Щелочноземельные металлы в сравнении со щелочными

Обновлено: 22.01.2025

Видео: Химия 9 класс (Урок№23 - Щелочные металлы. Физические и химические свойства. Оксиды и гидроксиды.)

Содержание

Основное отличие - щелочные металлы от щелочноземельных металлов

Все элементы на земле можно разделить на металлы, неметаллы, металлоиды и инертные газы. Инертные газы - это элементы с нулевой реакционной способностью из-за наличия стабильного внешнего октета. Металлоиды - это элементы, которые обладают определенными свойствами как металлов, так и неметаллов. Неметаллы - это элементы, которые не обладают какими-либо свойствами металлов. Металлы - это элементы, обладающие уникальным набором свойств, в том числе отличной электрической и теплопроводностью и блеском. Металлы размещаются на левой стороне и средней части таблицы Менделеева. Все металлы в периодических таблицах делятся на три группы, а именно; щелочные металлы, щелочноземельные металлы и переходные металлы. Основное различие между щелочными металлами и щелочноземельными металлами заключается в том, что щелочные металлы имеют один валентный электрон на самой внешней орбите в то время как щелочноземельные металлы имеют два валентных электрона на самой внешней орбите.

В этой статье рассматриваются,

1. Что такое щелочные металлы
- определение, характеристики, свойства, примеры
2. Что такое щелочноземельные металлы?
- определение, характеристики, свойства, примеры
3. В чем разница между щелочными металлами и щелочноземельными металлами


Какие щелочные металлы

Щелочные металлы - это элементы, которые имеют только один валентный электрон в своей внешней оболочке. Эти металлы помещаются в группу IA периодической таблицы. Эти металлы включают литий, натрий, калий, рубидий, цезий и франций. Пожертвовав один электрон во внешней оболочке атому, принимающему электроны, эти металлы становятся положительно заряженными и получают электронную конфигурацию благородного газа. Все щелочные металлы являются ионными и показывают электровалентность. Тенденция к донорству электронов возрастает вниз по группе, поскольку положительно заряженное ядро ​​имеет меньше сил притяжения к внешнему электрону из-за присутствия большего количества заполненных электронами внутренних оболочек. В отличие от большинства других металлов, щелочные металлы мягкие с низкой плотностью и низкой температурой плавления. Эти металлы являются наиболее реакционноспособными из всех металлов периодической таблицы.

Что такое щелочноземельные металлы

Щелочноземельные металлы - это металлы, которые имеют два валентных электрона в своей внешней оболочке. Существует шесть щелочноземельных металлов, в том числе бериллий, магний, кальций, стронций, барий и радий. Они становятся стабильными, приобретая электронную конфигурацию благородных газов за счет пожертвования их внешних электронов. Когда электроны отдаются электроотрицательному атому, щелочноземельные металлы становятся положительно заряженными. Щелочноземельные металлы являются высокореактивными металлами и помещаются во второй столбец периодической таблицы. Эти металлы являются строительными блоками для всего в мире. Эти металлы часто встречаются в форме сульфатов в природе. Примеры включают минералы, такие как гипс; сульфат кальция, эпсомит; сульфат магния и барит; сульфат бария.

Рисунок 1: Периодическая таблица, показывающая щелочные и щелочноземельные металлы

Разница между щелочными металлами и щелочноземельными металлами

Количество электронов в самой внешней оболочке атома

Щелочные металлы: Каждый щелочной металл имеет один электрон.

Щелочноземельные металлы: Каждый щелочноземельный металл имеет два электрона.

Природа металла

Щелочные металлы: Щелочные металлы мягкие.

Щелочноземельные металлы: Щелочноземельные металлы являются твердыми.

Точки плавления

Щелочные металлы: Щелочные металлы имеют низкие температуры плавления.

Щелочноземельные металлы: Щелочные металлы имеют относительно высокие температуры плавления.

Природа гидроксида металла

Щелочные металлы: Гидроксиды щелочных металлов являются сильно основными.

Щелочноземельные металлы: Гидроксиды щелочноземельных металлов являются относительно менее основными.

Разложение карбонатов

Щелочные металлы: Карбонаты щелочных металлов не разлагаются.

Щелочноземельные металлы: Карбонаты щелочноземельных металлов разлагаются с образованием оксида при нагревании до высоких температур.

Нагрев нитратов

Щелочные металлы: Нитраты щелочных металлов дают соответствующие нитраты и кислород в качестве продуктов.

Щелочноземельные металлы: Нитраты щелочноземельных металлов дают соответствующие оксиды, диоксид азота и кислород в качестве продуктов.

Стабильность гидроксидов при нагревании

Щелочные металлы: Гидроксиды щелочных металлов стабильны.

Щелочноземельные металлы: Гидроксиды щелочноземельных металлов образуют оксиды.

Природа бикарбонатов при комнатной температуре

Щелочные металлы: Бикарбонаты щелочных металлов существуют в твердой форме.

Щелочноземельные металлы: Бикарбонаты щелочноземельных металлов существуют в форме раствора.

Образование пероксидов при нагревании

Щелочные металлы: Щелочные металлы образуют пероксиды при нагревании.

Щелочноземельные металлы: Щелочноземельные металлы, кроме бария, не образуют перекисей.

Образование нитридов

Щелочные металлы: Щелочные металлы не образуют нитридов, кроме лития.

Щелочноземельные металлы: Щелочноземельные металлы образуют стабильные нитриды.

Образование карбидов

Щелочные металлы: Щелочные металлы не образуют карбиды, кроме лития.

Щелочноземельные металлы: Щелочноземельные металлы образуют стабильные карбиды.

Примеры

Щелочные металлы: Литий, натрий, калий, рубидий, цезий и франций являются примерами щелочных методов.

Щелочноземельные металлы: Бериллий, магний, кальций, стронций, барий и радий являются примерами щелочноземельных металлов.

Резюме

Щелочные металлы и щелочноземельные металлы являются важными элементами, которые содержат одинарные и двухвалентные электроны соответственно в своей внешней оболочке атома. Основное различие между щелочными металлами и щелочноземельными металлами заключается в количестве электронов в их внешних оболочках атомов и, следовательно, их положении в периодической таблице. Щелочные металлы (литий, натрий, калий, рубидий, цезий и франций) размещаются на первой колонне (IA), а щелочноземельные металлы (бериллий, магний, кальций, стронций, барий и радий) размещаются на второй колонке (IIA) периодической таблицы. Обе металлические группы обладают высокой реакционной способностью. Все эти металлы могут быть идентифицированы с помощью теста на пламя, так как эти металлы имеют уникальный цвет пламени, когда металлы нагревают над пламенем.

Рекомендации:
1. Trefil, J.S. (2001). Энциклопедия науки и техники, Тейлор и Фрэнсис.
2. Бриджит Хеос (2010). Щелочноземельные металлы: бериллий, магний, кальций, стронций, барий, радий, Нью-Йорк: Розен Централ.
3. Рэймонд Фернандес (2008). Живая наука Химия для 10 класса, Ратна Сагар П., ООО

Изображение предоставлено:
1. «Периодическая таблица элементов» Ле Ван Хан Седрик - LeVanHan (GFDL) через

Щелочные и щелочноземельные металлы


Наиболее активными среди металлической группы являются щелочные и щелочноземельные металлы. Это мягкие лёгкие металлы, вступающие в реакции с простыми и сложными веществами.

Общее описание

Активные металлы занимают первую и вторую группы периодической таблицы Менделеева. Полный список щелочных и щелочноземельных металлов:

Электронная конфигурация щелочных металлов – ns 1 , щелочноземельных металлов – ns 2 .

Соответственно, постоянная валентность щелочных металлов – I, щелочноземельных – II. За счёт небольшого количества валентных электронов на внешнем энергетическом уровне активные металлы проявляют мощные свойства восстановителя, отдавая внешние электроны в реакциях. Чем больше энергетических уровней, тем меньше связь с внешних электронов с ядром атома. Поэтому металлические свойства возрастают в группах сверху вниз.

Из-за активности металлы I и II групп находятся в природе только в составе горных пород. Чистые металлы выделяют с помощью электролиза, прокаливания, реакции замещения.

Физические свойства

Щелочные металлы имеют серебристо-белый цвет с металлическим блеском. Цезий – серебристо-жёлтый металл. Это наиболее активные и мягкие металлы. Натрий, калий, рубидий, цезий режутся ножом. По мягкости напоминают воск.

Разрезание натрия ножом

Рис. 2. Разрезание натрия ножом.

Щелочноземельные металлы имеют серый цвет. По сравнению со щелочными металлами являются более твёрдыми, плотными веществами. Ножом можно разрезать только стронций. Самый плотный металл – радий (5,5 г/см 3 ).

Наиболее лёгкими металлами являются литий, натрий и калий. Они плавают на поверхности воды.

Химические свойства

Щелочные и щелочноземельные металлы реагируют с простыми веществами и сложными соединениями, образуя соли, оксиды, щёлочи. Основные свойства активных металлов описаны в таблице.

Взаимодействие

Щелочные металлы

Щелочноземельные металлы

Самовоспламеняются на воздухе. Образуют надпероксиды (RO2), кроме лития и натрия. Литий образует оксид при нагревании выше 200°C. Натрий образует смесь пероксида и оксида.

На воздухе быстро образуются защитные оксидные плёнки. При нагревании до 500°С самовоспламеняются.

Реагируют при нагревании с серой, водородом, фосфором:

С азотом реагирует только литий, с углеродом – литий и натрий:

Реагируют при нагревании:

Бурно реагируют с образованием галогенидов:

Образуются щёлочи. Чем ниже металл расположен в группе, тем более активно протекает реакция. Литий взаимодействует спокойно, натрий горит жёлтым пламенем, калий – со вспышкой, цезий и рубидий взрываются.

Менее активно, чем щелочные металлы, реагируют при комнатной температуре:

Со слабыми и разбавленными кислотами реагируют с взрывом. С органическими кислотами образуют соли.

Из всех металлов реагирует только бериллий:

Вступают в реакцию все металлы, кроме бериллия. Замещают менее активные металлы:

2Mg + ZrO2 → Zr + 2MgO

Реакция калия с водой

Рис. 3. Реакция калия с водой.

Щелочные и щелочноземельные металлы можно обнаружить с помощью качественной реакции. При горении металлы окрашиваются в определённый цвет. Например, натрий горит жёлтым пламенем, калий – фиолетовым, барий – светло-зелёным, кальций – тёмно-оранжевым.

Что мы узнали?

Щелочные и щелочноземельные – наиболее активные металлы. Это мягкие простые вещества серого или серебристого цвета с небольшой плотностью. Литий, натрий, калий плавают на поверхности воды. Щелочноземельные металлы более твёрдые и плотные, чем щелочные. На воздухе быстро окисляются. Щелочные металлы образуют надпероксиды и пероксиды, оксид образует только литий. Бурно реагируют с водой при комнатной температуре. С неметаллами реагируют при нагревании. Щелочноземельные металлы вступают в реакцию с оксидами, вытесняя менее активные металлы. Со щелочами реагирует только бериллий .

Химические свойства щелочных и щелочноземельных металлов


Химические свойства щелочных и щелочноземельных металлов схожи. На внешнем энергетическом уровне щелочных металлов находится один электрон, щелочноземельных – два. При реакциях металлы легко расстаются с валентными электронами, проявляя свойства сильного восстановителя.

Щелочные

В I группу периодической таблицы входят щелочные металлы:

Они отличаются мягкостью (можно разрезать ножом), низкими температурами плавления и кипения. Это наиболее активные металлы.

Химические свойства щелочных металлов представлены в таблице.

Реакция

Особенности

Уравнение

Быстро окисляются на воздухе. Литий образует оксид при температуре выше 200°C. Натрий образует смесь – 80 % пероксида (R2O2) и 20 % оксида. Остальные металлы образуют надпероксиды (RO2)

Реагирует только литий при комнатной температуре

Реакция проходит бурно

При нагревании. Образуют сульфиды, гидриды, фосфиды, силициды. С углеродом реагируют только литий и натрий, образуя карбиды

Спокойно реагирует только литий. Натрий горит жёлтым пламенем. Калий реагирует со вспышкой. Цезий и рубидий взрываются

С соляной, фосфорной, разбавленной серной кислотами реагируют с взрывом. При реакции с концентрированной серной кислотой выделяется сероводород, с концентрированной азотной кислотой образует оксид азота (I), с разбавленной азотной кислотой – азот

– 2Na + 2HCl → 2NaCl + H2;

Могут реагировать с органическими кислотами и спиртами.

Щелочноземельные

Во II группе таблицы Менделеева находятся щелочноземельные металлы:

  • бериллий;
  • магний;
  • кальций;
  • стронций;
  • барий;
  • радий.

Щелочноземельные металлы

Рис. 2. Щелочноземельные металлы.

В отличие от щелочных металлов они более твёрдые. Ножом можно разрезать только стронций. Наиболее плотный металл – радий (5,5 г/см 3 ).

Бериллий взаимодействует с кислородом только при нагревании до 900°С. С водородом и водой не реагирует при любых условиях. Магний окисляется при температуре 650°С и взаимодействует с водородом под высоким давлением.

В таблице отражены основные химические свойства щелочноземельных металлов.

Образуют оксидные плёнки. При нагревании до 500°С самовоспламеняются

При высокой температуре образуют гидриды

С галогенами и неметаллами

Реагируют при нагревании

При комнатной температуре

Реагируют все металлы с образованием солей

Реагирует только бериллий

Замещают менее активные металлы в оксидах. Исключение – бериллий

Ионы щелочных и щелочноземельных металлов в солях легко обнаружить по изменению цвета пламени. Соли натрия горят жёлтым пламенем, калия – фиолетовым, рубидия – красным, кальция – кирпично-красным, бария – жёлто-зелёным. Соли этих металлов используют для создания фейерверков.

Качественная реакция

Рис. 3. Качественная реакция.

Щелочные и щелочноземельные металлы – активные элементы периодической таблицы, вступающие в реакции с простыми и сложными веществами. Щелочные металлы более мягкие, бурно реагируют с водой и галогенами, легко окисляются на воздухе, образуя оксиды, пероксиды, надпероксиды, взаимодействуют с кислотами и аммиаком. При нагревании вступают в реакцию с неметаллами. Щелочноземельные металлы реагируют с неметаллами, кислотами, водой. Бериллий не взаимодействует с водородом и водой, но реагирует со щелочами и с кислородом при высокой температуре.

ПЕРИОДИЧЕСКАЯ ТАБЛИЦА МЕНДЕЛЕЕВА

Еще в школе, сидя на уроках химии, все мы помним таблицу на стене класса или химической лаборатории. Эта таблица содержала классификацию всех известных человечеству химических элементов, тех фундаментальных компонентов, из которых состоит Земля и вся Вселенная. Тогда мы и подумать не могли, что таблица Менделеева бесспорно является одним из величайших научных открытий, который является фундаментом нашего современного знания о химии.

Таблица Менделеева

На первый взгляд, ее идея выглядит обманчиво просто: организовать химические элементы в порядке возрастания веса их атомов. Причем в большинстве случаев оказывается, что химические и физические свойства каждого элемента сходны с предыдущим ему в таблице элементом. Эта закономерность проявляется для всех элементов, кроме нескольких самых первых, просто потому что они не имеют перед собой элементов, сходных с ними по атомному весу. Именно благодаря открытию такого свойства мы можем поместить линейную последовательность элементов в таблицу, очень напоминающую настенный календарь, и таким образом объединить огромное количество видов химических элементов в четкой и связной форме. Разумеется, сегодня мы пользуемся понятием атомного числа (количества протонов) для того, чтобы упорядочить систему элементов. Это помогло решить так называемую техническую проблему «пары перестановок», однако не привело к кардинальному изменению вида периодической таблицы.

В периодической таблице Менделеева все элементы упорядочены с учетом их атомного числа, электронной конфигурации и повторяющихся химических свойств. Ряды в таблице называются периодами, а столбцы группами. В первой таблице, датируемой 1869 годом, содержалось всего 60 элементов, теперь же таблицу пришлось увеличить, чтобы поместить 118 элементов, известных нам сегодня.

Периодическая система Менделеева систематизирует не только элементы, но и самые разнообразные их свойства. Химику часто бывает достаточно иметь перед глазами Периодическую таблицу для того, чтобы правильно ответить на множество вопросов (не только экзаменационных, но и научных).

The YouTube ID of 1M7iKKVnPJE is invalid.

Периодический закон

Существуют две формулировки периодического закона химических элементов: классическая и современная.

Классическая, в изложении его первооткрывателя Д.И. Менделеева: свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величин атомных весов элементов.

Современная: свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера).

Графическим изображением периодического закона является периодическая система элементов, которая представляет собой естественную классификацию химических элементов, основанную на закономерных изменениях свойств элементов от зарядов их атомов. Наиболее распространёнными изображениями периодической системы элементов Д.И. Менделеева являются короткая и длинная формы.


Группы и периоды Периодической системы

Группами называют вертикальные ряды в периодической системе. В группах элементы объединены по признаку высшей степени окисления в оксидах. Каждая группа состоит из главной и побочной подгрупп. Главные подгруппы включают в себя элементы малых периодов и одинаковые с ним по свойствам элементы больших периодов. Побочные подгруппы состоят только из элементов больших периодов. Химические свойства элементов главных и побочных подгрупп значительно различаются.

Периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров. В периодической системе имеются семь периодов: первый, второй и третий периоды называют малыми, в них содержится соответственно 2, 8 и 8 элементов; остальные периоды называют большими: в четвёртом и пятом периодах расположены по 18 элементов, в шестом — 32, а в седьмом (пока незавершенном) — 31 элемент. Каждый период, кроме первого, начинается щелочным металлом, а заканчивается благородным газом.

Физический смысл порядкового номера химического элемента: число протонов в атомном ядре и число электронов, вращающихся вокруг атомного ядра, равны порядковому номеру элемента.


Свойства таблицы Менделеева

Напомним, что группами называют вертикальные ряды в периодической системе и химические свойства элементов главных и побочных подгрупп значительно различаются.

Свойства элементов в подгруппах закономерно изменяются сверху вниз:

  • усиливаются металлические свойства и ослабевают неметаллические;
  • возрастает атомный радиус;
  • возрастает сила образованных элементом оснований и бескислородных кислот;
  • электроотрицательность падает.

Все элементы, кроме гелия, неона и аргона, образуют кислородные соединения, существует всего восемь форм кислородных соединений. В периодической системе их часто изображают общими формулами, расположенными под каждой группой в порядке возрастания степени окисления элементов: R2O, RO, R2O3, RO2, R2O5, RO3, R2O7, RO4, где символом R обозначают элемент данной группы. Формулы высших оксидов относятся ко всем элементам группы, кроме исключительных случаев, когда элементы не проявляют степени окисления, равной номеру группы (например, фтор).

Оксиды состава R2O проявляют сильные основные свойства, причём их основность возрастает с увеличением порядкового номера, оксиды состава RO (за исключением BeO) проявляют основные свойства. Оксиды состава RO2, R2O5, RO3, R2O7 проявляют кислотные свойства, причём их кислотность возрастает с увеличением порядкового номера.

Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения. Существуют четыре формы таких соединений. Их располагают под элементами главных подгрупп и изображают общими формулами в последовательности RH4, RH3, RH2, RH.

Соединения RH4 имеют нейтральный характер; RH3 — слабоосновный; RH2 — слабокислый; RH — сильнокислый характер.

Напомним, что периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров.

В пределах периода с увеличением порядкового номера элемента:

  • электроотрицательность возрастает;
  • металлические свойства убывают, неметаллические возрастают;
  • атомный радиус падает.


Элементы таблицы Менделеева

Щелочные и щелочноземельные элементы

К ним относятся элементы из первой и второй группы периодической таблицы. Щелочные металлы из первой группы — мягкие металлы, серебристого цвета, хорошо режутся ножом. Все они обладают одним-единственным электроном на внешней оболочке и прекрасно вступают в реакцию. Щелочноземельные металлы из второй группы также имеют серебристый оттенок. На внешнем уровне помещено по два электрона, и, соответственно, эти металлы менее охотно взаимодействуют с другими элементами. По сравнению со щелочными металлами, щелочноземельные металлы плавятся и кипят при более высоких температурах.

Щелочные металлыЩелочноземельные металлы
Литий Li 3Бериллий Be 4
Натрий Na 11Магний Mg 12
Калий K 19Кальций Ca 20
Рубидий Rb 37Стронций Sr 38
Цезий Cs 55Барий Ba 56
Франций Fr 87Радий Ra 88

Лантаниды (редкоземельные элементы) и актиниды

Лантаниды — это группа элементов, изначально обнаруженных в редко встречающихся минералах; отсюда их название «редкоземельные» элементы. Впоследствии выяснилось, что данные элементы не столь редки, как думали вначале, и поэтому редкоземельным элементам было присвоено название лантаниды. Лантаниды и актиниды занимают два блока, которые расположены под основной таблицей элементов. Обе группы включают в себя металлы; все лантаниды (за исключением прометия) нерадиоактивны; актиниды, напротив, радиоактивны.

ЛантанидыАктиниды
Лантан La 57Актиний Ac 89
Церий Ce 58Торий Th 90
Празеодимий Pr 59Протактиний Pa 91
Неодимий Nd 60Уран U 92
Прометий Pm 61Нептуний Np 93
Самарий Sm 62Плутоний Pu 94
Европий Eu 63Америций Am 95
Гадолиний Gd 64Кюрий Cm 96
Тербий Tb 65Берклий Bk 97
Диспрозий Dy 66Калифорний Cf 98
Гольмий Ho 67Эйнштейний Es 99
Эрбий Er 68Фермий Fm 100
Тулий Tm 69Менделевий Md 101
Иттербий Yb 70Нобелий No 102

Галогены и благородные газы

Галогены и благородные газы объединены в группы 17 и 18 периодической таблицы. Галогены представляют собой неметаллические элементы, все они имеют семь электронов во внешней оболочке. В благородных газахвсе электроны находятся во внешней оболочке, таким образом с трудом участвуют в образовании соединений. Эти газы называют «благородными, потому что они редко вступают в реакцию с прочими элементами; т. е. ссылаются на представителей благородной касты, которые традиционно сторонились других людей в обществе.

ГалогеныБлагородные газы
Фтор F 9Гелий He 2
Хлор Cl 17Неон Ne 10
Бром Br 35Аргон Ar 18
Йод I 53Криптон Kr 36
Астат At 85Ксенон Xe 54
Радон Rn 86

Переходные металлы

Переходные металлы занимают группы 3—12 в периодической таблице. Большинство из них плотные, твердые, с хорошей электро- и теплопроводностью. Их валентные электроны (при помощи которых они соединяются с другими элементами) находятся в нескольких электронных оболочках.

Переходные металлы
Скандий Sc 21
Титан Ti 22
Ванадий V 23
Хром Cr 24
Марганец Mn 25
Железо Fe 26
Кобальт Co 27
Никель Ni 28
Медь Cu 29
Цинк Zn 30
Иттрий Y 39
Цирконий Zr 40
Ниобий Nb 41
Молибден Mo 42
Технеций Tc 43
Рутений Ru 44
Родий Rh 45
Палладий Pd 46
Серебро Ag 47
Кадмий Cd 48
Лютеций Lu 71
Гафний Hf 72
Тантал Ta 73
Вольфрам W 74
Рений Re 75
Осмий Os 76
Иридий Ir 77
Платина Pt 78
Золото Au 79
Ртуть Hg 80
Лоуренсий Lr 103
Резерфордий Rf 104
Дубний Db 105
Сиборгий Sg 106
Борий Bh 107
Хассий Hs 108
Мейтнерий Mt 109
Дармштадтий Ds 110
Рентгений Rg 111
Коперниций Cn 112

Металлоиды

Металлоиды занимают группы 13—16 периодической таблицы. Такие металлоиды, как бор, германий и кремний, являются полупроводниками и используются для изготовления компьютерных чипов и плат.

Металлоиды
Бор B 5
Кремний Si 14
Германий Ge 32
Мышьяк As 33
Сурьма Sb 51
Теллур Te 52
Полоний Po 84

Постпереходными металлами

Элементы, называемые постпереходными металлами, относятся к группам 13—15 периодической таблицы. В отличие от металлов, они не имеют блеска, а имеют матовую окраску. В сравнении с переходными металлами постпереходные металлы более мягкие, имеют более низкую температуру плавления и кипения, более высокую электроотрицательность. Их валентные электроны, с помощью которых они присоединяют другие элементы, располагаются только на внешней электронной оболочке. Элементы группы постпереходных металлов имеют гораздо более высокую температуру кипения, чем металлоиды.

Постпереходные металлы
Алюминий Al 13
Галлий Ga 31
Индий In 49
Олово Sn 50
Таллий Tl 81
Свинец Pb 82
Висмут Bi 83

Неметаллы

Из всех элементов, классифицируемых как неметаллы, водород относится к 1-й группе периодической таблицы, а остальные — к группам 13—18. Неметаллы не являются хорошими проводниками тепла и электричества. Обычно при комнатной температуре они пребывают в газообразном (водород или кислород) или твердом состоянии (углерод).

Неметаллы
Водород H 1
Углерод C 6
Азот N 7
Кислород O 8
Фосфор P 15
Сера S 16
Селен Se 34
Флеровий Fl 114
Унунсептий Uus 117

А теперь закрепите полученные знания, посмотрев видео про таблицу Менделеева и не только.

Отлично, первый шаг на пути к знаниям сделан. Теперь вы более-менее ориентируетесь в таблице Менделеева и это вам очень даже пригодится, ведь Периодическая система Менделеева является фундаментом, на котором стоит эта удивительная наука.

Урок 9. Щелочные и щёлочноземельные металлы


Щелочные металлы — это элементы главной подгруппы I группы Периодической системы химических элементов Менделеева (ПСМ) (кроме водорода).

Задание 9.1. Назовите все щелочные металлы. Составьте схемы строения атомов натрия и калия. Укажите распределение их валентных электронов.

На внешнем уровне у атомов таких металлов находится по 1 электрону, но расстояние до ядра, а значит, и притяжение к нему, у этих электронов различно.

Вопрос. У какого элемента (натрия или калия) внешние электроны дальше от ядра?

Чем дальше электроны от ядра, тем слабее они притягиваются к нему, тем легче данный атом отдаёт электроны. А это означает, что металлические свойства выражены тем ярче, чем дальше валентные электроны от ядра (при прочих равных условиях). Поэтому сверху вниз в каждой главной подгруппе увеличивается число энергетических уровней в атомах, растёт металлическая активность элементов, т. е. способность их атомов отдавать электроны.

Вопрос. Какой металл более активный: натрий или калий?

Таким образом, активность щелочных металлов возрастает


Но поскольку на внешнем уровне любого щелочного металла находится один электрон, в любой химической реакции щелочные металлы могут отдать только один электрон. Значит, они имеют постоянную валентность I и образуют оксиды состава

Этот оксид растворяется в воде, реагирует с нею:

Полученное основание — щёлочь.

Вопрос. Что такое щёлочь? (См. урок 2.3.)

В подгруппе сверху вниз увеличивается и сила оснований, т. е. способность диссоциировать в водных растворах на ионы. Самой сильной щёлочью является CsOH.

Растворы щелочей мылкие на ощупь, разъедают кожу и ткани (щёлочи — едкие!), изменяют окраску индикаторов. Поскольку все металлы главной подгруппы I группы образуют щёлочи, — их называют «щелочные металлы».

Рассмотрим свойства щелочных металлов на примере натрия. При этом будем придерживаться схемы, изложенной начале второй части.

Строение атома Nа изображается схемой:


Имея один валентный электрон (…3s 1 ), натрий является активным металлом с постоянной валентностью I:

Простое вещество «натрий» — очень лёгкий (легче воды) серебристо-белый металл, который легко режется ножом. Натрий активно реагирует с кислородом, водородом, неметаллами, водой:



Вопрос. Почему атом серы присоединил 2 электрона?

Задание 9.2. Составьте уравнения реакций натрия с хлором Cl2, азотом N2 и водой (при затруднениях см. пояснения в уроке 7).

Даже небольшие кусочки натрия (величиной с горошину) при попадании в воду вызывают оглушительный взрыв — это взрывается водород (см. урок 12). Тот же эффект будет, если натрий опустить в раствор кислоты или соли. Кроме того, здесь возможны более сложные побочные процессы. Поэтому составлять уравнения реакций для щелочных металлов в качестве примеров процессов

  • металл + раствор кислоты →
  • металл + раствор соли →

Натрий образует основный оксид Nа2O, который реагирует с водой, с кислотами и кислотными оксидами (см. урок 2.1), например:

Задание 9.3. Составьте уравнения реакций оксида натрия с водой и с серной кислотой.

Гидроксид натрия NaOH (едкий натр, каустическая сода) проявляет все свойства щелочей: реагирует с кислотными оксидами, кислотами, растворами солей (см. урок 2.3), например:


Все соединения натрия окрашивают пламя в жёлтый цвет. Это качественная реакция на соединения натрия.

Задание 9.4. Составьте уравнения реакций гидроксида натрия с хлоридом железа III, фосфорной кислотой, оксидом серы IV. (При затруднениях см. урок 2.3.)

Задание 9.5. Опишите по разобранной схеме свойства калия и его соединений.

Многие соединения натрия нашли применение в быту и промышленности. Так, каустическая сода NаОН применяется для получения мыла, в производстве алюминия, искусственных волокон и др. Кальцинированная сода Na2CO3 также применяется при получении мыла, а также при варке стекла, стирке белья и др. Но в пищу эти «соды» не употребляются! При приготовлении пищи используют питьевую соду NaHCO3 и поваренную соль NaCl. Питьевая сода используется при лечении простуды, её кладут в печенье, пирожки. Без соли NaCl почти любая еда покажется невкусной, без неё невозможно законсервировать мясо, овощи, грибы. Эти вещества применяются и в технических целях.


Щелочноземельные металлы

Металлы главной подгруппы II группы в отличие от щелочных металлов имеют довольно разные свойства.

  1. Сколько электронов на внешнем уровне атомов этих металлов?
  2. Какой металл более активен: натрий или магний? Почему?

Эти металлы имеют на внешнем уровне по 2 электрона, следовательно, они менее активны, чем их «соседи» — щелочные металлы, так как на отрыв двух электронов нужно затратить больше энергии, чем на отрыв одного электрона.

Вопрос. Как изменяется активность металлов в подгруппе сверху вниз? Почему?

В этой подгруппе, как и у щелочных металлов, сверху вниз увеличивается сила оснований, т. е. способность диссоциировать в водных растворах на ионы. Кроме того, увеличивается заряд иона, а значит, усиливается притяжение группы ОН в гидроксиде металла: ионы Na + и OH – притягиваются слабее, чем Са 2+ и ОН – .

Поэтому первые два элемента этой подгруппы не образуют щелочей:


Кальций уже образует сильное основание — щёлочь, а стронцию и барию соответствуют ещё более сильные основания.

Запомните: Ca, Sr, Ba — щелочноземельные* металлы, так как их оксиды проявляют щелочные свойства.

* «Земли» — устаревшее название оксидов металлов, так как эти оксиды входят в состав земли (почвы).

Несмотря на эти различия, перечисленные элементы имеют много сходного в свойствах.

Вопрос. Какую валентность проявляют эти химические элементы в соединениях?

Главное сходство химических элементов главной подгруппы II группы заключается в том, что они проявляют в соединениях постоянную валентность II, так как на внешнем уровне имеют по два электрона, а на предвнешнем уровне нет незавершённых подуровней.

Рассмотрим свойства химических элементов главной подгруппы II группы на примере кальция. Строение атома кальция изображается схемой:


Имея два валентных электрона: …4s 2 , кальций является активным металлом, поскольку оба электрона расположены на внешнем уровне. Его постоянная валентность равна двум:

Простое вещество «кальций» — довольно прочный, серебристо-белый умеренно твёрдый металл. Активно реагирует с кислородом, водородом, неметаллами, водой, растворами кислот:

Рассмотрим как происходит взаимодействие кальция с азотом:


Вопрос. Почему атом азота присоединяет три электрона?

Задание 9.6. Составьте уравнения реакций кальция с кислородом, хлором (Cl2), серой, водой, соляной кислотой.

Оксид кальция CaO (негашёная известь) очень активно реагирует с водой с выделением такого большого количества теплоты, что вода закипает:

Этот процесс называется «гашением извести», а систему называют «кипелкой».

Вопрос. С какими ещё веществами может реагировать оксид кальция?

Как основный оксид CaO реагирует с кислотными оксидами и с кислотами:

  • CaO + SO2 → СаSO3
  • CaO + НNO3 → … (закончить уравнение этой реакции).

Гидроксид кальция Са(ОН)2 (гашёная известь) проявляет все свойства щелочей.

Вопрос. С какими веществами могут реагировать щелочи? (При затруднении см. урок 2.3.)

Задание 9.7. Составить уравнения реакций:

Прозрачный раствор гидроксида кальция в воде называется известковой водой. Она мутнеет при пропускании через неё углекислого газа:

Этот эффект реакции считают качественным признаком того, что в данном растворе присутствуют ионы кальция. Убедиться в этом поможет также реакция с пламенем: все соединения кальция окрашивают пламя в кирпично-красный цвет.

Задание 9.8. Опишите по предложенной схеме свойства магния и его соединений.

Многие соединения кальция играют заметную роль в нашей жизни. Достаточно сказать, что фосфат кальция, карбонат кальция составляют основу костей, зубов. Без ионов кальция не может свертываться кровь. Без соединений кальция невозможно построить дом, так как известь (гашёная и негашёная) обеспечивает скрепление строительных блоков друг с другом:


Образование в результате этих реакций прочных нерастворимых карбонатов и силикатов кальция надёжно скрепляет стены. Аналогичные реакции происходят при схватывании цемента.

Оксид кальция в больших количествах получают обжигом известняка:

Карбонат кальция СаСО3 составляет основу мела, мрамора, известняка. Из него состоят целые горы и пласты земной коры. Под действием воды и углекислого газа из воздуха карбонат кальция переходит в водорастворимое состояние — гидрокарбонат кальция:


Аналогичные процессы происходят и с карбонатами магния. В результате этих и других процессов в природной воде появляются ионы кальция и магния.

Вода, содержащая ионы кальция и магния, называется ЖЁСТКОЙ.

Этот термин возник из-за того, что некоторые овощи и плоды под действием такой воды становятся жёсткими: ионы кальция и магния вступают в реакцию с органическими компонентами плодов и овощей.

Чаще всего жёсткая вода приносит неприятности: долго развариваются продукты, плохо моет мыло (см. урок 24.4), на стенках котлов и труб появляется слой накипи, что может привести к авариям:


Накипь, конечно, можно растворить при помощи соляной кислоты:


Задание 9.10. Можно ли растворить накипь при помощи серной, азотной, фосфорной кислот? Ответ подтвердите ионно-молекулярными уравнениями реакций.

Но лучше всего в случаях, когда жёсткость воды повышена, а это нежелательно, умягчать воду. Для этого ионы кальция и магния нужно перевести в нерастворимое состояние.

Вопрос. Умягчается ли вода при кипячении?

Частично вода умягчается при кипячении, так как при этом растворимые гидрокарбонаты переходят в нерастворимые карбонаты. Но некоторые соли кальция и магния (сульфаты, хлориды) при нагревании не изменяются. В этом случае в воду добавляют вещества, образующие с ионами кальция и магния осадки.

Задание 9.11. Какие из солей: кальцинированная сода, фосфат натрия, поваренная соль — устраняют жёсткость воды? Ответ подтвердить ионными уравнениями реакций, считая, что в состав воды входит сульфат кальция.

Чаще всего для умягчения воды используют кальцинированную соду Na2CO3:


Кальцинированная сода входит в состав стиральных порошков, которые также содержат и фосфаты. Эти вещества «автоматически» смягчают воду при стирке.


Выводы

Щелочные металлы — это простые вещества, которые образованы элементами главной подгруппы первой группы. Это очень активные металлы, которые образуют с водой сильные растворимые основания — щёлочи.

Щелочноземельные металлы — это простые вещества, которые образованы некоторыми элементами главной подгруппы второй группы Ca, Sr, Ba. Это очень активные металлы, которые образуют с водой щёлочи. Ионы кальция и магния делают воду жёсткой.

Читайте также: