Схема процесса кристаллизации металлов
Процесс перехода из жидкого или газообразного состояния металла в твердое, в результате чего образуется кристаллическая решетка и возникают кристаллы, называется кристаллизацией. Для начала кристаллизации расплава его надо охладить ниже температуры кристаллизации.
Процесс кристаллизации складывается из двух элементарных процессов. Первый процесс заключается в зарождении мельчайших частиц кристаллов, которые называются зародышами или центрами кристаллизации. Второй процесс состоит в росте кристаллов из этих центров. Модель кристаллизации металла, по мере роста времени пребывания ниже температуры кристаллизации, представлена схемой процесса кристаллизации (рис. 2.13). При этом каждый возникающий центр кристаллизации формирует, впоследствии, зерно поликристалла (рис. 2.12,е), что и объясняет поликристаллическую структуру подавляющего большинства используемых металлов и сплавов. Рост кристалла заключается в том, что к поверхности зародышей присоединяются все новые и новые атомы металла. Сначала образовавшиеся кристаллы растут свободно, затем при столкновении растущих кристаллов их дальнейший рост продолжается только там, где есть свободный доступ к расплаву. В результате кристаллы (зерна в поликристалле) имеют произвольную геометрическую форму.
Процесс кристаллизации можно охарактеризовать двумя параметрами: числом центров кристаллизации (ЧЦК), образующихся в единицу времени в единице объема, и скоростью роста кристаллов (СРК). Эти параметры зависят от величины степени переохлаждения относительно температуры кристаллизации, а, следовательно, от скорости охлаждения при кристаллизации металла.
Р и с. 2.13. Схема процесса кристаллизации:
а – е – изменение структура по мере роста времени охлаждения
Величина зерен также зависит от условий кристаллизации и, прежде всего, от скорости охлаждения металла. Чем больше скорость охлаждения металла, тем больше величина ЧЦК по сравнению с СРК и, следовательно, тем меньшего размера получаются зерна. Мелкое зерно при затвердевании металла можно сформировать за счет создания дополнительных искусственных центров кристаллизации. Для этого в расплавленный металл вводят специальные вещества, называемые модификаторами. Процесс искусственного измельчения размеров зерен получил название модифицирование.
В большинстве случаев при литье слитков и отливок в реальных условиях реализуется дендритный рост кристаллов. Из зародышей вырастают древовидные кристаллиты - дендриты (с греч. Δένδρον - дерево). Впервые дендритные кристаллы в стальных слитках были выявлены и подробно описаны в 1870 - 1880 годах Д.К. Черновым.
При дендритной кристаллизации зародыши развиваются с разными скоростями в разных направлениях кристаллической решетки. Причины этого в анизотропии физических свойств и, следовательно, разных скоростях кристаллизации в разных направлениях формирующегося кристалла или направленности теплоотвода. В результате образуются ветви - оси дендрита 1-го порядка, расходящиеся от центра кристаллизации под определенными углами (рис. 2.14). При дальнейшем развитии кристаллизации от осей 1-го порядка под определенным углом к ним начинают расти поперечные ветви - оси 2-го порядка, а от них - оси 3-го порядка и т. д. В металлическом расплаве формируется остов древовидной формы будущего кристаллита (зерна). Остающаяся часть расплава между дендритными ветвями кристаллизуется, постепенно наслаиваясь на ветви.
Р и с. 2.14. Схема дендрита:
1,2,3, - оси дендрита первого, второго и третьего порядков соответственно
Размеры дендритных ветвей зависят только от одного фактора - скорости охлаждения в интервале температур кристаллизации. Закристаллизовавшийся дендрит - литое зерно, выросшее из одного зародыш, центра, с той же кристаллографической ориентировкой. Соседние ветви дендритов могут быть разориентированы на несколько градусов, из-за их изгибов и смещения при кристаллизации. Дендритное строение литых зерен металлов и, в особенности, сплавов хорошо выявляется при травлении микрошлифов и просмотре их с помощью светового микроскопа (рис. 2.15).
При заливке жидкого металла в форму и последующей кристаллизации получается слиток, отдельные зоны которого отличаются микроструктурой. Схема строения металлического слитка приведена на рис. 2.16 и 2.17.
Р и с. 2.15. Дендритное строение зерна литого сплава алюминия ×500
Р и с. 2.16. Схема строения слитка в продольном (слева) и поперечном (справа) сечениях:
1 - наружная мелкозернистая корка; 2 - зона столбчатых кристаллов; 3 - зона крупных равноосных кристаллов; 4 - конус осаждения; 5 - усадочная раковина
Р и с. 2.17. Структура поперечного сечения слитка с характерными
зонами: I - наружная мелкозернистая корка, II - зона столбчатых кристаллов,
III - зона крупных равноосных кристаллов ×100
Структура литого слитка состоит из трех основных зон. Первая зона - наружная мелкозернистая корка 1, состоящая из неориентированных мелких кристаллов - дендритов. При первом соприкосновении со стенками изложницы (форма, куда заливают жидкий металл) в тонком прилегающем слое жидкого металла возникают большое переохлаждение, ведущее к образованию большого количества центров кристаллизации. В результате корка получает мелкозернистое строение.
Вторая зона слитка - зона столбчатых кристаллов 2. После образования самой корки условия теплоотвода меняются, градиент температур в прилегающем слое жидкого металла резко уменьшается и, следовательно, уменьшается степень переохлаждения стали. В результате из-за небольшого числа центров кристаллизации начинают расти в направлении теплоотвода столбчатые кристаллы.
Третья зона слитка - зона крупных равноосных кристаллов 3. В центре слитка уже нет определенной направленности отвода тепла. В результате образуется крупная равноосная структура.
Образование конуса осаждения в нижней части слитка (зона 4) обычно объясняют опусканием на дно изложницы кристаллов, зародившихся в объеме жидкого металла у фронта затвердевания, а также обломившихся под действием потоков жидкого металла непрочных ветвей столбчатых кристаллов. Это опускание происходит вследствие разности плотности затвердевшего и жидкого металла.
Жидкий металл имеет больший объем, чем закристаллизовавшийся, поэтому залитый в форму металл в процессе кристаллизации уменьшается в объеме, что приводит к образованию пустот, называемых усадочными раковинами 5. Верхняя часть слитка с усадочной раковиной отрезается.
В слитках сплавов выявляется неоднородность химического состава. Такая неоднородность называется ликвацией.
Ликвация может быть зональная (различная концентрация элементов по зонам сечения слитка), гравитационная (образуется в результате разницы в удельных весах твердой и жидкой фазы, а также при кристаллизации несмешивающихся жидких фаз), дендритная (более тугоплавкие и чистые элементы преимущественно формируют оси 1 порядка, менее тугоплавкие - 2 и 3 порядка, а самые легкоплавкие и содержащие примеси - заполняют межосное пространство).
Кристаллизация металлов
Схема роста кристаллов показана на рис. 2. Кристалл растет в направлении, противоположном отводу тепла. Сначала образуется главная ось кристалла 1, затем на главной оси образуются оси первого порядка 2, на них – оси второго порядка 3, на них – оси следующего порядка и т. д., пока в этом объеме есть жидкий металл.
Атомы жидкости пристраиваются к атомам кристаллов, создавая их форму и обеспечивая их рост. Сначала кристаллы растут свободно, сохраняя правильную геометрическую форму до момента их соприкосновения. В месте соприкосновения кристаллов рост их отдельных осей и граней прекращается. В результате к окончанию процесса кристаллизации кристаллы не имеют правильной геометрической формы, но сохраняют свое древовидное строение. Кристаллы древовидной формы называются дендритами (см. рис. 2).
Дендритное строение – признак литого состояния металла (слиток, отливка). При значительной пластической деформации литого металла форма и размеры кристаллов изменяются – дендриты дробятся, из них образуются новые кристаллы неопределенной формы, называемые зернами (рис. 3). Зернистое строение – признак деформированного металла (прокат, поковки, штампованные полуфабрикаты).
Рис. 2. Дендритная кристаллизация: а – схема дендритного строения
по Чернову; б – схема кристаллизации слитка; дендриты: Чернова (в),
на поверхности сурьмы (г) и алюминия (д)
Рис. 3. Микроструктура доэвтектоидной стали:
а – крупнозернистая; б – мелкозернистая
Размер кристаллов металла во многом определяет его прочностные свойства: чем мельче кристаллы, тем выше сопротивление металла ударным и циклическим нагрузкам. Итак, в процессе кристаллизации два фактора определяют строение металла: число центров кристаллизации и скорость роста кристаллов из этих центров.
Проследим за изменением температуры металла при охлаждении жидкости через равные промежутки времени (рис. 4). Сначала температура жидкого металла понижается равномерно в зависимости от скорости охлаждения V1, V2, V3. Затем понижение температуры прекращается и на кривой охлаждения появляется горизонтальный участок (площадка). В это время отвод тепла компенсируется выделением скрытой теплоты кристаллизации и металл переходит в твердое состояние (образуются и растут кристаллы). После окончания кристаллизации температура вновь равномерно понижается, металл охлаждается в твердом состоянии.
При теоретической температуре кристаллизации (температуре плавления) жидкий металл и твердые кристаллы могут существовать одновременно и бесконечно долго. Следовательно, кристаллизация может происходить только при определенном переохлаждении металла ниже теоретической (равновесной) температуры. Разность между теоретическим и фактическим значениями температуры кристаллизации металла называется степенью переохлаждения:
где Тпл – теоретическая (равновесная) температура кристаллизации (плавления) металла;
Тк – фактическая температура кристаллизации данного металла.
Степень переохлаждения металла зависит от скорости охлаждения V1, V2, V3 (см. рис. 4).
Скорости охлаждения V1 соответствует малая степень переохлаждения DТ1. Охлаждение расплава со скоростью V2 вызывает увеличение степени переохлаждения DТ2, а большая скорость охлаждения V3 приведет к увеличению степени переохлаждения DТ3, и кристаллизация будет происходить при более низкой температуре. В итоге это скажется на факторах процесса кристаллизации:
Vохл ®DТ®ЧЦК – СРК, (2)
где ЧЦК – число центров кристаллизации;
СРК – скорость роста кристаллов из этих центров.
Однако не всегда имеется возможность регулировать скорость охлаждения жидкого металла. Методом получения мелких кристаллов при затвердевании металла является создание искусственных центров кристаллизации. Для этого в расплавленный металл вводят специальные вещества, называемые модификаторами. Процесс искусственного регулирования количества и размеров кристаллов называется модифицированием.
Кристаллизация обусловлена стремлением системы при определенных условиях перейти к энергетически более устойчивому состоянию с меньшей свободной энергией F. На рис. 1.3 показана зависимость изменения свободной энергии для жидкой и твердой фаз от изменения температуры системы. Меньшей свободной энергией вещество в жидком состоянии обладает при температуре выше, а в твердом - ниже теоритической температуры плавления (точка Ts). В реальных условиях процесс кристаллизации не может начаться при температуре Ts, так как при данной температуре система находится в состоянии равновесия (Fж = Fт). Для того чтобы процесс кристаллизации начался, жидкость необходимо охладить ниже точки Ts. Температура, при которой реально начинается процесс кристаллизации, называется фактической температурой кристаллизации (Ткр). Разность между теоретической температурой Ts и реальной температурой Ткр , при которой протекает кристаллизация, называется степенью переохлаждения системы ∆T. При нагреве переход из твердого в жидкое состояние также начинается при определенной степени перегрева системы ∆T.
Рис. 1.3. Изменение свободной энергии F металла в жидком (Fж) и твердом (Fт) состоянии в зависимости от температуры Т
Выделяют два вида кристаллизации:
o первичная - переход металла из жидкого состояния в твердое с образованием кристаллической структуры;
o вторичная - образование новых кристаллов в твердом кристаллическом веществе.
Кристаллизацию металлов и сплавов исследуют с помощью термического анализа, суть которого заключается в регистрации температуры системы через равные промежутки времени. Для этого в тигель 1 (рис. 1.4, а) с расплавленным металлом погружают термоэлектрический термометр (термопару) 2, подключенный к регистрирующему потенциометру 3. На основании полученных данных в координатах температура - время строят кривую охлаждения (рис. 1.4, б), которая отражает последовательность протекания процесса кристаллизации.
На рис. 1.5 приведены кривые охлаждения металла при кристаллизации с различной скоростью охлаждения.
Верхний участок кривой охлаждения показывает понижение температуры жидкого металла. При температуре, соответствующей горизонтальному участку, происходит процесс затвердевания жидкого металла. Выделение скрытой теплоты кристаллизации способствует сохранению постоянной температуры в течение всего времени, необходимого для завершения процесса. Нижний участок кривой соответствует охлаждению закристаллизовавшегося металла. Тонкой горизонтальной линией на диаграмме показано значение теоретической температуры кристаллизации Ts. Из рис. 1.5 видно, что по мере увеличения скорости охлаждения (V1< V2< V3) степень переохлаждения расплава возрастает и кристаллизация начинается при более низких температурах. Период кристаллизации при этом сокращается.
Рис. 1.4. Кристаллизация металлов:
а - схема установки для регистрации процесса; б - кривая охлаждения и схема процесса кристаллизации (L - жидкое состояние, α - твердое состояние)
Основы теории кристаллизации были разработаны более 100 лет назад основоположником науки о металлах - металловедения - Д.К. Черновым, который установил, что кристаллизация состоит из двух процессов: зарождения мельчайших частиц твердого вещества, называемых зародышами, или центрами кристаллизации, и роста кристаллов из этих центров. При охлаждении металла ниже Ts в различных участках жидкого металла образуются устойчивые, способные к росту кристаллические зародыши. С понижением температуры расплава количество зародышей возрастает. В реальных условиях центры кристаллизации образуются на тугоплавких неметаллических включениях.
Рис. 1.5. Влияние скорости охлаждения на процессы кристаллизации: а - кривые охлаждения чистого металла; б - влияние степени переохлаждения ∆Т на скорость зарождения (СЗ) и скорость роста (СР)
Рост кристалла заключается в том, что к поверхности зародышей присоединяются все новые атомы жидкого металла. Сначала образовавшиеся кристаллы растут свободно, сохраняя правильную геометрическую форму. При столкновении растущих кристаллов их форма нарушается, и в дальнейшем рост продолжается только там, где есть свободный доступ к расплаву. В результате кристаллы не имеют правильной геометрической формы. Такие кристаллы называются зернами. Размер зерен зависит от скорости зарождения центров кристаллизации (СЗ) и скорости роста кристаллов (СР). На рис. 1.5, б показана зависимость этих параметров от степени переохлаждения расплава.
Лекция 4
Переход металла из жидкого или парообразного состояния в твердое с образованием кристаллической структуры называется первичной кристаллизацией. Образование новых кристаллов в твердом кристаллическом веществе называется вторичной кристаллизацией.
Процесс кристаллизации состоит из двух одновременно идущих процессов - зарождения и роста кристаллов. Кристаллы могут зарождаться самопроизвольно (самопроизвольная кристаллизация) или расти на имеющихся готовых центрах кристаллизации (несамопроизвольная кристаллизация).
Самопроизвольная кристаллизация
Самопроизвольная кристаллизация обусловлена стремлением вещества иметь более устойчивое состояние, характеризуемое уменьшением термодинамического потенциала G. С повышением температуры термодинамический потенциал вещества как в твердом, так и в жидком состоянии уменьшается, что показано на рисунке.
Изменение термодинамического потенциала в зависимости от температуры для металла в твердом и жидком состояниях
Температура, при которой термодинамические потенциалы вещества в твердом и жидком состояниях равны, называется равновесной температурой кристаллизации. Кристаллизация происходит в том случае, если термодинамический потенциал вещества в твердом состоянии будет меньше термодинамического потенциала вещества в жидком состоянии, т. е. при переохлаждении жидкого металла до температур ниже равновесной. Плавление - процесс, обратный кристаллизации, происходит при температуре выше равновесной, т. е. при перегреве. Разница между реальными температурами плавления и кристаллизации называется температурным гистерезисом.
Поскольку жидкий металл с присущим ему ближним порядком в расположении атомов обладает большей внутренней энергией, чем твердый со структурой дальнего порядка, при кристаллизации выделяется теплота. Между теплотой и температурой кристаллизации Тк существует определенная связь. Так как при равновесной температуре кристаллизации термодинамические потенциалы в жидком и твердом состояниях равны, то
Рекомендуемые материалы
Параметр ΔS = Q/TK характеризует упорядоченность в расположении атомов при кристаллизации. В зависимости от сил межатомной связи теплота кристаллизации для различных металлов изменяется от 2500 Дж/моль (Na, К и др.) до 20000 Дж/моль (W и др.).
Когда кристаллизуется чистый элемент, отвод теплоты, происходящий вследствие охлаждения, компенсируется теплотой кристаллизации. В связи с этим на кривой охлаждения, изображаемой в координатах температура-время, процессу кристаллизации соответствует горизонтальный участок:
Кривые охлаждения металла
При большом объеме жидкого металла выделяющаяся при кристаллизации теплота повышает температуру практически до равновесной (кривая а); при малом объеме металла выделяющейся теплоты недостаточно, вследствие чего кристаллизация происходит с переохлаждением по сравнению с равновесной температурой (кривая б).
Разница между равновесной (Ts) и реальной (Тn) температурой кристаллизации называется степенью переохлаждения ΔT. Степень переохлаждения зависит от природы металла. Она увеличивается с повышением чистоты металла и с ростом скорости охлаждения. Обычная степень переохлаждения металлов при кристаллизации в производственных условиях колеблется от 10 до 30 °С; при больших скоростях охлаждения она может достигать сотен градусов.
Степень перегрева при плавлении металлов, как правило, не превышает нескольких градусов.
В жидком состоянии атомы вещества вследствие теплового движения перемещаются беспорядочно. В то же время в жидкости имеются группировки атомов небольшого объема, в пределах которых расположение атомов вещества во многом аналогично их расположению в решетке кристалла. Эти группировки неустойчивы, они рассасываются и вновь появляются в жидкости. При переохлаждении жидкости некоторые из них, наиболее крупные, становятся устойчивыми и способными к росту. Эти устойчивые группировки атомов называют центрами кристаллизации (зародышами). Образованию зародышей способствуют флуктуации энергии, т. е. отклонения энергии группировок атомов в отдельных зонах жидкого металла от некоторого среднего значения. Размер образовавшегося зародыша зависит от величины зоны флуктуации.
Появление центров изменяет термодинамический потенциал системы ΔGобщ. С одной стороны, при переходе жидкости в кристаллическое состояние термодинамический потенциал уменьшается на VΔGυ (G1), с другой стороны, он увеличивается вследствие появления поверхности раздела между жидкостью и кристаллическим зародышем на величину, равную Sσ (G2):
где V-объем зародыша; S-поверхность зародыша; σ-удельное поверхностное натяжение на границе кристалл-жидкость; ΔGυ-удельная разность термодинамических потенциалов при переходе жидкости в кристаллическое состояние.
Изменение термодинамического потенциала при образовании зародышей в зависимости от их размера
Если принять, что зародыш имеет форму куба с ребром А, то общее изменение термодинамического потенциала
Отсюда следует, что графическая зависимость изменения термодинамического потенциала от размера зародыша имеет максимум при некотором значении А, названном критическим. Зародыши с размером больше критического вызывают уменьшение ΔGобщ. и поэтому являются устойчивыми, способными к росту. Зародыши, имеющие размер меньше критического, нестабильны и растворяются в жидкости, поскольку вызывают увеличение ΔGобщ.
Скорость процесса и окончательный размер кристаллов при затвердевании определяются соотношением скоростей роста кристаллов и образования центров кристаллизации. Скорость образования зародышей измеряется числом зародышей, образующихся в единицу времени в единице объема; скорость роста - увеличением линейного размера растущего кристалла в единицу времени. Оба процесса связаны с перемещениями атомов и зависят от температуры. Графическая зависимость скорости образования зародышей и скорости их роста от степени переохлаждения представлена на рисунке.
Изменение скорости образования зародышей (с. з.) и скорости роста кристаллов (с. р.) в зависимости от степени переохлаждения
Для металлов, которые в обычных условиях кристаллизации не склонны к большим переохлаждениям, как правило, характерны восходящие ветви кривых. Это значит, что при равновесной температуре, когда степень переохлаждения равна нулю, скорость образования зародышей и скорость роста также равны нулю, т. е. кристаллизации не происходит. При небольших степенях переохлаждения, когда велик зародыш критического размера, а скорость образования зародышей мала, при затвердевании формируется крупнокристаллическая структура. Небольшие степени переохлаждения достигаются при заливке жидкого металла в форму с низкой теплопроводностью (земляная, шамотовая) или в подогретую металлическую форму. Увеличение переохлаждения происходит при заливке жидкого металла в холодные металлические формы, а также при уменьшении толщины стенок отливки. Поскольку при этом скорость образования зародышей увеличивается более интенсивно, чем скорость их роста, получаются более мелкие кристаллы.
Несамопроизвольная кристаллизация
В реальных условиях процессы кристаллизации и характер образующейся структуры в значительной мере зависят от имеющихся готовых центров кристаллизации. Такими центрами, как правило, являются тугоплавкие частицы неметаллических включений, оксидов, интерметаллических соединений, образуемых примесями. К началу кристаллизации центры находятся в жидком металле в виде твердых включений. При кристаллизации атомы металла откладываются на активированной поверхности примеси, как на готовом зародыше. Такая кристаллизация называется несамопроизвольной или гетерогенной. При несамопроизвольной кристаллизации роль зародышей могут играть и стенки формы.
Наличие готовых центров кристаллизации приводит к уменьшению размера кристаллов при затвердевании. Эффект измельчения структуры значительно увеличивается при соблюдении структурного и размерного соответствия примесной фазы с основным металлом, которое способствует сопряжению их кристаллических решеток.
В жидком металле могут присутствовать и растворенные примеси, которые также вызывают измельчение структуры. Адсорбируясь на поверхности зарождающихся кристаллов, они уменьшают поверхностное натяжение на границе раздела жидкость - твердая фаза и линейную скорость роста кристаллов. Это способствует уменьшению Акр и появлению новых зародышей, способных к росту. Примеси, понижающие поверхностное натяжение, называют поверхностно-активными.
Получение монокристаллов
Большое научное и практическое значение имеют монокристаллы. Монокристаллы отличаются минимальными структурными несовершенствами. Получение монокристаллов позволяет изучать свойства металлов, исключив влияние границ зерен. Применение в монокристаллическом состоянии германия и кремния высокой чистоты дает возможность использовать их полупроводниковые свойства и свести к минимуму неконтролируемые изменения электрических свойств.
Монокристаллы можно получить, если создать условия для роста кристалла только из одного центра кристаллизации. Существует несколько методов, в которых использован этот принцип. Важнейшими из них являются методы Бриджмена и Чохральского.
Метод Бриджмена (рис. а) состоит в следующем: металл, помещенный в тигель с коническим дном 3, нагревается в вертикальной трубчатой печи 1 до температуры на 50-100 °С выше температуры его плавления. Затем тигель с расплавленным металлом 2 медленно удаляется из печи. Охлаждение наступает в первую очередь в вершине конуса, где и появляются первые центры кристаллизации. Монокристалл 4 вырастает из того зародыша, у которого направление преимущественного роста совпадает с направлением перемещения тигля. При этом рост других зародышей подавляется. Для непрерывного роста монокристалла необходимо выдвигать тигель из печи со скоростью, не превышающей скорость кристаллизации данного металла.
Схемы установок для выращивания монокристаллов
Метод Чохральского (рис. б) состоит в вытягивании монокристалла из расплава. Для этого используется готовая затравка 2 - небольшой образец, вырезанный из монокристалла по возможности без структурных дефектов. Затравка вводится в поверхностный слой жидкого металла 4, имеющего температуру чуть выше температуры плавления. Плоскость затравки, соприкасающаяся с поверхностью расплава, должна иметь кристаллографическую ориентацию, которую желательно получить в растущем монокристалле 3 для обеспечения наибольших значений тех или иных свойств. Затравку выдерживают в жидком металле для оплавления и установления равновесия в системе жидкость-кристалл. Затем затравку медленно, со скоростью, не превышающей скорости кристаллизации, удаляют из расплава. Тянущийся за затравкой жидкий металл в области более низких температур над поверхностью ванны кристаллизуется, наследуя структуру затравки. Для получения симметричной формы растущего монокристалла и равномерного распределения примесей в нем ванна 5 с расплавом вращается со скоростью до 100 об/мин, а навстречу ей с меньшей скоростью вращается монокристалл.
Диаметр растущего монокристалла зависит от скорости выращивания и температуры расплава. Увеличение скорости выращивания ведет к выделению большей теплоты кристаллизации, перегреву расплава и уменьшению диаметра монокристалла, и, наоборот, уменьшение скорости выращивания приводит к уменьшению количества теплоты кристаллизации, понижению температуры расплава и увеличению диаметра монокристалла.
Аморфное состояние металлов
При сверхвысоких скоростях охлаждения из жидкого состояния диффузионные процессы настолько замедляются, что подавляется образование зародышей и рост кристаллов. В этом случае при затвердевании образуется аморфная структура. Материалы с такой структурой получили название аморфные сплавы или металлические стекла.
Аморфное состояние обеспечивает металлическим материалам свойства, значительно отличающиеся от свойств соответствующих материалов с кристаллической структурой. Так, аморфные магнитомягкие материалы характеризуются прямоугольной петлей гистерезиса, высокой магнитной проницаемостью и очень малой коэрцитивной силой. При этом магнитные свойства материала малочувствительны к механическим воздействиям на него.
Получены аморфные материалы и с высокой магнитной энергией. Удельное электрическое сопротивление аморфных металлических материалов в 2 — 3 раза выше, чем у аналогичных сплавов с кристаллической структурой. Аморфные металлические материалы удачно сочетают высокие прочность, твердость и износостойкость с хорошей пластичностью и коррозионной стойкостью. Большое практическое значение имеет также и возможность получения аморфных металлов в виде ленты, проволоки диаметром несколько микрометров непосредственно при литье, минуя такие дорогостоящие операции, как ковка, прокатка, волочение, промежуточные отжиги, зачистки, травление.
На рисунке показана связь характерных графиков изменения свободной энергии возможных фаз при трех определенных температурах t1, t2, t3 с диаграммой состояния. При температуре t2 между точками а и b в термодинамическом равновесии сосуществуют две фазы: жидкий раствор состава ха и твердый раствор состава xb. Значения свободных энергий этих растворов соответствуют точкам a' и b'. Для более точного построения линий ликвидус и солидус необходимо иметь несколько графиков для интервала температур между t1и t3.
Термодинамическое обоснование диаграммы состояния сплавов, компоненты которых полностью растворимы в жидком и твердом состояниях
Полиморфизм
Ряду веществ свойственны не одна, а две и более структур, устойчивых при различных температурах и давлениях. Такие структуры называются полиморфными модификациями, или полиморфными формами. Полиморфные модификации принято обозначать греческими буквами. Модификацию, устойчивую при низких температурах, обозначают буквой α, а при более высоких - β. Полиморфизм весьма распространенное явление.
Железо, титан, кобальт, олово, углерод, сегнетоэлектрики, кварц и многие другие материалы могут существовать в различных полиморфных модификациях.
Естественно, полиморфные, модификации отличаются между собой не только структурой, но и свойствами. Например, α-олово, устойчивое ниже 13° С, является хрупким полупроводником, а β-олово— весьма вязкий металл.
При полиморфизме особо резкие изменения свойств наблюдаются при изменении не только структуры, но и типа химической.
Полиморфизм играет в материаловедении и технологии важную практическую роль. Переводя материал из одной полиморфной модификации в другую, можно управлять его свойствами. Например, практически освоено получение алмазов из графита нагревом его под давлением 100000 атм. до температур примерно 2000° С.
Читайте также: