Схема реагентной очистки сточных вод от ионов тяжелых металлов

Обновлено: 08.01.2025

Характеристики и свойства сточных вод с содержанием тяжелых металлов, которые поступают на очистные сооружения, могут значительно отличаться, что, в результате, приводит к образованию смешанного состава металлосодержащих загрязненных стоков. На очистных сооружениях предприятий не всегда существует возможность получать очищенную воду, которая соответствует высоким требованиям ПДК по тяжелым металлам. Поэтому для соблюдения нормативов технологическая схема очистки сточных вод должна состоять из последовательных процессов:

  1. Концентрирования загрязняющих веществ. При очистке тяжелых металлов из стоков этот процесс хорош тем, что выделенные загрязняющие вещества могут повторно применяться в основном производстве.
  2. Обезвреживание.
  3. Переход примесей в новое фазово-дисперсное состояние.
  4. Разделение фаз.

В технологических схемах очистки стоков установки подразделяют по гидродинамическому режиму их работы:

  • проточные - включают в себя все процессы очистки сточных вод, практически полностью очищают сточные воды до необходимых нормативов;
  • не проточные - сточные воды подаются дозированно, после завершения цикла - освобождаются, подходят для предварительной очистки.

Таблица 3. Рекомендации при разработке технологических схем очистки сточных вод от ионов тяжелых металлов

ПоказателиТехнологический прием
Высокое содержание ионов тяжелых металловИспользование непроточных очистных сооружений (отстойников, накопителей); прямой выпуск сточных вод после подщелачивания для обезвоживания осадка
Большая амплитуда колебаний рН и загрязняющих веществИспользование непроточных реакторов-накопителей; растворов с различной концентрацией реагентов; последовательное регулирование рН
Присутствие металлов с разными значениями рН гидратообразованияПрименение многоступенчатого разделения фаз (двухступенчатых флотаторов, отстойников и фильтров); регулирование рН на каждой ступени разделения фаз
Присутствие комплексообразователейПрименение непроточных очистных сооружений в виде реакторов-накопителей для разрушения комплексов: хрома шестивалентного, цианидов и др.; использование Na2S натрия и других необходимых реагентов
Глубокая очистка от ионов тяжелых металловИспользование Na2S, коагулянтов, сорбентов и других необходимых реагентов; многоступенчатое разделение фаз с последующим добавлением реагентов-осадителей
Деминерализация очищенной водыПрименение методов ионного обмена, обратного осмоса или электродиализа с последующим ионным обменом

При разработке технологии очистки сточных вод от тяжелых металлов следует обратить внимание на составление схем повторного и многократного применения очищенных стоков и возвращение их в оборотные системы водоснабжения промышленных предприятий. Такие технологии должны осуществлять экономичные и экологичные способы очистки и соответствовать нормативам ПДК.

Реагентная очистка сточных вод от шестивалентного хрома в гальваническом производстве


Соединения шестивалентного хрома (хромовая кислота и ее соли) применяются при нанесении хромовых покрытий, при химической обработке (травление, пассивирование), при электрохимической обработке (анодирование), при электрополировке стальных изделий.

Сточные воды обрабатываются в две стадии:

  1. восстановление шестивалентного хрома до трехвалентного;
  2. осаждение трехвалентного хрома в виде гидроксида.

Применение натриевых солей при очистке воды

В качестве реагентов-восстановителей наибольшее применение получили натриевые соли сернистой кислоты – сульфит (Na2SO3), бисульфит (NaHSO3), пиросульфит (Na2S205), а также дитионит натрия (Na2S204).

Восстановление Сг 6+ до Сг 3+ происходит по реакциям:

  • восстановление сульфитом натрия
    Сr2 О7 2- + 3SO3 2- + 8Н + -> 2Cr 3+ + 3SO4 2- + 4Н20
  • восстановление бисульфитом натрия
    Сr2 О7 2- + 3HSO3- + 5Н + -> 2Cr 3+ + 3SO4 2- + 4Н20
  • восстановление пиросульфитом натрия
    2Сr3О7 2- + 3S2O5 2- + 10Н + -> 4Cr 3+ + 6SO4 2- + 5H2О
  • восстановление дитионитом натрия
    Сr3О7 2- + S2O4 2- +6Н + -> 2Cr 3+ + 2SO4 2- + ЗН2О.

Теоретические дозы реагентов-восстановителей составляют (мг/1мг Сг 6+ ): для сульфита 3,63, бисульфита 3,0, пиросульфита 2,88, дитионита натрия 1,67.

Соли сернистой кислоты добавляют к сточным водам в виде 10 %-ных водных растворов. Доза восстановителя зависит от исходной концентрации Сг 6+ в сточной воде и величины pH. Скорость и полнота реакций восстановления Сг 6+ до Сг 3+ в большой степени также зависят от величины pH реакционной смеси. Наибольшая скорость реакций восстановления достигается в кислой среде при рН=2-2,5, что обычно требует дополнительного подкисления сточных вод 10-15 %-ным раствором серной кислоты (возможно использование растворов других минеральных кислот). В табл. 4.1 приведены удельные расходы натриевых солей сернистой кислоты, необходимые для восстановления одной весовой части шестивалентного хрома при обработке сточных вод с различной исходной концентрацией Сг 6+ и различной величиной pH.

Передозирование восстановителя недопустимо; перерасход реагента даже на 10% приводит к образованию комплексных солей трехвалентного хрома и серной кислоты, которые не полностью разрушаются при последующей нейтрализации сточных вод.

Использование отходов железа

В качестве реагентов-восстановителей можно также использовать отходы металлического железа (в виде стальной стружки, скрапа и т.п.), или сульфат двухвалентного железа (см. также п.4.1.1 – ферритный метод). В первом случае подкисленные до pH 2 сточные воды фильтруют через находящийся в реакторе слой железной стружки при постоянном барботировании воздухом. Во втором случае раствор сульфата железа (в виде 10 %-ного водного раствора) вводят в реактор, в который поступают сточные воды. В отличие от солей сернистой кислоты восстановление Сг 6+ до Сг 3+ солями двухвалентного железа протекает с достаточно высокой скоростью не только в кислой, но и в нейтральной и щелочной средах по реакциям:

Сr2С7 2- + 6Fe 2+ + 14Н + -> 6Fe 3+ + 2Сг 3+ + 7Н2О

Поэтому в случае применения сульфата железа (II) в качестве реагента-восстановителя предварительное подкисление сточных вод не требуется, а для полного восстановления Сг 6+ до Сг 3+ необходим лишь незначительный избыток реагента (около 5% от стехиометрического количества) независимо от исходной концентрации Сг 6+ в сточных водах и величины pH. Недостатком использования сульфата железа, а также железосодержащей суспензией по методу ферритизации (см. п. 4.1.1), в качестве реагентов-восстановителей по сравнению с солями сернистой кислоты является более чем 4-кратное увеличение^ объема образующихся при последующей нейтрализации твердых осадков, поскольку на 1 массовую часть осадка гидроокиси хрома дополнительно образуется 3,12 массовых частей осадка гидроксида железа (III).

Реагенты для восстановления хрома

В качестве реагентов для восстановления Сг 6+ до Сг 3+ можно также применять пероксид водорода (в кислой среде), сернистый газ, гидразин (в нейтральной или слабощелочной среде).

Таблица 4.1

Необходимые дозы (мг на 1 мг Сг 6+ ) сульфита натрия (А), бисульфита натрия (Б), пиросульфита и дитионита натрия (В) при обработке сточных вод, содержащих соединения шестивалентного хрома

При обработке хромсодержащих сточных вод на установках периодического действия рекомендуется использовать два реактора, причем полезный объем каждого из реакторов следует принимать равным расчетному часовому расходу сточных вод. При обработке стоков на установках непрерывного действия полезную емкость реактора рекомендуется принимать равной 30-ти минутному расчетному расходу.

После окончания реакции восстановления Сг 6+ в кислой среде сточные воды подвергают нейтрализации с целью осаждения Сг 3+ в виде гидроксида по реакции

На установках непрерывного действия нейтрализацию кислых вод, содержащих Сг 3+ , проводят после их предварительного смешивания с другими кислыми и щелочными сточными водами гальванопроизводства.

Нейтрализация хромсодержащих сточных вод

На установках периодического действия иногда хромсодержащие сточные воды нейтрализуют отдельно от сточных вод других видов. Для нейтрализации обычно используют известковое молоко, в более редких случаях – соду и едкий натр. Оптимальная величина pH для осаждения Сг(ОН)з составляет 8,5-9, при выходе за эти пределы растворимость Сг(ОН)з увеличивается и, как следствие, ухудшается полнота извлечения гидроокиси хрома из сточных вод. При pH >12 амфотерная гидроокись Сг 3+ в избытке щелочи образует растворимые хромиты:

Принципиальная схема очистки хромсодержащих сточных вод с начальной концентрацией ионов хрома (VI) до 600 мг/л реагентным методом представлена на рис.4.1.

Рис. 4.1. Принципиальная схема очистки хромсодержащих сточных вод реагентным методом: 1-реактор-накопитель хромовых стоков, 2-дозатор кислоты, 3-дозатор восстановителя (Na2S03, NaHSCr, FeSO4, Fe(OH)2 и др.), 4-дозатор щелочи, 5-реактор-нейтрализатор, 6-отстойник, 7-механический

Глава 1. Основы очистки сточных вод

Л.О. Штриплинг, Ф.П. Туренко
Основы очистки сточных вод и переработки твердых отходов
Учебное пособие – Омск: Изд-во ОмГТУ, 2005. – 192 с.

6. Химические методы очистки сточных вод

6.1. Нейтрализация

Сточные воды, содержащие минеральные кислоты или щелочи, перед сбросом их в водоемы или перед использованием в технологических процессах нейтрализуют. Практически нейтральными считаются воды, имеющие рН = 6,5-8,5. Следовательно, подвергать нейтрализации следует сточные воды с рН менее 6,5 и более 8,5, при этом необходимо учитывать нейтрализующую способность водоемов, а также щелочной резерв городских сточных вод. Из условий сброса производственных сточных вод в водоем или городскую канализацию, следует, что большую опасность представляют кислые стоки, которые встречаются к тому же значительно чаще, чем щелочные (количество сточных вод с рН > 8,5 невелико). В большинстве кислых сточных вод содержатся соли тяжелых металлов, которые необходимо выделить из этих вод.

Реакция нейтрализации – это химическая реакция между веществами, имеющими свойства кислоты и основания, которая приводит к потере характерных свойств обоих соединении. Наиболее типичная реакция нейтрализации в водных растворах происходит между гидратированными ионами водорода и ионами гидроксида, содержащимися соответственно в сильных кислотах и основаниях: Н + +ОН – = Н2О. В результате концентрация каждого из этих ионов становится равной той, которая свойственна самой воде (около 10 –7 ), т.е. активная реакция водной среды приближается к рН = 7.

Нейтрализацию можно проводить различным путем: смешением кислых и щелочных сточных вод, добавлением реагентов, фильтрованием кислых вод через нейтрализующие материалы, абсорбцией кислых газов щелочными водами или абсорбцией аммиака кислыми водами. Выбор метода нейтрализации зависит от объема и концентрации сточных вод от режима их поступления, наличия и стоимости реагентов. В процессе нейтрализации могут образовываться осадки, количество которых зависит от концентрации и состава сточных вод, а также от вида и расхода используемых реагентов. Применяют следующие способы нейтрализации: взаимная нейтрализация кислых и щелочных сточных вод (нейтрализация смешением); нейтрализация путем добавления реагентов, фильтрование через нейтрализующие материалы; нейтрализация кислыми дымовыми газами.

Выбор способа нейтрализации зависит от многих факторов, например, вида и концентрации кислот, загрязняющих производственные сточные воды; расхода и режима поступления отработанных вод на нейтрализацию; наличия реагентов; местных условий и др.

Нейтрализация смешением. Этот метод применяют, если на одном предприятии или на соседних предприятиях имеются кислые и щелочные воды, не загрязненные другими компонентами. Кислые и щелочные воды смешивают в емкости с мешалкой и без мешалки. В последнем случае перемешивание ведут воздухом (рис. 1.47) при его скорости в линии подачи 20-40 м/с.

Рис. 1.47. Нейтрализатор смешения:

1 – кислые сточные воды; 2 – щелочные сточные воды; 3 – нейтрализованная сточная вода; 4 – воздух;

5 – распределитель воздуха;

При переменной концентрации сточных вод в схеме предусматривают установку усреднителя или обеспечивают автоматическое регулирование подачи в камеру смешения. Расчет соотношения сточных вод, направляемых в камеру смешения, проводят по стехиометрическим уравнениям.

При избытке кислых или щелочных сточных вод добавляют соответствующие реагенты. Принципиальная схема водно-реагентной нейтрализации приведена на рис. 1.48. Нейтрализованную воду используют в производстве, а осадок обезвоживают на шламовых площадках или вакуум-фильтрах.

Рис. 1.48. Схема станции реагентной нейтрализации воды:

1 – песколовки; 2 – усреднители; 3 – емкость для реагентов; 4 – растворный бак; 5 – дозатор; 6 – смеситель; 7 – нейтрализатор; 8 – отстойник; 9 – осадкоуплотнитель; 10 – вакуум-фильтр; 11 – накопитель обезвоженных осадков; 12 – шламовая площадка

Нейтрализация путем добавления реагентов. Если на промышленном предприятии имеются только кислые или щелочные воды или невозможно обеспечить их взаимную нейтрализацию применяется реагентный метод нейтрализации. Этот метод наиболее широко используется для нейтрализации кислых сточных вод. Выбор реагента зависит от вида кислот, их концентрации, растворимости солей, образующихся в результате химической реакции.

Для нейтрализации минеральных кислот применяется любой щелочной реагент, чаще всего известь-пушонка, известковое молоко, карбонаты кальция и магния в виде суспензии. Эти реагенты сравнительно дешевы и общедоступны, но имеют ряд недостатков: обязательно устройство усреднителей перед нейтрализационной установкой; затруднительно регулирование дозы реагента по рН нейтрализованной водой; сложное реагентное хозяйство.

Скорость реакции между раствором кислоты и твердыми частицами суспензии относительно невелика и зависит от размеров частицы и растворимости образующегося в результате реакции нейтрализации соединения. Поэтому окончательная активная реакция устанавливается не сразу, а по истечении некоторого времени – 10-15 мин. Сказанное выше относится к сточным водам, содержащим сильные кислоты (H2SO4, H2SO4), кальциевые соли которых труднорастворимы в воде.

При нейтрализации сточных вод, содержащих серную кислоту (H2SO4), реакция в зависимости от применяемого реагента протекает по уравнениям:

Образующийся в результате нейтрализации сульфат кальция (гипс) кристаллизуется из разбавленных растворов в виде CaSO4·2H2O. Растворимость этой соли при температуре 0-40 0 С колеблется от 1,76 до 2,11 г/л.

При более высокой концентрации сульфат кальция выпадает в осадок, поэтому при нейтрализации сильных кислот, кальциевые соли которых труднорастворимы в воде, необходимо устраивать отстойники-шламонакопители. Существенным недостатком метода нейтрализации серной кислоты известью является образование пресыщенного раствора гипса (коэффициент пресыщения может достигать 4-6), выделение которого из сточной воды может продолжаться несколько суток, что приводит к зарастанию трубопроводов и аппаратуры. Присутствие в сточных водах многих химических производств высокомолекулярных органических соединений усиливает устойчивость пресыщенных растворов гипса, поскольку эти соединения сорбируются на гранях кристаллов сульфата кальция и препятствуют их дальнейшему росту.

Для уменьшения коэффициента пресыщения используется метод рециркуляции образующегося в результате нейтрализации осадка сульфата кальция. Концентрация ионов кальция в сточной воде уменьшается при увеличении дозы рециркулирующего осадка: продолжительность перемешивания этой воды должна быть не менее 20-30 мин. Для уменьшения зарастания трубопроводов, по которым транспортируются нейтрализованные известью сернокислотные стоки, применяют методы промывки, увеличивают скорость транспортирования, а также заменяют металлические трубопроводы на пластмассовые.

Поскольку в кислых и щелочных сточных водах практически всегда присутствуют ионы тяжелых металлов, то дозу реагентов следует определять с учетом выделений в осадок тяжелых металлов.

Количество реагента, необходимого для нейтрализации сточных вод определяется по формуле

где k – коэффициент запаса расхода реагента по сравнению с теоретическим k = 1,1 – для известкового молока, k = 1,5 – для известкового теста и сухой извести; В – количество активной части в товарном продукте, %; Q – количество сточных вод подлежащих нейтрализации, м 3 ; а – расход реагента для нейтрализации (табл. 1.7), г/кг

Расход реагентов для нейтрализации 100 % кислот и щелочей

При нейтрализации кислых и щелочных сточных вод содержащих соли тяжелых металлов, количество реагента будет определяться по формуле

где С1, С2,…,Сn – концентрации металлов в сточных водах, кг/м; b1, b2,…,bn, – концентрации реагентов, требуемых для перевода металла из растворенного состояния в осадок (табл. 1.8), кг/кг.

Расход реагентов, требуемых для удаления металлов

Например, при нейтрализации гашеной известью сточных вод, поступающих после травления черных металлов серной кислотой происходят следующие реакции:

с серной кислотой: H2SO4+ Са(ОН )2 = CaSO4+ 2H2O

с сульфатом железа: FeSO4+ Ca(OH)2 = CaSO4+ Fe(OH)2 152 74 136 90

На основании приведенных выше реакций или данных в табл. 1.7 и 1.8, а также по содержанию серной кислоты и железа в отработанных травильных растворах можно определить количество гашеной извести, необходимой для нейтрализации кислых сточных вод и осаждения железа

где А – содержание серной кислоты, кг/м 3 ; С – содержание железа, кг/м 3 .

Количество сухого вещества, которое образуется при нейтрализации 1м 3 сточной воды, содержащей свободную серную кислоту и соли тяжелых металлов, определяется по формуле

где М – масса сухого вещества, кг; В – содержание активного вещества в используемой извести, %; х1, х2 – количество активного вещества, необходимое соотвественно для осаждения металла и для нейтрализациии свободной серной кислоты, кг; х3 – количество образующихся гидроксидов металлов, кг; у1, у2 – количество сульфата кальция, образующиеся соответственно при осаждении металла и при нейтрализации свободной серной кислоты, кг.

Если значение третьего члена в приведенной формуле отрицательно, то он не учитывается.

Объем осадка, образующегося при нейтрализации сточной воды можно найти по уравнению

где Wвл – влажность осадка, %.

Для нейтрализации кислых вод могут быть использованы: NaOH, КОН, Na2CO3. NH4OH (аммиачная вода), СаСО3. доломит (СаСО3. MgСО3 ) цемент. Однако наиболее дешевым реагентом является гидроксид кальция (известковое молоко) с содержанием активной извести Са(ОН)2 5-10 %. Соду и гидроксид натрия следует использовать, если они являются отходами производства. Иногда для нейтрализации применяют различные отходы производства. Например, шлаки сталеплавильного, феррохромового и доменного производств используют для нейтрализации вод, содержащих серную кислоту.

Реагенты выбирают в зависимости от состава и концентрации кислой сточной воды. При этом учитывают, будет ли в процессе образовываться осадок или нет. Различают три вида кислотосодержащих сточных вод: 1) воды, содержащие слабые кислоты (Н2СО3, СН3СООН); 2) воды, содержащие сильные кислоты (НСl, HNO3). Для их нейтрализации может быть использован любой названный выше реагент. Соли этих кислот хорошо растворимы в воде; 3) воды, содержащие серную и сернистую кислоты. Кальциевые соли этих кислот плохо растворимы в воде и выпадают в осадок.

Известь для нейтрализации вводят в сточную воду в виде гидроксида кальция (известкового молока; «мокрое» дозирование) или в виде сухого порошка («сухое» дозирование). Схема установки для нейтрализации кислых вод известковым молоком показана на рис. 1.49.

Рис. 1.49. Схема установки нейтрализации кислых вод гидроксидом кальция:

1 – усреднитель; 2 – аппарат для гашения; 3 – растворные баки; 4 – дозаторы;

5 – нейтрализатор; 6 – отстойник

Для гашения извести используют шаровые мельницы мокрого помола, в которых одновременно происходят тонкое измельчение и гашение. Для смешения сточных вод с известковым молоком применяют гидравлические смесители различных типов: дырчатые, перегородчатые, вихревые, с механическими мешалками или барботажные с расходом воздуха 5-10 м 3 /ч на 1 м 2 свободной поверхности.

При нейтрализации сточных вод, содержащих серную кислоту, известковым молоком в осадок выпадает гипс CaSO4·2H:2O. Растворимость гипса мало меняется с температурой. При перемещении таких растворов происходит отложение гипса на стенках трубопроводов и их забивка. Для устранения забивки трубопровода необходимо промывать их чистой водой или добавлять в сточные воды специальные умягчители, например гексаметафосфат. Увеличение скорости движения нейтрализованных вод способствует уменьшению отложений гипса на стенках трубопровода.

Для нейтрализации щелочных сточных вод используют различные кислоты или кислые газы. Метод реагентной нейтрализации кислых и щелочных сточных вод широко используется на предприятиях химической промышленности.

Нейтрализация кислых вод фильтрованием через нейтрализующие материалы. В этом случае для нейтрализации кислых вод проводят фильтрование их через слой магнезита, доломита, известняка, мела, мрамора, твердых отходов (шлак, зола) и др. Процесс ведут в фильтрах-нейтрализаторах, которые могут быть горизонтальными или вертикальными крупность фракций материала загрузки 3-8 мм. Для вертикальных фильтров используют куски известняка или доломита размером 30-80 мм. При высоте слоя материала 0,85-1,2 м скорость должна быть не более 5 м/с и зависит от вида загрузочного материала, а продолжительность контакта не менее 10 мин. У горизонтальных фильтров скорость течения сточных вод 1-3 м/с. Нейтрализация соляно- и азотнокислых, а также сернокислых сточных вод при концентрации серной кислоты не более 1,5 г/л происходит на непрерывно действующих фильтрах.

Применение таких фильтров возможно при условии отсутствия в кислых сточных водах солей металлов, поскольку при рН > 7 они будут выпадать в осадок в виде труднорастворимых соединений, которые полностью забивают поры фильтра. Ограничивается применение нейтрализующих фильтров при подаче на них сернокислых сточных вод с концентрацией серной кислоты более 1,5 г/л. В этом случае количество образующегося сульфата кальция превышает его растворимость (

Если загрузка выполняется из карбоната магния, это ограничение снимается, поскольку растворимость сульфата магния достаточно высока – 355 г/л (MgSO4·7H2O).

Нейтрализация кислыми газами. Для нейтрализации щелочных сточных вод в последнее время начинают использовать отходящие газы, содержащие СО2, SO2, NO2 и др. Применение кислых газов позволяет не только нейтрализовать сточные воды, но и одновременно производить высокоэффективное очистку самих газов от вредных компонентов.

Использование для нейтрализации щелочных сточных вод диоксида углерода имеет ряд преимуществ по сравнению с применением серной или соляной кислот позволяет резко снизить стоимость процесса нейтрализации. Вследствие плохой растворимости СО2 уменьшается опасность переокисления нейтрализованных растворов. Образующиеся карбонаты находят большее применение по сравнению с сульфатами или хлоридами, кроме того, коррозионные и токсичные воздействия СО3 :2– ионов в воде меньше, чем ионов SO4 2 и С13 2– .

Процесс нейтрализации может быть проведен в реакторах с мешалкой, в распылительных, пленочных и тарельчатых колоннах.

Дымовые газы вентилятором подают в кольцевое пространство вокруг вала мешалки и распределяют мешалкой в виде пузырьков и струй в сточной воде, поступающей внутрь реактора. Благодаря большой поверхности контакта между водой и газами происходит быстрая нейтрализация сточной воды. Присутствие в газах SO2 способствует нейтрализации щелочных сточных вод.

При проведении процесса в тарельчатых колоннах степень нейтрализации увеличивается с ростом скорости газа и уменьшением плотности орошения.

Количество кислого газа, необходимого для нейтрализации, может быть определено по уравнению массоотдачи

где М – количество кислого газа, необходимого для нейтрализации; К – фактор ускорения; вЖ – коэффициент массоотдачи в жидкой фазе; F – поверхность контакта фаз; С – движущая сила процесса.

Нейтрализация щелочных вод дымовыми газами использована в ряде производств, в том числе и в асбестоцементном производстве. Сточные воды этих производств имеют рН = 12-13. Щелочность воды обусловлена постоянным выщелачиванием в нее гидроксида кальция. Нейтрализацию проводили диоксидом углерода дымовых газов (5-6 % СО2) в тарельчатом абсорбере.

Особенностью нейтрализации дымовыми газами сточных вод асбестоцементного предприятия является образование карбоната кальция, который может находиться в состоянии пересыщения и отлагается на внутренней поверхности оборудования. Для предотвращения образования в абсорбере карбонатных отложений процесс нейтрализации следует проводить по циркуляционной схеме (рис. 1.50).

Сточная вода из усреднителя должна поступать в смеситель, где предварительно нейтрализуется частью воды, выходящей из абсорбера.

В смесителе протекают следующие реакции:

Рис. 1.50. Нейтрализатор дымовых вод щелочными газами

Образующийся осадок карбоната кальция осаждается в циркуляционной емкости. Предварительную нейтрализацию сточной воды проводят с целью получения на входе в абсорбер смеси с таким водородным показателем, при котором смесь при окончательной нейтрализации в абсорбере дымовыми газами не образует карбонатных отложений. При этом в абсорбере протекают следующие реакции:

Отношение объемных расходов циркулирующей и сточной воды, при котором образуется смесь, невыделяющая карбонатных отложений, зависит от состава сточной воды и составляет от 2,5 до 4.

Для нейтрализации применяют абсорберы с крупнодырчатыми провальными тарелками с большим свободным сечением. Например, тарелки со свободным сечением более 30 % и отверстиями размером 20 × 50 мм.

Нейтрализация щелочных вод дымовыми газами является примером ресурсосберегающей технологии, позволяющей исключить использование кислот, создать бессточную схему водопотребления (рис. 1.51) При этом ликвидируется сброс сточных вод, сокращается потребление свежей воды, экономится тепловая энергия на подогрев свежей воды, а также очищаются дымовые газы от кислых компонентов (СО2, SO2 и др.) и пыли.

Рис. 1.51. Бессточная схема водопотребления асбестоцементного завода:

1 – фильтр; 2, 5 – отстойники; 3 – усреднитель; 4 – смеситель; 6 – колонна;

Очистка сточных вод от
тяжелых металлов

Методы очистки сточных вод от ионов тяжелых металлов

На выбор определенного метода очистки влияют концентрация и компоненты стоков с содержанием тяжелых металлов, вид производства, возможность применения той или иной технологии очистки. На разных этапах извлечения ионов применяется тот метод, который является наиболее эффективным и экономически менее затратным. Такими являются:

  • реагентный;
  • сорбционный;
  • ионообменный;
  • электрохимический;
  • обратный осмос и нанофильтрация.

Реагентные методы

Реагентный метод очистки сточных вод от тяжелых металлов предполагает химическое превращение высокотоксичных растворов в нетоксичные соединения. Реагентами могут выступать гидроксиды K и Na, карбонат Na, сульфиды Na.

Если в растворе содержатся вещества, которые способны легко восстанавливаться, тогда прибегают к методу восстановительной очистки. Для этих целей используют сульфат железа, диоксид серы, гидросульфит натрия.

Осаждение ионов тяжелых металлов осуществляют с помощью известкового молока, раствора едкого натра и соды. При применении NaOH необходимо строго контролировать величину рН и подбирать оптимальную дозировку. Использование соды в случае, когда стоки загрязнены такими металлами, как Zn, Pb, Cu и Cd, приводит к образованию основных карбонатов, состав которых зависит от условий реакции: температуры, концентрации раствора, рН и пр.

ZnCl₂ + 2Na₂CO₃ = 2ZnCO₃ + 4NaCl
2ZnCO₃ + H₂O = (ZnOH)₂CO₃ + CO₂
2ZnCl₂ + 2Na₂CO3 + H₂O = 4NaCl + CO₃+ (ZnOH)₂CO₃

Для повышения результатов очистки металлосодержащих стоков целесообразно использовать коагулянты и флокулянты. Коагулянтами могут выступать соли Fe, Al или их смеси.

Наибольшее распространение среди солей Al получили Al₂(SO₄)₃ и NaAlO₂. Сульфат алюминия экономически выгоден, кроме того легко растворяется в воде и дает хороший результат при рН 5 - 7,5. Алюминат натрия при рН 9,3 - 9,8 образует хлопья, способные к быстрому осаждению. Чаще всего применяют смесь солей алюминия, что позволяет расширить диапазон значений рН, повысить скорость образования хлопьев и увеличить их плотность.

Из солей железа чаще всего применяют сульфат железа, хлорное железо, соли трехвалентного железа. Но из-за высокой коррозионной способности и меньшего эффекта хлопьеобразования, соли железа имеют не такое широкое распространение или их используют в смеси с солями алюминия.

Применение титанового коагулянта позволяет довести степень очистки стоков от тяжелых металлов до 50 - 67%.

Флокулянтами могут выступать природные (крахмал, декстрин, эфиры), неорганические (диоксид кремния), синтетические (полиакриламид) вещества.

Недостатками реагентного метода являются:

  • высокая стоимость реагентов при их большом расходе;
  • повторное загрязнение очищенных вод, что исключает ее возврат в цикл оборотного водопользования;
  • утрата ценных веществ и затруднение их переработки;
  • образование большого количества осадков.

Хотя исходный состав металлосодержащих стоков не играет существенной роли для качества их очистки реагентным методом, все же требуется доочистка на электродиализаторах или ионообменных фильтрах перед сбросом в водоемы хозяйственно-бытового назначения.

Ионный обмен

При использовании метода ионного обмена получаемое качество очистки позволяет использовать очищенные воды от тяжелых металлов в оборотном цикле водопользования. Метод предполагает обмен между ионами в растворе и ионами на поверхности твердой фазы - ионита. В качестве ионитов чаще всего используют синтетические ионообменные смолы.

С помощью ионного обмена производится глубокая очистка загрязненных стоков от ионов тяжелых металлов: Zn, Cu, Cr, Ni, Pb, Hg, Cd и цианидов.

Основным недостатком метода ионного обмена является вторичное загрязнение сточных вод после восстановления, когда возникает необходимость их обезвреживания.

Нанофильтрация

При нанофильтрации используются мембраны с отверстиями в несколько нм. Для таких мембран используют пористые материалы: ароматические полиамиды, ацетат целлюлозы, керамику.

Способ очистки металлосодержащих сточных вод на нанофильтрационных мембранах заключается в движении воды вдоль мембранной поверхности и смывании загрязнений. Такие мембраны имеют сниженную селективность и большую проницаемость.

Нанофильтрация дает хороший результат на заключительном этапе очистки стоков от загрязнений ионами тяжелых металлов.

Читайте также: