концентрации сохраняются в течение длительного времени после попадания в окружающую среду.
Присутствие тяжелых металлов в почвах является серьезной проблемой из-за их наличия в пищевых цепочках, разрушающих всю экосистему. Поскольку органические загрязнители могут быть биоразлагаемыми, скорость их биоразложения снижается из-за присутствия тяжелых металлов в окружающей среде. Это удваивает загрязнение окружающей среды, увеличивает присутствующие органические загрязнители и тяжелые металлы.
Существуют различные способы, которыми тяжелые металлы представляют опасность для людей, животных, растений и экосистем в целом. К таким путям относятся:
- прямое попадание в организм;
- поглощение растениями;
- пищевые цепи;
- потребление загрязненной воды;
- изменение pH почвы, пористости, цвета и ее естественного химического состава, что, в свою очередь, влияет на качество почвы.
Загрязнение тяжелыми металлами воды
Хотя существует множество источников загрязнения воды, индустриализация и урбанизация являются двумя виновниками повышенного уровня загрязнения воды тяжелыми металлами. Они переносятся стоками промышленных предприятий, муниципалитетов и городских территорий. Загрязнение водоемов тяжелыми металлами происходит из-за их накопления в почве и отложениях водоемов. Они очень токсичны и создают серьезные проблемы для здоровья людей и других экосистем.
Опасность загрязнение воды для человека определяется уровнем токсичности металла, который зависит от таких факторов:
- организмы, которые подвергаются его воздействию;
- его природа и биологическая роль;
- период, в течение которого организмы подвергаются воздействию металла.
Пищевые цепи символизируют взаимоотношения между организмами экосистемы. Следовательно, загрязнение воды тяжелыми металлами влияет на все организмы в этой цепи. Люди, питающиеся на самом высоком уровне, более склонны к серьезным проблемам со здоровьем. Причина – концентрация тяжелых металлов в пищевой цепи увеличивается.
Загрязнение тяжелыми металлами атмосферы
Индустриализация и урбанизация, вызванные быстрым ростом населения мира, в последнее время сделали загрязнение воздуха серьезной экологической проблемой во всем мире. Загрязнение воздуха увеличивается с помощью пыли и твердых частиц (ТЧ), которые выбрасываются в результате естественных и антропогенных процессов.
Природные процессы, которые приводят к выбросу твердых частиц в воздух, включают:
- пыльные бури;
- эрозию почвы;
- извержения вулканов;
- выветривание горных пород.
Антропогенная деятельность в большей степени связана с промышленностью и транспортом. Именно они влияют на загрязнение атмосферы тяжелыми металлами. Последствия могут привести к серьезным проблемам со здоровьем:
- раздражение кожи и глаз;
- респираторные инфекции;
- преждевременная смертность;
- сердечно-сосудистые заболевания.
Данные загрязнители также вызывают ухудшение инфраструктуры, коррозию, образование кислотных дождей, эвтрофикацию и дымку. Тяжелые металлы, такие как металлы группы 1 (Cu, Cd, Pb), металлы группы 2 (Cr, Mn, Ni, V и Zn) и металлы группы 3 (Na, K, Ca, Ti, Al, Mg, Fe) происходят из промышленных зон, транспортных средств и естественных источников.
Чтобы защитить здоровье человека, растений, животных, почвы и всех компонентов окружающей среды, должное и тщательное внимание следует уделять технологиям восстановления тяжелых металлов. На текущий момент большинство физических и химических технологий их восстановления требуют обработки большого количества ила, разрушают окружающие экосистемы, и они очень дороги.
Содержание тяжелых металлов в воздухе
Нужен полный текст и статус документов ГОСТ, СНИП, СП?
Попробуйте профессиональную справочную систему
«Техэксперт: Базовые нормативные документы» бесплатно
МАССОВАЯ КОНЦЕНТРАЦИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В АТМОСФЕРНОМ ВОЗДУХЕ
Методика измерений методом атомно-абсорбционной спектрометрии с беспламенной атомизацией
Дата введения 2016-07-01
Предисловие
1 РАЗРАБОТАН Федеральным государственным бюджетным учреждением "Институт глобального климата и экологии Федеральной службы по гидрометеорологии и мониторингу окружающей среды и Российской академии наук" (ФГБУ "ИГКЭ Росгидромета и РАН")
2 РАЗРАБОТЧИК Л.В.Бурцева, канд. физ-мат. наук (руководитель разработки)
с Управлением мониторинга загрязнения окружающей среды, полярных и морских работ (УМЗА) Росгидромета 18.12.2015;
с Федеральным государственным бюджетным учреждением "Научно-производственным объединением "Тайфун" (ФГБУ "НПО "Тайфун") 03.12.2015
4 УТВЕРЖДЕН Заместителем Руководителя Росгидромета 21.12.2015
5 АТТЕСТОВАН ФГБУ "НПО "Тайфун", Свидетельство об аттестации методики (метода) измерений N 18.12.593/01.00305-2011/2015 от 25.11.2015, регистрационный код по Федеральному реестру
7 ВЗАМЕН РД 52.44.593-97 "Методические указания. Определение массовой концентрации тяжелых металлов в атмосферных аэрозолях. Методика выполнения измерений методом атомно-абсорбционной спектрофотометрии с беспламенной атомизацией"
8 СРОК ПЕРВОЙ ПРОВЕРКИ 2020 год
ПЕРИОДИЧНОСТЬ ПРОВЕРКИ 5 лет
Введение
Тяжёлые металлы существуют в воздухе в составе атмосферных аэрозолей. Тяжёлые металлы токсичны, входят в перечень приоритетных загрязняющих веществ и подлежат мониторингу в приземном слое атмосферного воздуха на региональном и фоновом уровнях. Фоновым считается уровень, характерный для особо охраняемых природных территорий (ООПТ).
В рамках выполнения положения [1], утвержденного постановлением Правительства РФ от 06.06.2013 N 477 "Об осуществлении государственного мониторинга состояния и загрязнения окружающей среды", на территории Российской Федерации продолжает работать ранее созданная Росгидрометом система станций комплексного фонового мониторинга, расположенных на ООПТ, к которым относятся биосферные заповедники.
В программу наблюдений, осуществляемую на этих станциях, входит измерение концентрации ряда тяжёлых металлов в атмосферном воздухе, уровень концентраций которых на ООПТ чрезвычайно низок (на два-три порядка ниже предельно допустимых концентраций). В связи с этим в 1997 году была разработана, аттестована и введена в действие методика измерения, изложенная в РД 52.44.593-97 "Методические указания. Определение массовой концентрации тяжёлых металлов в аэрозолях воздуха. Методика выполнения измерений методом атомно-абсорбционной спектрофотометрии с беспламенной атомизацией".
Необходимость пересмотра РД 52.44.593-97 связана с появлением измерительных приборов нового поколения и новых требований к качеству измерений.
В качестве средства измерения массовой концентрации тяжёлых металлов в пробе атмосферного воздуха введен в методику измерений современный отечественный атомно-абсорбционный спектрометр с электротермической атомизацией и автоматической коррекцией фона "КBAHT-Z.ЭTA". Управление работой спектрометра, отображение, обработку и хранение информации осуществляет персональный компьютер.
При пересмотре РД учтены требования нормативно-правовых документов в области обеспечения единства измерений.
Методика измерений предполагает применение и других атомно-абсорбционных спектрометров с беспламенной атомизацией.
Получение в фоновых районах достоверных данных обеспечивается точным выполнением требований настоящего руководящего документа, регламентирующего отбор проб атмосферного воздуха и измерение тяжёлых металлов в них.
1 Область применения
1.1 Настоящий руководящий документ (РД) устанавливает методику измерений массовой концентрации тяжелых металлов свинца (Рb), кадмия (Cd), меди (Сu), никеля (Ni) и цинка (Zn) (далее - компоненты) в пробах атмосферного воздуха, отобранных на фильтр из фильтроткани ФПА - 15-2,0, методом атомно-абсорбционным спектрометрии с беспламенной атомизацией и автоматической коррекцией неселективного поглощения.
1.2 Диапазоны измеряемых массовых концентраций ограничены значениями, представленными в таблице 1.
1.3 Настоящий РД распространяется на особо охраняемые природные территории (ООПТ), на которых расположены станции комплексного фонового мониторинга сети Росгидромета, распространяется на другие территории Российской Федерации, где концентрации тяжелых металлов в атмосферном воздухе изменяются во времени в диапазонах, представленных в таблице 1.
1.4 Настоящий РД предназначен для применения на государственной наблюдательной сети станций комплексного фонового мониторинга по РД 52.04.186 (часть III, разделы 1, 2.1, 2.2, 3.1), работающей в рамках положения [1].
Примечание - В настоящем РД применены термины и определения по ГОСТ Р 52361-2005.
2 Нормативные ссылки
В настоящем РД использованы ссылки на следующие нормативные документы:
ГОСТ Р 12.1.019-2009 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты
ГОСТ Р ИСО 5725-1-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения
ГОСТ Р ИСО 5725-6-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике
ГОСТ Р 52361-2005 Контроль объекта аналитический. Термины и определения
ГОСТ Р ИСО 12884-2007 Воздух атмосферный. Определение общего содержания полициклических ароматических углеводородов (в газообразном состоянии и в виде твердых взвешенных частиц). Отбор проб на фильтр и сорбент с последующим анализом методом хромато-масс-спектрометрии
ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования
ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны
ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности
ГОСТ 12.4.009-83 Система стандартов безопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и обслуживание
ГОСТ 17.2.4.02-81 Охрана природы. Атмосфера. Общие требования к методам определения загрязняющих веществ
МИ 1317-2004 Государственная система обеспечения единства измерений. Результаты и характеристики погрешности измерений. Формы представления. Способы использования при испытаниях образцов продукции и контроле их параметров
МИ 2881-2004 Государственная система обеспечения единства измерений. Методики количественного химического анализа. Процедуры проверки приемлемости результатов анализа
РД 52.18.5.-2012* Перечень нормативных документов (по состоянию на 01.08.2012)
* Документ в информационных продуктах не содержится. За информацией о документе Вы можете обратиться в Службу поддержки пользователей. - Примечание изготовителя базы данных.
ПМГ 96-2009 Государственная система обеспечения единства измерений. Результаты и характеристики качества измерений. Формы представления
ПНД Ф 12.13.1-03 Техника безопасности при работе в аналитических лабораториях (общие положения)
РМГ 60-2003 Государственная система обеспечения единства измерений. Смеси аттестованные. Общие требования к разработке
РМГ 61-2010 Государственная система обеспечения единства измерений. Показатели точности, правильности, прецизионности методик количественного химического анализа. Методы оценки
РМГ 76-2014 Государственная система обеспечения единства измерений. Внутренний контроль качества результатов количественного химического анализа
РД 52.04.186-89 Руководство по контролю загрязнения атмосферы.
1 Ссылки на остальные документы приведены в разделах 4 и А.3 (приложения А).
2 При пользовании настоящим руководящим документом целесообразно проверять действие ссылочных нормативных документов:
- национальных стандартов - в официальной системе общего пользования - на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты";
- информативных документов Росгидромета - по РД 52.12.5* и дополнений к нему - ежегодно издаваемых информационных указателей документов (ИУНД).
* Вероятно, ошибка оригинала. Следует читать: РД 52.18.5-2012. - Примечание изготовителя базы данных.
3 Требования к показателям точности измерений
Относительная суммарная погрешность измерений массовой концентрации определяемых веществ в атмосферном воздухе, согласно ГОСТ 17.2.4.02 для диапазона от 0,8 до 10 предельно допустимых концентраций (ПДК) не должна превышать ±25%, для диапазона ниже 0,8 ПДК погрешность не нормирована.
Погрешность измерений концентрации свинца, кадмия, меди, никеля и цинка во всем диапазоне определяемых значений соответствует приписанным характеристикам, приведенным в таблицах* 1. Пределы повторяемости и воспроизводимости приведены в таблице 2.
* Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.
Диапазон измеряемых массовых концентраций тяжелых металлов на один, два и более порядков ниже ПДК, представленных в таблице 3.
Таблица 1 - Диапазон измерений, значения показателей качества (количественная оценка) методики измерений повторяемости, воспроизводимости, точности
Наименование определяемого компонента
Диапазон измерений, мг/м
Показатель повторяемости (среднее квадратическое отклонение результатов единичного определения, полученных по методике в условиях повторяемости) , мг/м
Показатель воспроиз-
водимости* (среднее квадратическое отклонение всех результатов измерений, полученных по методике в условиях воспроиз-
водимости) , мг/м
Показатель точности (границы, в которых находится погрешность результатов измерений, полученных по методике) , мг/м
1 Балашовский институт (филиал) Саратовского государственного университета имени Н.Г. Чернышевского, Балашов
В работе отражены результаты мониторинга проб приземного слоя атмосферного воздуха на предмет содержания в нем тяжелых металлов в условиях урбанизированной среды Поволжья. Основными источниками техногенных тяжелых металлов в районе исследований являются промышленные предприятия и автотранспорт. Лабораторные элементные анализы проб производились методом пламенной атомно-абсорбционной спектрометрии. В результате проведения мониторинга выявлено превышение ПДК по ряду элементов: в г. Саратове – по свинцу, цинку, марганцу, меди; в г. Сердобске – по свинцу и кобальту; в г. Кузнецке – по свинцу, цинку и кобальту; в г. Камышине – по свинцу и цинку; в г. Волжском – по свинцу, кадмию и меди; в г. Инзе – по цинку; в г. Димитровграде – по ванадию, свинцу, цинку, меди. Требуются мероприятия по оздоровлению окружающей среды и, в частности, атмосферного воздуха.
1. Государственный доклад «О состоянии и об охране окружающей среды Российской Федерации в 2009 году». - М.: АНО «Центр международных проектов», 2010. - 523 с.
2. ГОСТ 17.2.3.01-86. Охрана природы. Атмосфера. Правила контроля качества воздуха населенных пунктов. - М.: Изд-во стандартов, 1987. - 5 с.
3. Другов Ю. С., Беликов А. Б., Дьякова Г. А., Тульчинский В. М. Методы анализа загрязнений воздуха. - М.: Химия, 1984. - 384 с.
4. Израэль Ю. А. Экология и контроль состояния природной среды. - М.: Гидрометеоиздат, 1984. - 560 с.
5. Израэль Ю. А. Экология и контроль состояния природной среды. - Л.: Гидрометеоиздат, 1989. - 375 с.
6. РД 52.04.186-89. Руководство по контролю загрязнения атмосферы. - М.: Изд-во Госкомгидромета, 1991. - 237 с.
7. Экологический мониторинг: метод. пособие / В. В. Снакин, М. А. Малярова, Т. Ф. Гурова и др. - М.: РЭФИА, 1996. - 92 с.
В последние десятилетия экологическая обстановка в регионах Поволжья значительно ухудшилась. В настоящее время в Саратовской, Пензенской, Волгоградской и Ульяновской областях состояние окружающей среды в пределах городов, где проживает более половины населения, характеризуется как кризисное и требующее действенных мер по оздоровлению. Особо выделяется в поволжских городах экологическая проблема загрязнения техногенными тяжелыми металлами атмосферного воздуха [1].
На территории практически любого города распределение поллютантов, антропогенно выделяющихся в атмосферу, имеет свою специфику. Поллютанты, которые вместе с выбросами поступают в атмосферу на большой высоте над земной поверхностью (например, из высоких труб производственных объектов), распространяются на огромные расстояния воздушными массами. Эти выбросы в основном загрязняют территории, значительно удаленные от города.
Тяжелые металлы, как известно, содержатся в приземном слое атмосферного воздуха: в 1,5-3,5 м над земной поверхностью. Они способны мигрировать и аккумулироваться в депонирующих средах: в почве, водной среде, в биомассе живых организмов.
Содержащиеся в воздухе тяжелые металлы способны интенсивно рассеиваться воздушными массами на большие расстояния, что повышает опасность загрязнения и деградацию пограничных сред: почвенного покрова, водных объектов и живых организмов [3, 4].
Тяжелые металлы в составе техногенных выбросов промышленных предприятий и автотранспорта составляют основную массу твердой фазы и находятся преимущественно в форме оксидов, сульфидов, карбонатов, гидратов и микроскопических капель (шариков) металлов. Удельная масса этих соединений (г/см 3 ) достаточно высокая: оксидов 5-6, сульфидов 4-4,5, карбонатов 3-4, металлов 7-8 [5].
Цель исследований, проведенных в 2009-2011 гг., состояла в анализе среднегодового содержания тяжелых металлов в городах Поволжья - Балашове, Саратове (Саратовская область), Сердобске, Кузнецке (Пензенская область), Камышине, Волжском (Волгоградская область), Инзе, Димитровграде (Ульяновская область) - с разной степенью техногенного прессинга на окружающую среду.
Материалы и методы исследования
Отбор проб воздуха на высоте 2-2,5 м от земли осуществлялся электроаспиратором ПУ-2Э на передвижных постах (автомобиль с инструментарием) 6. В большинстве городов было заложено по 5 постов, за исключением крупных городов - Саратова и Волжского, в которых располагалось по 10 постов. На участках природных степных разнотравных экосистем (контроль) - в окрестностях с. Березовка и с. Пады Балашовского района Саратовской области - мониторинг проводился на 2 постах. Пробоотбор осуществлялся дискретно на передвижных постах утром (8.00 ч) и вечером (20.00 ч) в течение 3 дней в августе 2009-2011 гг.
Лабораторный анализ проб воздуха на предмет содержания в твердой фазе тяжелых металлов выполнен методом пламенной атомно-абсорбционной спектрометрии [6, 7].
Результаты исследования и их обсуждение
Результаты мониторинга атмосферного воздуха в эталонной экосистеме (в контроле) представлены в табл. 1. Здесь ежегодно постоянно идентифицировались четыре техногенных тяжелых металла - Pb, Zn, Mn, Cu, аэротехногенными источниками которых были: движущийся по проселочным дорогам автотранспорт и деятельность сельскохозяйственных предприятий животноводческой и растениеводческой отраслей.
Таблица 1 Содержание техногенных тяжелых металлов в атмосферном воздухе в контроле (2009-2011 гг.)
Читайте также: