Щавелевая кислота и металлы
Коррозия металла в кислотах – это его разрушение при взаимодействии с концентрированными или разведенными кислотами. Часто такие разрушения встречаются на химических производствах и других сферах деятельности человека. Слабые кислотные растворы могут создавать даже некоторые продукты питания, и непокрытый металл, соприкасающийся с ними, будет коррозировать. То, как себя поведет металлический предмет при контакте с кислотой, зависит от его способности пассивироваться. Процесс коррозии металлов в кислотах проходит с выделением водорода.
Рассмотрим более подробно случаи коррозии металла в кислотах разного происхождения.
Коррозия металлов в соляной кислоте
Соляная кислота является очень агрессивной по отношению к металлам. В большей степени это обуславливается содержанием в ней ионов Cl - . Даже коррозионно-стойкие стали подвергаются разрушению, когда концентрация кислоты выше среднего. Если же раствор достаточно сильно разбавлен, такие стали коррозии не подвергаются.
Коррозия никеля в серной кислоте не протекает даже в случаях, когда достигается температура кипения. В присутствии трехвалентного железа, хлоридов, других окислителей никель и его сплавы начинают разрушаться.
Низколегированная аустенитная сталь при комнатной температуре и концентрации соляной кислоты в 0,2 – 1% подвергается коррозии со скоростью 24 г/(м 2 •сут).
Коррозия металлов в органических кислотах
Самой сильной среди органических кислот является уксусная. В яблочной, бензойной, пикриновой, олеиновой, винной, стеариновой кислотах даже при больших температурах (выше 100°С) коррозионно-стойкие стали отличаются высокой устойчивостью. При контакте металлов с муравьиной кислотой образуются питтинги (особенно при увеличении температуры). Глубина их даже больше, чем в уксусной кислоте.
В органических кислотах высокой устойчивостью обладает алюминий, т.к. на его поверхности присутствует защитная пленка труднорастворимых окислов.
Щавелевая, себациновая, лимонная и молочная кислоты вызывают коррозию сталей только при больших концентрациях. В них устойчивы хромистые стали с добавками молибдена.
Коррозия металлов в азотной кислоте
Азотная кислота обладает агрессивным воздействием по отношению ко многим металлам. Малоуглеродистые стали не обладают достаточной устойчивостью в растворах азотной кислоты. Кроме того, при повышении концентрации HNO3 до 35 – 40% (при данных концентрациях сталь переходит в пассивное состояние) коррозия малоуглеродистых сталей в азотной кислоте увеличивается. При концентрации азотной кислоты близкой к 100% пассивное состояние нарушается. Азотная кислота является окислителем. При коррозии железа катодными деполяризаторами являются молекулы азотной кислоты и нитрат-ионы. Устойчивость в азотной кислоте хромистых сталей повышается, если в их состав вводить никель и молибден. Коррозионное разрушение сталей в азотной кислоте происходит по границам зерен. На алюминий слабое влияние оказывают пары азотной кислоты или растворы с концентрацией более 80%. При нормальной температуре алюминий обладает высокой коррозионной стойкостью в азотной кислоте. Скорость коррозии алюминия в азотной кислоте возрастает при постоянном перемешивании и присутствии в растворе хлорид-ионов.
Коррозия металлов в серной кислоте
При концентрации серной кислоты около 50 – 55% поверхность железа переходит в пассивное состояние. Далее с повышением температуры и концентрации серной кислоты поверхность железа становится активной (наблюдается коррозия железа в серной кислоте).
В растворах серной кислоты, как и в других кислотах, на скорость коррозии железа большое влияние оказывает природа анионов. Это связано с торможением катодного и анодного процессов и их адсорбцией на поверхности металла.
Я.М. Колотыркин развил представления, что на анодное растворение железа оказывают влияние анионы. Это связано с образование комплекса:
Из вышеперечисленных уравнений понятно, что скорость анодного процесса возрастает с увеличением концентрации ионов HSO4 - и SO4 2- . С поверхности железа сульфат ионы вытесняются хлорид ионами, но до определенной концентрации ионов хлора, скорость протекания анодного процесса замедляется.
В 95 – 98% серной кислоте при нормальной температуре хорошей устойчивостью обладают хромистые стали (с содержанием хрома около 17%) с небольшой добавкой молибдена или без него. В таких условиях (при большой концентрации серной кислоты) стоек также алюминий и углеродистые стали. Чистый алюминий (99,5%) более устойчив в серной кислоте, чем его сплавы, в состав которых не входит медь. Скорость коррозии алюминия в серной кислоте (и его сплавов) при повышении температуры с 20°С до 98°С увеличивается с 8 до 24 г/(м 2 •сут). Коррозионно-стойкие стали в 5-ти или 20-% растворе при температуре кипения серной кислоты устойчивы только в присутствии ингибиторов коррозии.
При обычной температуре в серной кислоте коррозия меди практически не наблюдается. А при повышении температуры до 100°С процесс разрушения интенсифицируется. В 25% растворе серной кислоты, повышенном давлении и температуре близкой к 200°С медь быстро разрушается.
Латунь не обладает коррозионной стойкостью в растворах серной кислоты любых концентраций даже при комнатной температуре. Устойчивость латуней к разрушению в серной кислоте можно только повысить введением в раствор 30% соли CuSO4•5H2O.
Коррозия металлов в фосфорной кислоте
Наибольшей стойкостью к коррозии в фосфорной кислоте отличаются молибденовые стали. Алюминий и его сплавы (в состав которых не входит медь, магний) устойчивы в фосфорной кислоте. При обычной температуре не поддаются также разрушениям хромоникелевые аустенитные стали (в растворах фосфорной кислоты любой концентрации). В концентрированной технической фосфорной кислоте при температуре не выше 50°С стойки малоуглеродистые стали. Если сталь с 17% хрома поместить в раствор фосфорной кислоты, концентрацией от 1 до 10%, то она будет обладать высокой устойчивостью даже при температуре кипения.
Медь практически не подвергается коррозии в фосфорной кислоте при температуре от 20 до 95°С. Но если в систему вводить окислитель и повышать температуру – скорость коррозии меди в фосфорной кислоте значительно увеличивается. Бронзы и латуни в фосфорной кислоте ведут себя аналогично.
Коррозия металлов во фтористоводородной кислоте
Чугун, малоуглеродистая сталь и железо во фтористоводородной кислоте быстро разрушаются. В 10-% фтористоводородной кислоте при нормальной температуре обладают хорошей устойчивостью хромистые стали (с содержанием хрома 17%). В 20-% кислоте при температуре до 50°С устойчивы аустенитные высоколегированные стали. Латуни не разрушаются в 40-60-% фтористоводородной кислоте при 20°С. Магниевые сплавы устойчивы при температурах до 65°С в 45-% растворе.
Acetyl
Наведите курсор на ячейку элемента, чтобы получить его краткое описание.
Чтобы получить подробное описание элемента, кликните по его названию.
H + | Li + | K + | Na + | NH4 + | Ba 2+ | Ca 2+ | Mg 2+ | Sr 2+ | Al 3+ | Cr 3+ | Fe 2+ | Fe 3+ | Ni 2+ | Co 2+ | Mn 2+ | Zn 2+ | Ag + | Hg 2+ | Pb 2+ | Sn 2+ | Cu 2+ | |
OH - | Р | Р | Р | Р | Р | М | Н | М | Н | Н | Н | Н | Н | Н | Н | Н | - | - | Н | Н | Н | |
F - | Р | М | Р | Р | Р | М | Н | Н | М | М | Н | Н | Н | Р | Р | Р | Р | Р | - | Н | Р | Р |
Cl - | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Н | Р | М | Р | Р |
Br - | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Н | М | М | Р | Р |
I - | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | ? | Р | ? | Р | Р | Р | Р | Н | Н | Н | М | ? |
S 2- | М | Р | Р | Р | Р | - | - | - | Н | - | - | Н | - | Н | Н | Н | Н | Н | Н | Н | Н | Н |
HS - | Р | Р | Р | Р | Р | Р | Р | Р | Р | ? | ? | ? | ? | ? | Н | ? | ? | ? | ? | ? | ? | ? |
SO3 2- | Р | Р | Р | Р | Р | Н | Н | М | Н | ? | - | Н | ? | Н | Н | ? | М | М | - | Н | ? | ? |
HSO3 - | Р | ? | Р | Р | Р | Р | Р | Р | Р | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
SO4 2- | Р | Р | Р | Р | Р | Н | М | Р | Н | Р | Р | Р | Р | Р | Р | Р | Р | М | - | Н | Р | Р |
HSO4 - | Р | Р | Р | Р | Р | Р | Р | Р | - | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | Н | ? | ? |
NO3 - | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | - | Р |
NO2 - | Р | Р | Р | Р | Р | Р | Р | Р | Р | ? | ? | ? | ? | Р | М | ? | ? | М | ? | ? | ? | ? |
PO4 3- | Р | Н | Р | Р | - | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н |
CO3 2- | Р | Р | Р | Р | Р | Н | Н | Н | Н | ? | ? | Н | ? | Н | Н | Н | Н | Н | ? | Н | ? | Н |
CH3COO - | Р | Р | Р | Р | Р | Р | Р | Р | Р | - | Р | Р | - | Р | Р | Р | Р | Р | Р | Р | - | Р |
SiO3 2- | Н | Н | Р | Р | ? | Н | Н | Н | Н | ? | ? | Н | ? | ? | ? | Н | Н | ? | ? | Н | ? | ? |
Растворимые (>1%) | Нерастворимые (
Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время. Вы можете также связаться с преподавателем напрямую: Скопируйте эту ссылку, чтобы разместить результат запроса " " на другом сайте. Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши. Внимание, если вы не нашли в базе сайта нужную реакцию, вы можете добавить ее самостоятельно. На данный момент доступна упрощенная авторизация через VK. Здесь вы можете выбрать параметры отображения органических соединений. Эти параметры действуют только для верхнего изображения вещества и не применяются в реакциях.
Корректная работа сайта обеспечена на всех браузерах, кроме Internet Explorer. Если вы пользуетесь Internet Explorer, смените браузер. На сайте есть сноски двух типов: Подсказки - помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего. Дополнительная информация - такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения. Щавелевая кислота. Свойства и применение щавелевой кислотыНынче ее именуют щавелевой, поскольку соединение содержится в листьях щавеля. Однако, впервые вещество синтезировали, совместив азотную кислоту и сахар . В честь сладости и назвали. Переименовали позже, обнаружив новое вещество в растениях. Могло быть и третье имя, ведь в чистом виде щавелевая кислота содержится лишь в грибах тутовиках. В остальном, в природе встречаются лишь соли соединения. Об их свойствах и характеристиках чистой щавелевой кислоты , расскажем далее. Свойства щавелевой кислоты Соли щавелевой кислоты – это оксалаты. Они бывают средние, кислые и даже, молекулярные. Большинство оксалатов не растворимы в воде. Чистая же кислота с ней смешивается легко. Из оксалатов с водой взаимодействуют лишь соли магния и щелочных металлов. Во всех солях кислоты есть дианионы С2О4 2 , или (СОО)2 2 . Формула же чистой кислоты: — HOOCCOOH. Получается, соединение относится к ряду двухосновных предельных карбоновых кислот . Последняя характеристика указывает на присутствие карбоксильных групп COOH. Двухосновными называют органические соединения с двумя атомами водорода . Предельными же именуют вещества, в молекулах которых нет кратных связей. Формула щавелевой кислоты показывает, что соединение органическое. На это указывает присутствие углерода . Водород и кислород – тоже типичные составные органики. В ней много энзимов – ферментов, помогающих пищеварению. Однако, оксалаты щавелевой кислоты не полезны. Соли кальция , к примеру, формируют камни в почках. Образуются же оксалаты в печени. Здесь организм формирует около 40% соединений. Еще 20% солей – итог метаболизма витамина С. Примерно 15% соединений поступают с пищей. Если переборщить с овощами да фруктами, можно нарушить баланс оксалатов. Функция их вывода из организма, которому соли кислоты не нужны, возложена на печень. Не успевая избавляться от отходов, орган «отсылает» их в те же почки, не способные вытолкнуть оксалаты. Объединяет щавелевую кислоту и оксалаты кристаллическая форма. Героиня статьи тверда , бесцветна, не пахнет. Единственное, что выдает принадлежность к классу кислот – вкус. Он, естественно, кислый. Принадлежность к подклассу карбоновых кислот выдает число атомов углерода. В молекуле их два. Цифра четная. Значит, температурная обработка щавелевой кислоты затруднительна. У кислот с четным количеством атомом углерода планка плавления выше, чем у нечетных соединений. Героиня статьи размягчается, лишь, когда температура за 100 градусов. Если довести жар до 150-ти градусов, происходит отщепление от молекулы диоксида углерода. В народе его называют углекислым газом. В итоге реакции, вместо щавелевой, получается муравьиная кислота . Наиболее быстро превращение протекает в присутствии концентрата серной кислоты . Получить из щавелевой можно и угольную кислоту. Нужна кислая среда и перманганат калия . Они запустят реакцию окисления, приводящую к появлению угольного соединения. Дабы создать что-то из щавелевой кислоты, для начала, нужно найти ее саму. Вещество обнаруживают качественной реакцией с хлоридом кальция. Взаимодействие дает нерастворимый осадок. Это оксалат кальция. Не зря же он образует камни в организме. Так вот, если осадок выпал, значит, в исходном реагенте есть щавелевая кислота. Где содержится героиня статьи, уже говорилось. Это щавель, фрукты и овощи. Но, список можно продолжить чаем , кофе , ревенем, шоколадом, бобами. Есть щавелевая кислота и в арахисе, кукурузе и фасоли. Из приправ соединением богаты имбирь и кулинарный мак. В молекуле щавелевой кислоты не только два атома углерода, но и две карбоксильных группы. Поэтому, героиню статьи зовут дикарбоновой. Такой состав щавелевой кислоты обуславливает ее силу. Из ряда дикарбоновых вещество самое активное с химической точки зрения, поскольку карбоксильные группы наиболее близки друг к другу. Два атома углерода – минимум для подгруппы. Три, четыре, пять углеродов отодвигают карбоксильные группы все дальше и дальше, уменьшая силу кислот. Раствор щавелевой кислоты возможен не только на основе воды, но и этанола. Это соединение относится к группе спиртов. Где пригождаются раствор кислоты и ее кристаллы , поведаем в следующей главе. Применение щавелевой кислоты Купить щавелевую кислоту стремятся пасечники. Им приходится сталкиваться с варроатозом пчел. Заболевание поражает не только взрослых особей, но и их личинок. Вызывают недуг клещи. Вред щавелевой кислоты для них очевиден, — насекомые обходят обработанные ульи и пчел стороной. Медоносные же «питомцы» реагента не боятся. Продукты, содержащие щавелевую кислоту, применяются, так же, в химической промышленности. Реагент является составной пиротехнических смесей, пластмасс, чернил, а так же, участвует в синтезе красящих смесей. В аналитической химии с помощью щавелевой кислоты осаждают редкоземельные металлы. К металлам реагент применяют и как средство от ржавчины. Кислота легко растворяет ее, полируя поверхность металлургических сплавов . В текстильной промышленности соединение пригождается при протравливании тканей. Это обработка поверхности, необходимая, чтобы краситель лег на материю равномерно. Щавелевой кислотой протравляют ситцы, кожи , шерстяные нитки и шелк. У героини статьи есть отбеливающие свойства. Не вошедшие в первую главу, они объяснят применение соединения в качестве компонента кремов, тоников и лосьонов против пигментных пятен, веснушек. Отбеливание требуется и в изучении различных материалов под микроскопом. Рассматривают, как правило, срезы. На них и капают кислоту. Другие отбеливающие соединения разрушают структуру подопытных. Щавелевое же вещество, лишь осветляет. Функцию отбеливания щавелевая кислота выполняет, так же, в моющих средствах. В домашнем применении важны еще и дезинфицирующие свойства соединения. Добыча щавелевой кислоты Щавелевая кислота в организме формируется в ходе обменных процессов. В промышленных масштабах соединение получают, нагревая формиат натрия . Его, так же, называют муравьинокислым соединением, а попросту, муравьиной кислотой. Дабы реакция прошла успешно и эффективно, нагрев формиата должен быть быстрым. Процесс образования щавелевой кислоты двухстадийный. Сначала, от муравьиного соединения отщепляется водород. Получается оксалат натрия. На второй стадии соль окисляют в присутствии серной кислоты. Схема синтеза щавелевого вещества нетипична для дикарбоновых кислот. Обычно, их получают из соединений с двумя функциональными группами. Такими группами именуют структурные элементы молекулы, определяющие ее химические свойства. При стандартном синтезе дикарбоновых кислот их карбоксильные группы формируют именно из функциональных групп основополагающих соединений. Цена щавелевой кислоты Порошок щавелевой кислоты фасуют в мешки. Стандартная вместительность одного – 25 килограммов. За упаковку просят около 2000 рублей. Если брать малую фасовку по одному кило, отдашь за него 100-130 рублей. Выгода приобретения соединения большими объемами очевидна. Встречаются и ценники в 80 рублей за килограмм кислоты. Если продавец его не указывает, стоит уточнить соблюдение нормативов при переговорах о поставках. Низкая цена может быть обусловлена несоответствием товара требованиям стандарта. Ценник порошка зависит еще от одного фактора. Это чистота соединения. Если сторонних примесей 0,5% и меньше, вещество считается высокосортным. В мелких поставках даже за полкило просят примерно 100 рублей. При загрязнении в 1-2% ценник падает до 50-60-ти рублей за те же 0,5 килограмма. Слабо очищенное соединение берут, как правило, для химической промышленности, исключая производство косметики. В рознице героиню статьи не продают. Найти кислоту в магазинах получается лишь в составах моющих средств. Это в том случае, если реагент нужен для бытовых нужд, к примеру, выведения ржавчины. Хотя, избавиться от коррозии металла можно и с помощью лимонной кислоты. Достаточно разрезать плод и полить заржавевшую поверхность его соком . Так что, использование дорогостоящих смесей не всегда оправданно. Порой, выгоднее обойтись содержимым холодильника. Гальваника и не только для начинающих. Сборная солянка рецептов и советов. Часть 1 — снятие ржавчиныУксусный компресс. Снятие ржавчины. Для случаев, когда нет желания и необходимости сохранять родной красочный слой, ржавчину можно удалить при помощи 70-процентной уксусной эссенции (кислоты), которая свободно продается в бакалейных отделах продуктовых магазинов. Стандартная фасовка эссенции — бутылочки емкостью около 200 мл. Щавелевая кислота Стоит применять, когда есть замысел и надежда сохранить оригинальное красочное покрытие без последующей окраски. Лимонная кислота Вымываем грязь, наслоения ржавчины, жировые пятна и всё что можно очистить до загрузки детали в раствор лимонной кислоты. 1.В чистой миске смешайте четверть чашки буры, одну чайную ложку винного камня и достаточное количество перекиси водорода, чтобы получить густую пасту. Для тщательного перемешивания этих трех компонентов, лучше воспользоваться палочкой. Толстым слоем нанести на ржавчину. Держать нетронутым в течение получаса или около того. Затем протереть влажной губкой. — ингибитор кислотной коррозии. Продается в аптеке. Применяется при обработке разбавленным водным раствором соляной или серной кислоты для защиты чистого металла, не мешает взаимодействию кислоты с оксидом и гидроксидом железа, но тормозит химическую реакцию (в данном случае реакцию растворения металла в кислоте). Безкислотные реактивы для вывода ржавчины. Раствор хлористого цинка. Берут произвольное количество хлористого цинка (в зависимости от размера изделия) и у него постепенно доливают при перемешивании дистиллированную воду, пока растворится весь порошок, т.е. готовят насыщенный раствор. Обезжиренные детали помещают в раствор на 10-12 часов. После удаления ржавчины их хорошо промывают водой и вытирают сухой тряпкой. Ровные поверхности при этом становятся блестящими. Из кровяной соли готовят одновременно два раствора, частей за массою: Первое, что вам потребуется, это блок питания. Отрежьте штекер на конце провода блока питания. Разделите конец провода на две части и зачистите их концы от изоляции. Скрутите медный жилки и, если есть возможность, подсоедините их к металлическим зажимам. Например, Вы можете купить микро зажимы типа "крокодил". Внимание! Избегайте контакта содового раствора с бренным телом! Имейте под руками ведро чистой воды, чтобы в случае чего умыться, промыть глаза, ополоснуть руки. Плюс эта сода наносит вред природе, поэтому не выливайте ее в огород. Зато ее не нужно менять для электролиза, раствора хватит очень надолго. Читайте также:
|