Скорость звука в металле формула

Обновлено: 08.01.2025

Для распространения звука необходима упругая среда. В вакууме звуковые волны распро­страняться не могут, так как там нечему колебаться. В этом можно убедиться на простом опыте. Если поместить под стеклянный колокол электрический звонок, то по мере выкачивания из-под колокола воздуха звук от звонка будет становиться все слабее и слабее, пока не прекратится совсем.

Известно, что во время грозы мы видим вспышку молнии и лишь через некоторое время слы­шим раскаты грома. Это запаздывание возникает из-за того, что скорость звука в воздухе значи­тельно меньше скорости света, идущего от молнии.

Скорость звука в воздухе впервые была измерена в 1636 г. французским ученым М. Мерсенном. При температуре 20 °С она равна 343 м/с, т. е. 1235 км/ч. Заметим, что именно до такого значения уменьшается на расстоянии 800 м скорость пули, вылетевшей из автомата Калашни­кова. Начальная скорость пули 825 м/с, что значительно превышает скорость звука в воздухе. Поэтому человек, услышавший звук выстрела или свист пули, может не беспокоиться: эта пуля его уже миновала. Пуля обгоняет звук выстрела и достигает своей жертвы до того, как приходит этот звук.

Скорость звука в газах зависит от температуры среды: с увеличением температуры воздуха она возрастает, а с уменьшением — убывает. При 0 °С скорость звука в воздухе составляет 332 м/с.

В разных газах звук распространяется с разной скоростью. Чем больше масса молекул газа, тем меньше скорость звука в нем. Так, при температуре 0 °С скорость звука в водороде составляет 1284 м/с, в гелии — 965 м/с, а в кислороде — 316 м/с.

Скорость звука в жидкостях, как правило, больше скорости звука в газах. Скорость звука в во­де впервые была измерена в 1826 г. Ж. Колладоном и Я. Штурмом. Свои опыты они проводили на Женевском озере в Швейцарии. На одной лодке поджигали порох и одновременно ударяли в ко­локол, опущенный в воду. Звук этого колокола, опущенного в воду, улавливался на другой лодке, которая находилась на расстоянии 14 км от первой. По интервалу времени между вспышкой све­тового сигнала и приходом звукового сигнала определили скорость звука в воде. При температуре 8°С она оказалась равной 1440 м/с.

Скорость звука в твердых телах больше, чем в жидкостях и газах. Если приложить ухо к рель­су, то после удара по другому концу рельса слышно два звука. Один из них достигает уха по рельсу, другой — по воздуху.

Хорошей проводимостью звука обладает земля. Поэтому в старые времена при осаде в крепос­тных стенах помещали «слухачей», которые по звуку, передаваемому землей, могли определить, ведет ли враг подкоп к стенам или нет. Прикладывая ухо к земле, также следили за приближе­нием вражеской конницы.

Твердые тела хорошо проводят звук. Благодаря этому люди, потерявшие слух, иной раз спо­собны танцевать под музыку, которая доходит до слуховых нервов не через воздух и наружное ухо, а через пол и кости.

Скорость звука можно определить, зная длину волны и частоту (или период) колебаний:

Скорость звука в металле формула

Перед тем, как приступить к рассмотрению темы, дадим определение такому явлению, как звук.

Звук или звуковые волны – это волны, которые способно воспринять человеческое ухо.

При этом звуковые частоты имеют диапазон: примерно от 20 Г ц до 20 к Г ц .

Инфразвук – звуковые волны, имеющие частоту менее 20 Г ц .

Ультразвук – волны звука, имеющие частоту более 20 к Г ц .

Волнам звукового диапазона свойственно распространяться как в газе, так и в жидкости (продольные волны), и в твердом теле (продольные и поперечные волны). Особенно интересно для науки заниматься изучением распространения звуковых волн в газообразной среде, что по сути есть среда нашего обитания.

Акустика – это направление физики, занимающееся изучением звуковых явлений.

Когда звук получает распространение в газе, атомы и молекулы испытывают колебания вдоль направления распространения волны, следствием чего становится изменение локальной плотности ρ и давления p .

Звуковые волны в газе зачастую называют волнами плотности или волнами давления.

В случае простых гармонических звуковых волн, получающих распространение вдоль оси O X , изменение давления p ( x , t ) имеет зависимость от координаты x и времени t , которая записывается так:

p ( x , t ) = p 0 cos ω t ± k x .

В аргументе косинуса мы видим два противоположных знака, что имеет отношение к двум направлениям распространения волны. Запишем выражение, которое покажет соотношение таких величин, как круговая частота ω , волновое число k , длина волны λ , скорость звука υ (соотношение будет таким же, как применимо для поперечных волн в струне или резиновом жгуте):

υ = λ T = ω k ; k = 2 π λ ; ω = 2 π f = 2 π T .

Одной из ключевых характеристик звука является скорость распространения.

Скорость распространения – величина, описывающая звуковую волну, задаваемая инертными и упругими свойствами среды и определяемая для продольных волн в любой однородной среде при помощи формулы:

В указанной формуле B является модулем всестороннего сжатия, ρ – средней плотностью среды.

Формула Лапласа

Первые попытки рассчитать значение скорости звука предпринял Ньютон, предположив равенство упругости воздуха атмосферному давлению p а т м . В таком случае значение скорости звука в воздушной среде – менее 300 м / с , в то время как истинная скорость звука при нормальных условиях (температура 0 ° С и давление 1 а т м ) равна 331 , 5 м / с , а скорость звука при температуре 20 ° С и давлении 1 а т м составит 343 м / с . Лишь по прошествии более ста лет было показано, почему предположение Ньютона не выполняется. Французский физик П. Лаплас указал, что ньютоновское видение равносильно предположению о быстром выравнивании температуры между областями разрежения и сжатия, и невыполнение его связано с плохой теплопроводностью воздуха и малым периодом колебаний в звуковой волне. В действительности между областями разрежения и сжатия газа появляется разность температур, существенным образом влияющая на упругие свойства. Лаплас, в свою очередь, выдвинул предположение, что сжатие и разрежение газа в звуковой волне происходят в соответствии с адиабатическим законом: в отсутствии влияния теплопроводности. В 1816 году физик вывел формулу, предназначенную для расчета скорости звуковой волны в воздухе и получившей название формулы Лапласа.

Формула Лапласа для определения скорости звука имеет запись:

Где p является значением среднего давления в газе, ρ – средней плотности, а γ есть некоторая константа, находящаяся в зависимости от свойств газа.

В нормальных условиях скорость звука, рассчитанная по формуле Лапласа, равна υ = 332 м / с .

В термодинамике имеется доказательство, что константа γ представляет собой отношение теплоемкостей при постоянном давлении C p и постоянном объеме C V .

Формула Лапласа может быть записана несколько иначе, если использовать уравнение состояния идеального газа. Таким образом, окончательный вид формулы для определения скорости звука будет такой:

В данной формуле T – абсолютная температура, M – молярная масса,
R = 8 , 314 Д ж / м о л ь · К – универсальная газовая постоянная. Скорость звука находится в сильной зависимости от свойств газа: скорость звука тем больше, чем легче газ, в котором звуковая волна получает распространение.

Для наглядности приведем некоторые примеры.

Когда звук распространяется в воздушной среде ( M = 29 · 10 – 3 к г / м о л ь ) при нормальных условиях: υ = 331 , 5 м / с ;

Когда звук распространяется в гелии ( M = 4 · 10 – 3 к г / м о л ь ) : υ = 970 м / с ;

Когда звук распространяется в водороде ( M = 2 · 10 – 3 к г / м о л ь ) : υ = 1270 м / с .

В жидкостях и твердых телах скорость звуковых волн еще больше. В воде, например, υ = 1480 м / с (при 20 ° С ), в стали υ = 5 – 6 к м / с .

Характеристики звуковых волн

Помимо скорости распространения звук имеет и другие характеристики, связанные с восприятием его человеческими органами слуха.

Громкость звука

Рассуждая о том, как человеческое ухо воспринимает звук, в первую очередь мы говорим об уровне громкости, который зависит от потока энергии или интенсивности звуковой волны. А то, как воздействует звуковая волна на барабанную перепонку, зависит от звукового давления.

Звуковое давление – это амплитуда p 0 колебаний давления в волне

Природа отлично потрудилась, создавая такое совершенное устройство, как человеческое ухо: оно способно воспринимать звуки в обширнейшем диапазоне интенсивностей. Мы имеем возможность слышать как слабый писк комара, так и грохот вулкана.

Порог слышимости – минимальное значение величины звукового давления, при котором звук этой частоты еще воспринимается человеческим ухом.

Болевой порог – это верхняя граница диапазона слышимости человека; та величина звукового давления, при котором звук вызывает в человеческом ухе ощущение боли.

Порог слышимости представляет собой значение p 0 около 10 – 10 а т м , т. е. 10 – 5 П а : такой слабый звук характеризуется колебанием молекул воздуха в волне звука с амплитудой всего лишь 10 – 7 с м ! Болевой же порог соответствует значению p 0 порядка 10 – 4 а т м или 10 П а . Т.е., человеческое ухо способно к восприятию волн, в которых звуковое давление изменяется в миллион раз. Поскольку интенсивность звука пропорциональна квадрату звукового давления, диапазон интенсивностей оказывается порядка 10 12 !

Человеческое ухо, восприимчивое к звукам такого огромного диапазона интенсивности, допустимо сравнить с прибором, которым возможно измерить как диаметр атома, так и размеры футбольного поля.

Для общей информированности заметим, что обычным разговорам людей в комнате соответствует интенсивность звука, примерно в 10 6 раз превышающая порог слышимости, а интенсивность звука на рок-концерте находится очень близко к болевому порогу.

Высота звука

Высота звуковой волны – еще одна характеристика звука, влияющая на слуховое восприятие. Человеческие ухо воспринимает колебания в гармонической звуковой волне как музыкальный тон.

Высокий тон – это звуки с колебаниями высокой частоты.

Низкий тон – это звуки с колебаниями низкой частоты.

Звуки, которые издают музыкальные инструменты, а также звуки голоса человека значимо отличаются друг от друга по высоте тона и по диапазону частот.

К примеру, диапазон наиболее низкого мужского голоса – баса – находится в пределах примерно от
80 до 400 Г ц , а диапазон высокого женского голоса – сопрано – от 250 до 1050 Г ц .

Октава – это диапазон колебаний звука, который соответствует изменению частоты колебаний в 2 раза.

Скрипка, к примеру, звучит в диапазоне примерно трех с половиной октав ( 196 – 2340 Г ц ) ,
а пианино – семи с лишним октав ( 27 , 5 – 4186 Г ц ) .

Говоря о частоте звука, который извлекается при помощи струн любого струнного музыкального инструмента, будем иметь в виду частоту f 1 основного тона. Однако колебания струн содержат также гармоники, частоты f n которых отвечают соотношению:

f n = n f 1 , ( n = 1 , 2 , 3 , . . . ) .

Таким образом, звучащая струна способна излучать целый спектр волн с кратными частотами. Амплитуды A n этих волн имеют зависимость от способа возбуждения струны, будь то смычок или молоточек. Эти амплитуды необходимы для придания музыкальной окраски звуку (тембру).

Аналогичный процесс мы наблюдаем, когда звучат духовые музыкальные инструменте. Трубы духовых инструментов служат акустическими резонаторами – акустическими колебательными системами, имеющими способность возбуждаться (резонировать) от звуковых волн определенных частот. Определенные же условия способствуют возникновению внутри трубы стоячей звуковой волны. Рисунок 2 . 7 . 1 демонстрирует несколько видов стоячих волн (мод) в органной трубе, закрытой с одного конца и открытой с другого. Звучание духовых инструментов, так же, как и струнных, состоит из целого спектра волн с кратными частотами.

Рисунок 2 . 7 . 1 . Стоячие волны в трубе органа (закрыта лишь с одной стороны). Стрелки указывают направления движения частиц воздуха за один полупериод колебаний.

Музыкальные инструменты необходимо периодически настраивать.

Камертон – устройство для настройки музыкальных инструментов, состоящее из настроенных в резонанс деревянного акустического резонатора и соединенной с ним металлической вилки.

Удар молоточка по вилке вызывает возбуждение всей системы камертона с последующим звучанием чистого музыкального тона.

Гортань певца – по сути тоже акустический резонатор. Рисунок 2 . 7 . 2 демонстрирует спектры звуковых волн, издаваемых камертоном, струной пианино и низким женским голосом (альтом), звучащими на одной и той же ноте.

Рисунок 2 . 7 . 2 . Относительные интенсивности гармоник в спектре волну звука при звучании камертона ( 1 ) , пианино ( 2 ) и низкого женского голоса (альт) ( 3 ) на ноте «ля» контроктавы ( f 1 = 220 Г ц ) . По оси ординат отложены относительные интенсивности I I 0 .

Звуковые волны, чьи частотные спектры показаны на рисунке 2 . 7 . 2 , имеют одну и ту же высоту, но различные тембры.

Биения

Разберем также такое явление, как биения.

Биение – это явление, возникающее, когда две гармонические волны с близкими, но все же имеющими отличия частотами, накладываются друг на друга.

Биения сопровождают, к примеру, одновременное звучание двух струн, имеющих настройки практически одинаковой частоты. Человеческий орган слуха воспринимает биения как гармонический тон с громкостью, периодически изменяющейся во времени. Запишем выражения, показывающие закономерность изменения звуковых давлений p 1 и p 2 , которые осуществляют воздействие на ухо:

p 1 = A 0 cos ω 1 t и p 2 = A 0 cos ω 2 t .

Для удобства примем, что амплитуды колебаний звуковых давлений являются одинаковыми и равны p 0 = A 0 0.

Согласно принципу суперпозиции полное давление, которое вызывается обеими волнами в каждый момент времени, есть совокупность звуковых давлений, задаваемых каждой волной в тот же момент времени. Запишем выражение, показывающее суммарное воздействие волн, используя тригонометрические преобразования:

p = p 1 + p 2 = 2 A 0 cos ω 1 - ω 2 2 t cos ω 1 + ω 2 2 t = 2 A 0 cos 1 2 ∆ ω t cos ω с р t ,

где ∆ ω = ω 1 - ω 2 , а ω с р = ω 1 + ω 2 2 .

Рисунок 2 . 7 . 3 ( 1 ) отображает, каким образом давления p 1 и p 2 зависимы от времени t . В момент времени t = 0 оба колебания находятся в фазе, и их амплитуды суммируются. Поскольку частоты колебаний имеют хоть и небольшие, но отличия, через некоторое время t 1 колебания войдут в противофазу. В этот момент суммарная амплитуда станет равна нулю: колебания взаимно «погасятся». К моменту времени t 2 = 2 t 1 колебания вновь окажутся в фазе и т. д. (рисунок 2 . 7 . 3 ( 2 ) ).

Период биений Т б – это минимальное значение интервала между двумя моментами времени, которым соответствуют максимальная и минимальная амплитуда колебаний.

Формула, которая определяет медленно изменяющуюся амплитуду A результирующего колебания, имеет запись:

A = 2 A 0 cos 1 2 ∆ ω t .

Период Т б изменения амплитуды равен 2 π Δ ω . Мы можем это продемонстрировать, приняв следующее предположение: периоды колебаний давлений в звуковых волнах T 1 и T 2 являются такими, что T 1 < T 2 (т. е. ω 1 >ω 2 ). За период биений Т б наблюдается некоторое число n полных циклов колебаний первой волны и ( n – 1 ) циклов колебаний второй волны:

T б = n T 1 = ( n - 1 ) T 2 .

T б = T 1 T 2 T 2 - T 1 = 2 π ω 1 - ω 2 = 2 π ∆ ω или f б = 1 T б = 1 T 1 - 1 T 2 = f 1 - f 2 = ∆ f .

f б есть частота биений, определяемая как разность частот Δ f двух звуковых волн, которые воспринимаются ухом одновременно.

Органы слуха человека способны к восприятию звуковых биений до частот 5 – 10 Г ц . Прослушивание биений – это важный элемент техники настройки музыкальных инструментов.

Рисунок 2 . 7 . 3 . Биения, возникающие, когда накладываются две звуковые волны с близкими частотами.

Звук (звуковые волны). Скорость звука.

Звуковыми волнами или просто звуком принято называть волны, воспринимаемые человеческим ухом. Диапазон звуковых частот лежит в пределах приблизительно от до . Волны с частотой менее называются инфразвуком , а с частотой более – ультразвуком . Волны звукового диапазона могут распространяться не только в газе, но и в жидкости (продольные волны) и в твердом теле (продольные и поперечные волны). Однако волны в газообразной среде – среде нашего обитания – представляют особый интерес. Изучением звуковых явлений занимается раздел физики, который называют акустикой .

При распространении звука в газе атомы и молекулы колеблются вдоль направления распространения волны. Это приводит к изменениям локальной плотности и давления . Звуковые волны в газе часто называют волнами плотности или волнами давления.

Два знака в аргументе косинуса соответствуют двум направлениям распространения волны. Соотношения между круговой частотой , волновым числом , длиной волны , скоростью звука такие же, как и для поперечных волн в струне или резиновом жгуте (см. §2.6):

Важной характеристикой звуковых волн является скорость их распространения . Она определяется инертными и упругими свойствами среды. Скорость распространения продольных волн в любой безграничной однородной среде определяется по формуле (см. §2.6)
где – модуль всестороннего сжатия, – средняя плотность среды. Еще Ньютон пытался вычислить значение скорости звука в воздухе. Он предположил, что упругость воздуха просто равна атмосферному давлению , тогда скорость звука в воздухе получается меньшей , в то время, как истинная скорость звука при нормальных условиях (т. е. при температуре и давлении ) равна , а скорость звука при температуре и давлении равна . Только через сто с лишним лет французский ученый П. Лаплас показал, что предположение Ньютона равносильно предположению о быстром выравнивании температуры между областями разрежения и сжатия. Это предположение из-за плохой теплопроводности воздуха и малого периода колебаний в звуковой волне не выполняется. На самом деле между областями разрежения и сжатия газа возникает разность температур, которая существенно влияет на упругие свойства. Лаплас предположил, что сжатие и разрежение газа в звуковой волне происходят по адиабатическому закону (см. §3.8), т. е. без влияния теплопроводности. Формула Лапласа (1816 г.) имеет вид
где – среднее давление в газе, – средняя плотность, – некоторая константа, зависящая от свойств газа. Для двухатомных газов . Расчет скорости звука по формуле Лапласа дает значение (при нормальных условиях).

В термодинамике доказывается, что коэффициент равен отношению теплоемкостей при постоянном давлении и при постоянном объеме (см. §3.10). Формулу Лапласа можно представить в другом виде, если воспользоваться уравнением состояния идеального газа (см. §3.3). Приведем здесь окончательное выражение:
где – абсолютная температура , – молярная масса , – универсальная газовая постоянная . Скорость звука сильно зависит от свойств газа. Чем легче газ, тем больше скорость звука в этом газе. Так, например, в воздухе ( ) при нормальных условиях , в гелии () , в водороде ) .

В жидкостях и твердых телах скорость звуковых волн еще больше. В воде, например, (при ), в стали .

При восприятии различных звуков человеческое ухо оценивает их прежде всего по уровню громкости , зависящей от потока энергии или интенсивности звуковой волны. Воздействие звуковой волны на барабанную перепонку зависит от звукового давления , т. е. амплитуды колебаний давления в волне. Человеческое ухо является совершенным созданием Природы, способным воспринимать звуки в огромном диапазоне интенсивностей: от слабого писка комара до грохота вулкана. Порог слышимости соответствует значению порядка , т. е. . При таком слабом звуке молекулы воздуха колеблются в звуковой волне с амплитудой всего лишь ! Болевой порог соответствует значению порядка или . Таким образом, человеческое ухо способно воспринимать волны, в которых звуковое давление изменяется в миллион раз. Так как интенсивность звука пропорциональна квадрату звукового давления, то диапазон интенсивностей оказывается порядка ! Человеческое ухо, способное воспринимать звуки в таком огромном дипазоне интенсивности, можно сравнить с прибором, который можно использовать для измерения и диаметра атома и размеров футбольного поля.

Для сравнения укажем, что при обычных разговорах людей в комнате интенсивность звука приблизительно в превышает порог слышимости, а интенсивность звука на рок-концерте приближается к болевому порогу.

Еще одной характеристикой звуковых волн, определяющей их слуховое восприятие, является высота звука . Колебания в гармонической звуковой волне воспринимаются человеческим ухом как музыкальный тон . Колебания высокой частоты воспринимаются как звуки высокого тона , колебания низкой частоты – как звуки низкого тона . Звуки, издаваемые музыкальными инструментами, а также звуки человеческого голоса могут сильно различаться по высоте тона и по диапазону частот. Так, например, диапазон наиболее низкого мужского голоса – баса – простирается приблизительно от до , а диапазон высокого женского голоса – сопрано – от до .

Диапазон звуковых колебаний, соответствующий изменению частоты колебаний в два раза, называется октавой . Голос скрипки, например, перекрывает приблизительно три с половиной октавы ( ), а звуки пианино – семь с лишним октав ( ).

Когда говорят о частоте звука, издаваемого струнами любого струнного музыкального инструмента, то имеется в виду частота основного тона (см. §2.6). Но в колебаниях струн могут присутствовать и гармоники, частоты которых удовлетворяют соотношению:

.

Поэтому звучащая струна может излучать целый спектр волн с кратными частотами. Амплитуды этих волн зависят от способа возбуждения струны (смычок, молоточек); они определяют музыкальную окраску звука или тембр . Аналогично обстоит дело с духовыми музыкальными инструментами. Трубы духовых инструментов являются акустическими резонаторами , то есть акустическими колебательными системами, способными возбуждаться (резонировать) от звуковых волн определенных частот. При определенных условиях в воздухе внутри труб возникают стоячие звуковые волны. На рис. 2.7.1 показаны несколько типов стоячих волн (мод) в органной трубе, закрытой с одного конца и открытой с другого. Звуки, издаваемые трубами духовых инструментов, состоят из целого спектра волн с кратными частотами.

Стоячие волны в органной трубе, закрытой с одного конца и открытой с другого. Стрелками показаны направления движения частиц воздуха в течение одного полупериода колебаний

При настройке музыкальных инструментов часто используется устройство, называемое камертоном . Оно состоит из деревянного акустического резонатора и скрепленной с ним металлической вилки, настроенных в резонанс. При ударе молоточком по вилке вся система возбуждается и издает чистый музыкальный тон.

Акустическим резонатором является и гортань певца. На рис. 2.7.2 представлены спектры звуковых волн, испускаемых камертоном, струной пианино и низким женским голосом (альт), звучащими на одной и той же ноте.

Относительные интенсивности гармоник в спектре звуковых волн, испускаемых камертоном (1), пианино (2) и низким женским голосом (альт) (3), звучащими на ноте «ля» контроктавы (). По оси ординат отложены относительные интенсивности

Звуковые волны, частотные спектры которых изображены на рис. 2.7.2, обладают одной и той же высотой, но различными тембрами .

Рассмотрим теперь явление, возникающее при наложении двух гармонических звуковых волн с близкими, но все же несколько отличающимися частотами. Это явление носит название биений . Оно возникает, например, при одновременном звучании двух камертонов или двух гитарных струн, настроенных на почти одинаковые частоты. Биения воспринимаются ухом как гармонический тон, громкость которого периодически изменяется во времени. Пусть звуковые давления и , действующие на ухо, изменяются по законам

.

Для простоты будем считать, что амплитуды колебаний звуковых давлений одинаковы и равны .

В соответствии с принципом суперпозиции полное давление, вызываемое обеими волнами в каждый момент времени, равно сумме звуковых давлений, вызываемых в тот же момент времени каждой волной в отдельности.

Суммарное действие обеих волн с помощью тригонометрических преобразований можно представить в виде
где , а

На рис. 2.7.3(1) изображены зависимости давлений и от времени . В момент времени оба колебания находятся в фазе, и их амплитуды складываются. Так как частоты колебаний несколько отличаются друг от друга, через некоторое время колебания окажутся в противофазе. В этот момент суммарная амплитуда обратится в нуль (колебания «гасят» друг друга). К моменту времени колебания снова окажутся в фазе и т. д. (рис. 2.7.3 (2)).

Минимальный интервал между двумя моментами времени с максимальной (или минимальной) амплитудой колебаний называется периодом биений . Медленно изменяющаяся амплитуда результирующего колебания равна

Период изменения амплитуды равен . Это можно показать и другим способом, предположив, что периоды колебаний давлений в звуковых волнах и таковы, что (т. е. ). За период биений происходит некоторое число полных циклов колебаний первой волны и () циклов колебаний второй волны:

.

Частота биений равна разности частот двух звуковых волн, воспринимаемых ухом одновременно.

Человек воспринимает звуковые биения до частот . Прослушивание биений является важным элементом техники настройки музыкальных инструментов.

Читайте также: