Резка металла лазер или плазма

Обновлено: 07.01.2025

Выбирая, что лучше – лазерная и плазменная резка металла, нужно в первую очередь учесть отличия и сходства двух видов. Это важно как для подбора оборудования для собственного производства, так и для заказа раскроя на стороне. Понимание сильных и слабых сторон каждого метода позволит получить качественную продукцию и не выйти за рамки бюджета.

Несмотря на то, что можно встретить мнение о превосходстве лазера над плазмой, корректнее было бы сказать, что все зависит от толщины и типа раскраиваемого металла. В одном случае надо выбрать лазер, для другого подойдет плазма. В нашей статье мы расскажем обо всех особенностях данных технологий и определим, в каких условиях и что лучше применять.

Лазерная и плазменная резка металла: отличия и сходства

В устройство лазерной установки входят три основные части:

  • рабочая (активная) среда – источник излучения лазера;
  • оптический резонатор – зеркало, усиливающее излучение установки;
  • источник энергии – система накачки, создающая условия для возникновения электромагнитного излучения.

Разогрев металла осуществляется на малой площади поверхности. Процесс реза осуществляется либо при температурах плавления, либо при испарении металла. К применению второго варианта прибегают исключительно для резки тонких материалов, так как он является энергетически затратным.

Лазерная и плазменная резка металла: отличия и сходства

Для облегчения работы в зону реза подается один из следующих газов: гелий, аргон, азот, воздух или кислород. Они выполняют функции поддержки процесса горения металла, сдувания его с зоны плавления, остужения прилегающих поверхностей, повышения глубины и скорости и резки.

По способу использования рабочей среды лазерные установки относятся к одному из таких трех видов, как:

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

  • Особенности плазменной резки.

При плазменных резах используются следующие плазмообразующие газы: смесь водорода с аргоном, сжатый воздух, кислород или азот. Внутри плазмотрона, к которому обязательно подается охлаждение, газ разогревается до температуры +5 000…+30 000 °С и принимает состояние плазмы: смеси свободных электронов, ионов и нейтральных атомов. В итоге у газа появляется способность проводить электрический ток. За счет нагрева его объем расширяется в 50–100 раз, и он со значительной скоростью вытекает из плазмотрона. Плазма, воздействуя на металл, начинает его плавление.

В процессе плазменного реза между соплом резака и электродом появляется электрическая дуга, которая образуется при поднесении на близкое расстояние резака к металлу. Это осуществимо благодаря использованию источника питания постоянного тока.

Рекомендуем статьи по металлообработке

Существуют аппараты косвенного или прямого действия. В первом случае (плазменно-струйная резка) дуга образуется внутри резака. Такой способ обработки применяется для резания материалов, не проводящих электрический ток. Во втором (при плазменно-дуговой резке) – она возникает между разрезаемым материалом и катодом плазматрона.

Преимущества плазменной и лазерной резки

При лазерной обработке рез получается более точным, чем при применении плазмы. Благодаря правильной настройке он не будет прыгать по всей поверхности металлического листа. Но при резке с помощью плазмы постоянно происходят колебания, очертания углов и вырезов получаются не совсем четкие. Особенно это критично для деталей небольших размеров или со сложной формой вырезов. Поэтому для деталей с высокими требованиями качества и точного соответствия проекту принципиально использовать лазер, так как он может четко разрезать металл там, куда его направили, без значительных колебательных движений.

Преимущества плазменной и лазерной резки

В отличие от плазменной резки, при лазерном раскрое можно получить более узкие прорези. Для изготовления более четких отверстий при использовании плазмы их диаметр должен превышать толщину листового материала в полтора раза, но при этом быть не меньше 4 мм. Применение лазеров позволяет выполнять отверстия с диаметрами, равными толщине металла, – от 1 мм. Это значительно повышает потенциал для проектирования изделий и корпусов, в развертках которых применяется такой способ реза.

Для лазерной резки свойственны незначительные тепловые деформации. Но если написать программу для обработки без учета элементарных характеристик и свойств применяемого металла, то, теоретически, перегреть деталь можно даже таким методом. К примеру, с помощью лазера нельзя производить очень частые и мелкие отверстия для вентиляций – это может привести к перегреву металла. При таком способе раскроя отверстия в вентиляционных решетках необходимо делать более крупными и менее частыми. В других случаях деформации от лазера не столь существенны.

При плазменной резке нагреваемая зона намного шире, деформации проявляются более значительно. В отличие от плазменной резки металлов, такие показатели лазерного способа дают более качественные результаты.

При лазерном варианте реза на тонколистовом металле не остаются окалины. Значит, после резки развертки отправляются сразу на гибку, минуя операцию по зачистке. Это позволяет сэкономить рабочее время на производство деталей, а, в итоге, и деньги заказчика.

Отверстия, выполненные с помощью лазера, имеют большую перпендикулярность кромок. К серьезной проблеме плазменных станков относится конусность отверстий. Лазерное оборудование при обработке металла толщиной до 4 мм оставляет перпендикулярные стенки, а при значениях выше 4 мм – незначительный скос (приблизительно 0,5°), причем нижний край отверстия получается немного больший по диаметру, чем верхний. Наряду с этим, искажение их формы не происходит: и нижние, и верхние отверстия получаются идеально круглыми. А при плазме с увеличением толщины материала отверстия начинают проявлять эллипсность.

И тот, и другой виды установок резки обладают высокой скоростью обработки. Здесь хороши оба метода. Скоростные параметры снижаются только с увеличением толщины детали.

Но для металлов со средней или высокой толщиной применение лазера становится малоэффективным. Это является главным недостатком лазерной резки, в отличие от плазменной технологии. При толщине от 20 до 40 мм лазерный луч применяют значительно реже, а при значениях от 40 мм и выше – и вовсе не используют.

Больший диапазон выбора толщины металла для резания – основное достоинство плазменной резки, в отличие от лазерной. Использование плазмы рационально применять для:

  • чугуна толщиной до 90 мм;
  • меди с максимальной толщиной 80 мм;
  • стали толщиной не более 150 мм;
  • алюминия толщиной менее 120 мм.

Как уже было отмечено, высокая скорость реза является общим положительным фактором и плазменного, и лазерного способов резания металлов.

Преимущества плазменной и лазерной резки

Выбирая способ плазменной резки, необходимо помнить о конусности отверстий. И если для конкретного заказа такая погрешность является недопустимым фактором, то лучше выбрать лазерную обработку. Отклонение от вертикали стенок отверстий при плазменном резании могут быть от 3 до 10 градусов. У лазерного способа, как было упомянуто выше, – этот параметр составляет не более 0,5 градуса. При использовании плазмы диаметр нижнего отверстия меньше верхнего. При толщине металла в 20 мм разница между нижним и верхним диаметром реза может быть больше 1 мм.

Повышенная точность, минимальные прорези относительно толщины металла, незначительные тепловые деформации – все это является плюсами применения лазерного реза.

При использовании плазмы нередко остается окалина. Безусловно, зачистить ее после плазменной резки не составит особого труда, однако на это придется потратить определенное время и усилия, а это является расходом человеко-часов и, соответственно, приводит к увеличению себестоимости продукции.

Себестоимость плазменной резки значительно поднимается при увеличении числа отверстий на одну деталь. Связано это с тем, что расходные элементы плазменных установок связаны с определенным количеством циклов «выключение/включение». При расчете себестоимости реза необходимо учесть, что наличие в развертке окон способствует увеличению износа расходных материалов. Расходники лазерных станков меньше зависят от циклов «включение/выключение», соответственно, прорезание в развертке окон меньше влияет на стоимость часа работы.

Стоимость оборудования и расходников для обоих видов резки

Выбирая плазменный или лазерный способ резки металла, необходимо учитывать, что цена на портальную плазменную установку в 5-6 раз меньше, чем на аналогичную лазерную. Однако при сравнении обоих способов следует рассчитывать не только начальную цену, но и затраты на дальнейшее обслуживание.

Стоимость оборудования и расходников для обоих видов резки

Сюда включают затраты на электроэнергию, на использование вспомогательных газов и стоимость расходных материалов. Определяясь с выбором плазменной или лазерной резки, необходимо учитывать, что в сметную стоимость расходов на эксплуатацию лазерного реза вводят:

  • Цену на газы:
  • чистый кислород или воздух – для обработок сталей с повышенным содержанием углерода;
  • азот – при использовании заготовок из алюминия (или его сплавов) и коррозионностойких (нержавеющих) сталей и сплавов.
  • Расходы по энергопотреблению:
  • затраты по энергопотреблению непосредственно самой установки;
  • стоимость электроэнергии, израсходованной на лазер и охладитель.
  • Расходные материалы, к которым относятся:
  • внутренняя и внешняя оптика;
  • замена изношенных сопл;
  • чистка и замена фильтров.

Интенсивность эксплуатации лазерных установок оказывает значительное влияние на периодичность замены расходных материалов: от одного раза в несколько недель или лет.

Без информации по эксплуатационным расходам на установку плазменной обработки ответить на вопрос о том, в чем отличие плазменной резки от лазерного реза, было бы затруднительно. По этой причине продолжаем подробнее изучать затраты на альтернативные виды оборудования.

В плазменном способе резки применяется воздух или кислород. Электроэнергия расходуется только на создание плазмы и питание самого станка. Если говорить о расходных материалах, то их необходимо столько же, сколько и при использовании лазера. К ним относятся:

  • защитный экран;
  • электрод;
  • сопло.

Сокращения затрат на плазморез можно достичь применением слаботочных сопл и электродов, но это приведет к снижению производительности станка, однако не повлияет на качество реза.

Рассматривая вопрос о том, сколько отверстий должно приходиться на одну заготовку, чтобы снизить часовую стоимость работы, можно смело сказать, что преимущество на стороне лазера, поскольку электроды и сопла, применяемые в плазменных установках, рассчитаны на заданное количество стартов и прошивок.

Чем большее количество отверстий необходимо изготовить, тем выше расходы на эксплуатацию плазменного оборудования.

Качество результата после плазменной и лазерной резки

Качество результата после плазменной и лазерной резки

Учитывая параметры качества поверхностей деталей после обработки и делая сравнительный анализ стоимости затрат на расходные материалы, приходим к выводу: при использовании более тонких листовых материалов эффективнее лазерная резка, при работе с более толстыми заготовками – плазменная. Следует помнить, что расходы на обслуживание того и другого типа резания имеют широкий разброс и в основном зависят от геометрических параметров заготовок, числа отверстий в них, вида и толщины разрезаемого металла.

Постоянна (0,2–0,375 мм)

Изменяется из-за нестабильности плазменной дуги (0,8–1,5 мм)

Как правило ±0,05 мм (0,2–0,375 мм)

Зависит от степени износа расходных материалов ±0,1…±0,5 мм

При непрерывном режиме диаметр примерно равен толщине материала. Для импульсного режима минимальный диаметр отверстия может составлять одну треть толщины материала

Минимальный диаметр отверстий составляет полторы толщины материала, но не менее 4 мм. Выраженная склонность к эллиптичности (возрастает с увеличением толщины материала)

Происходит некоторое скругление угла, из нижней части среза удаляется больше материала, чем из верхней

Как правило, имеется (небольшая)

Присутствуют на острых наружных кромках деталей

Больше, чем при лазерной резке

Производительность резки металла

Очень высокая скорость. При малых толщинах обычно с заметным снижением при увеличении толщины, продолжительный прожиг больших толщин

Быстрый прожиг. Очень высокая скорость при малых и средних толщинах обычно с резким снижением при увеличении толщины

Лазерный способ резки более эффективен для сталей толщиной до 6 мм. В этом случае обеспечивается высокое качество и точность при сравнительно большой скорости разрезания. Кромки реза листов толщиной 4 мм и меньше остаются гладкими и прямолинейными. Увеличение толщины предрасполагает появление скоса, составляющего приблизительно 0,5°. При лазерном резе отверстий нижние диаметры больше, чем верхние, но остаются круглыми и хорошего качества.

Плазменную резку металла, в отличие от лазерной установки, экономически эффективнее использовать при обработке более толстостенного материала. Помимо всего, сохраняется относительно хорошее качество реза. С финансовой точки зрения такой тип обработки рационален для разрезки меди толщиной менее 80 мм, алюминия и сплавов на его основе толщиной заготовок не более 120 мм, чугуна – не выше 90 мм, углеродистых и легированных сталей толщиной до 150 мм. Для раскроя листового материала толщиной от 0,8 мм и тоньше использование плазмы нежелательно.

Можно сделать вывод: при обработке более тонких листов лазерная резка обладает преимуществом в сравнении с плазменной. А при раскрое более толстых заготовок первенство можно отдать лазерным установкам. Необходимо учитывать, что расходы на обслуживание оборудования этих типов резания различны и в основном зависят от геометрических параметров заготовок, числа отверстий в них, вида и толщины разрезаемого металла.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Каким газом резать металл: азот, кислород или воздух?

В этой статье мы постараемся максимально подробно рассмотреть все плюсы и минусы, выгоды и слабые места резки металлов различными газами: с помощью азота, кислорода и воздуха. Посмотрим какой газ лучше всего подходит для резки металла, действительно ли воздух бесплатный и какие бывают минусы при работе с каждым из газов.

Виды газов для резки металла

Для начала определим, что газом мы именуем и азот и кислород и воздух, воздух тоже газ.

При резке лазером (причём хоть СО2, хоть волоконным) через сопло вместе с лазером подаётся газ для того чтобы удалить из зоны резки продукты горения или помочь лазеру обрабатывать материал.

Если речь об азоте или кислороде то есть много способов хранения и подачи газа в станок, самый основной — баллон с газом, на баллон накручиваем редуктор для регулировки давления и от редуктора ведём шланг на станок.

Воздух

Компрессор это устройство подачи ВОЗДУХА. То есть только воздуха. Воздухом можно резать небольшие толщины, в среднем до 2-3мм. Система фильтрации нужна для того чтобы воздух который через компрессор идёт на станок был чистым, без воды или масла.

Если система фильтрации плохая то из компрессора вместе с воздухом летят мелкие частицы воды и масла, они оседают на защитном стекле лазерной головы и стёкла быстро выходят из строя. Также загрязняется вообще весь воздушный тракт станка и головы.

Крмпрессор

Но и это еще не все, в некоторых станках воздух используется еще и для работы пневматических систем, так что стоит разграничивать подачу воздуха к станку для резки и для работы пневматики.

Там чаще всего внутри станка уже стоят нужные очистители, дополнительно не надо ничего.

Кислород или азот для резки металла?

Кислородная резка самая дешёвая. Азотная резка намного дороже, но при обработке практически всех металлов, кроме черных, мы используем азот, если хотим сохранить свойства металла.

Кислородом НЕЛЬЗЯ резать нержавейку. Если мы будем ее резать кислородом, то материал по сути будет гореть, ведь горение — это ни что иное, как окисление при высокой температуре, а кислород – катализатор горения. Таким образом из нержавейки мы делаем ржавейку, окисляем её, то есть попросту убираем все её нержавеющие свойства.

А азот – негорючий газ, он инертный, в нем ничего не горит, он выполняет другую функцию – предохраняет металл от окисления, охлаждает его и удаляет продукты горения из зоны реза.

компрессор

Кислородом обычно режут черные металлы.

Чернуху можно резать и азотом, но это будет слишком дорого и невыгодно, а так как она не имеет нержавеющих свойств, то нет смысла и сохранять их.

Ещё один нюанс – азотом мы режем всё, кроме титана, который при лазерной резке вступает с азотом в реакцию, крошится, теряет свою структуру и свойства. Для резки титана нужен аргон.

Давление газа при резке металла лазером

Итак, на станке есть два гнезда подключения вспомогательного газа — нерегулируемый тракт для азота или воздуха и кислородный тракт с регулятором давления.

Первый идёт напрямую в рабочую голову: то есть как на баллоне на редукторе выставил давление, так оно и работает.

А второй – кислородный тракт требует очень точной регулировки давления, поэтому здесь и стоит специальный регулятор производства японской фирмы SMC. Он позволяет выставлять точные параметры давления резки напрямую из программы.

Когда мы режем материал, его необходимо сначала пробить. В момент этого пробоя давление должно быть 0,15-0,2 МПа, а в процессе резки – достаточно 0,5-0,6 МПа и станок должен регулировать это расхождение в давлении.

Если кислородом пробивать материал с таким же давлением, с каким режешь, то полетят брызги расплавленного металла, т.к. кислород, как мы выяснили выше – катализатор горения. С азотом таких заморочек нет, можно поставить условные 2 МПа и пробивать и резать на одном и том же давлении.

Регулятор давления газа в металлорезе

Возвращаясь к регулятору давления — на него нельзя подавать более 1 МПа, в лучшем случае он просто будет спускать переизбыточное давление и у вас будет перерасход кислорода, в худшем случае - просто выйдет из строя.

Для резки азотом нормальное давление — 1,6-1,8 МПа, а с кислородом — 0,5-0,6 МПа, т.е. расход газа практически в три раза меньше.

Однако, несмотря на то, что кислородная резка дешёвая – она сложная и требует опыта в настройке параметров.

Чуть-чуть отклонение по давлению, не тот диаметр сопла – и у тебя будет плохой рез.

Но если уметь работать с кислородом, то он получается эффективнее и дешевле, чем азот или воздух.

Кстати про воздух: в чём здесь подвох?

Воздух для резки металла

Если вы собираетесь резать на воздухе, вам нужно озаботиться хорошей системой фильтрации, стоимость которой порой может достигать стоимости самого компрессора.

Люди думают, что я сейчас схвачу Бога за яйца, не буду платить за газ, заплачу один раз за компрессор и все – дёшево и сердито. Но на самом деле нет, воздушная резка тоже стоит денег.

Минусы использования воздуха для резки металла

Просто вложения разовые и большие. Да и компрессор тоже нужно обслуживать – менять масло. И бывает, что фильтры тоже выходят из строя, три месяца нормально работает, потом раз – начал плеваться. Конденсат с ресивера летит, вот это вот всё. И если ты один раз засорил тракт, потом поставил воздух с нормальными фильтрами, это всё равно не поможет, потому что придётся чистить сам тракт, продувать его спиртом.

При работе с воздухом, нужно очень сильно очищать и осушать воздушный тракт, потому что любая влага и масло, которые будут лететь из компрессора, будут оседать на защитных стёклах и придётся менять их по несколько раз в час.

Для нормальной резки воздухом нужно давление 1,6-1,8 МПа, но чтобы после всех осушителей и систем фильтрации добиться такого давления на выходе, до фильтров должно быть 20-25 атмосфер. А такой компрессор уже стоит нормальных денег. Поэтому стоимость компрессора с хорошей системой осушителей будет стоить достаточно дорого.

Подумайте, может вам выгоднее взять газификатор с азотом и просто заполнять его один раз в месяц?

Резюмируем по воздуху

Воздух актуален только если вы режете не больше 1,5 мм и если не гонитесь за цветом кромки.

Воздух – это не бесплатно. Это сложно и дорого. Чтобы вся эта система нормально работала, в неё стоит хорошо вложиться. Если вы режете то чернуху, то нержавейку, то одно, то другое – то лучше работайте на газах.

Газовое оборудование и оборудование рабочего места на металлорезе

  • Газ может поставляться в баллоне 40 или 70 литров. Это не очень удобно, так как их приходится часто менять и тратить на это дополнительное время.
  • Бывает матрица баллонов — 25 баллонов, обвязанных шлангами. Матрицы баллонов хватает на дольше, но она занимает больше места и сложнее в заправке и транспортировке.
  • Может быть газификатор — это большой баллон, в котором газ содержится в жидкой форме. Именно поэтому газ из газификатора очень чистый. К тому же он экономичней.

Не стоит гнаться за чистотой газа три девятки (99,999%), четыре девятки (99,9999%). Девяносто девять сотых (99,99%) – этого уже достаточно. Остальное – избыточно, это финансово не целесообразно и будет стоить космических денег. ОЧ (оч чистый) или ОСЧ (особо чистый) – этого достаточно, потестите и определитесь что вам больше подходит.

В следующей статье мы поговорим про систему управления, программное обеспечение и покажем вам самые крутые функции металлореза, которые значительно упрощают рабочий процесс.

Сервис и ремонт лазерного станка по металлу

Многие могут продать металлорез, но не у всех есть такой опыт и багаж знаний как у наших менеджеров и сотрудников сервисной службы.

Возможно в этой статье было много непонятных для вас терминов, не пугайтесь, мы доступно расскажем вам обо всех нюансах и научим правильно работать на станке. Наше обучение длится три дня, за это время вы узнаете всё что нужно о строении станка и его обслуживании, мы научим вас подбирать настройки под разные типы материалов разной толщины и покажем, как работать с режимами резки, которые упрощают работу и помогают экономить время и материалы.

Мы имеет успешный опыт работы с различными производствами и поэтому можем многому вас научить, поделиться опытом и дать вам уникальные советы, как оптимально настроить ваше производство.

Лазерная или плазменная резка — что лучше?

Давайте для начала рассмотрим принцип работы плазменного и лазерного оборудования.

Если простыми словами, то плавление металла при плазменной резке происходит за счет дуги. То есть, под воздействием воздуха.

Принцип работы лазера

В случае с лазерной резкой плазменной резкой плавление металла происходит за счёт сфокусированного лазерного луча.

Принцип работы лазера

Возможности плазменной и лазерной резки

В первом случае ширина реза не постоянна. Она изменяется в зависимости от толщины металла, от 0,8 до 2,5 мм. А при работе на лазерном станке она всегда практически одинакова и равняется от 0,2 до 0,3 мм.

Насколько плазменная резка будет точной, зависит от износа расходных материалов. Этот параметр составляет до 0,1 мм. При лазерном способе точность очень высокая и находится в диапазоне от 0,05 до 0,08 мм.

Важным параметром является конусность, она бывает от 1 до 5 градусов в зависимости от толщины вырезаемых отверстий. При лазере конусность минимальная. Она составляет менее 1 градуса.

Соответственно, отверстия на лазере получаются более геометрически правильными и подходят под точные соединения.

Для того, чтобы вырезать геометрически правильные отверстия на плазме нам необходимо, чтобы диаметр отверстия был в два раза толще листа.

Отверстия в металле

А при лазерной резке возможность вырезания отверстий, как минимум, в два раза тоньше самого листа.

Также необходимо отметить и высокую скорость реза, которая даёт возможность прожигать толстые металлы.

А на лазере скорость значительно выше, чем на плазме. Но при увеличении толщины она сильно падает. Кроме того, время пробивки толстого металла увеличивается.

Стоит отметить про образование окалины при плазменной резке. Её избежать, к сожалению, невозможно, и деталь нужно будет ещё обработать.

Рез


А вот при лазерной резке её практически нет. То есть, детали, которые вырезаются на лазере, не нуждаются в дополнительной обработке.

Плазма имеет грязный рез, то есть при резке плазмы образуется много грата, и рез нуждается в пост-обработке. То есть, в любом случае нужно либо шлифовать, либо гальтовать, либо очищать материал другими способами.

В случае с лазерным станком при правильных настройках не требует никакой пост-обработки. Изделие сразу готово, как к сварке, так и к покраске, а в дальнейшем к продаже. Рез получается чистым.

Рез


У лазера очень тонкий рез, а у плазмы он может достигать 5 мм засчёт того, что температурное воздействие велико, что даёт дополнительное плавление.

Лазерный станок по металлу потребляет намного меньше электричества, чем плазма. Особенно это заметно на больших объемах.

Какие нужны расходники?

Для аппарата плазменной резки

На плазме необходимо менять сопла, электроды, защитные экраны, кожухи. А на лазере только линзы и сопло.

Для лазерного станка

Но при работе на лазерном станке раз в две недели необходимо менять линзу и сопло. Линза стоит 700 рублей, сопло — 900 рублей.

Максимальная ежемесячная оплата расходников для лазерного станка будет составлять 3 200 рублей.

Итак, давайте подведём итоги.

Расходники

Плюсы и минусы плазмы и лазера

Плазма

  1. Большой диапазон разрезаемых толщин от 0,5 до 50 мм на пробивку;
  2. Высокая скорость реза при больших толщинах;
  3. Низкая начальная цена оборудования
  4. Отработанная технология резки под углом, как сейчас привыкли называть, резка со скосом.
  1. Нецелесообразность обработки металлов тоньше 1 мм;
  2. Конусность кромок до 5 градусов (некачественный край);
  3. Присутствие окалины на отверстиях при поворотах, поэтому нужна дополнительная обработка изделий;
  4. Ограничение на диаметр отверстия до 4 мм;
  5. Высокая стоимость расходных материалов;
  6. Низкая точность по сравнению с лазерным станком;
  7. Требует постобработки;
  8. Низкая скорость резки по сравнению с лазером на тонких материалах;
  9. Невозможность выполнять многие разновидности резки, доступные лазерному станку.

станок

Лазер

  1. Перпендикулярность кромки;
  2. Малая ширина реза;
  3. Отсутствие окалины - получаете 100% готовое изделие;
  4. Диаметр отверстия меньше толщины листа. Можно вырезать мелкие детали вплоть до 1 мм;
  5. Низкое термическое воздействие на кромку;
  6. Дешевые расходники;
  7. Обработка тонкого металла от 0,2 мм;
  8. Наивысшая возможная скорость резки;
  9. Материалы не требуют постобработки и готовы к сварке, покраске или упаковке, а затем к продаже.
  1. Можно резать металл только до 20 мм;
  2. Высокая начальная цена оборудования.

Для чего нужна плазма, а для чего — лазер?

Лазер подходит там, где нужна точность, чистота реза и кромки и скорость. А плазма режет медленно, относительно лазера, и с грязным резом, поэтому сложные технические детали вырезать невозможно. А на лазерном станке по металлу возможно вырезать, например, небольшие шильды и таблички, тонкие решётки и сложные элементы дизайна, а также роторные колёса.

Плазма нужна для изготовления простых изделий. В форме прямоугольника, овала или квадрата, потому что их можно потом обработать. Но вырезать звёздочку с отверстиями внутри будет сложно. К тому же, на шлифовку уйдёт много времени. А оборудование для пост-обработки будет стоить в разы дороже, чем металлорезчик.

Плазма применяется там, где есть большие толщины и при простой резке, например, рельсов, элементов металлокаркаса или сварных конструкций и т.п..

изделия из металла

Почему лазерная резка эффективнее?

Плазменная резка обрабатывает детали толщиной от 25 мм и выше, а оборудование стоит дешевле, чем металлорез. Но, несмотря на это, в сравнении с лазером, плазменная резка проигрывает.

  1. Во-первых, потому что она более затратная термически.
  2. Во-вторых, скорость обработки детали на лазере выше минимум в полтора раз по сравнению с плазмой. Лазерный станок за то же время обработает большее количество деталей.
  3. Благодаря лазерной резке, мы можем обрабатывать больше деталей на одном листе. Это означает, что расстояние между деталями при лазерной обработке намного меньше, чем расстояние при той же плазменной резке. В частности, для лазерной резки при толщине 25 мм расстояние между деталями может составлять от 7 до 10 мм.

При плазменной резке это расстояние значительно увеличивается и соответственно выход готовых изделий металла, он уменьшается. Другими словами, мы за один и тот же промежуток времени обрабатываем большее количество деталей. Мы экономим металл, а отсюда мы выигрываем в экономике.

  1. Пару слов о качестве резки. Современные лазерные станки обеспечивают высочайшее качество обработки кромки. Здесь нет грата, здесь нет завала кромок, окалин, здесь нет прочих явлений, которые могут возникать при плазменной резке.

При сопоставимом количестве деталей и утолщении листа мы получим стоимость детали на 20 — 30 % больше.. Почему так? Количество деталей, обработанных на этом листе увеличивается в лазерной резке. Расстояние между деталями сокращается, соответственно, мы экономим материал. Не требуется дополнительная обработка металла.

Стоимость лазерного станка окупается достаточно быстро так как:

    1. экономим на расходниках
    2. экономим на материале (меньше остатков)
    3. экономим на пост обработке металла
    4. экономим на времени за рабочий день можно выполнить больший объем работы

    А теперь давайте сравним функциональность лазерных и плазменных станков

    Зависит от степени износа расходных материалов.

    При непрерывном режиме диаметр равен толщине материала. Для импульсного режима минимальный диаметр отверстия может составлять одну треть толщины материала.

    Минимальный диаметр отверстий составляет 1,5 от толщины материала, но не менее 4мм.

    Высокое качество углов

    Происходит небольшое скругление угла, из нижней части среза удаляется больше материала, чем из верхней.

    Обычно имеется (сильная)

    Присутствуют на острых наружных кромках деталей.

    Больше, чем при лазерной резке в разы.

    Очень высокая скорость при малых толщинах. Заметно снижается с увеличением толщины металла, продолжительный прожиг больших толщин.

    Быстрый прожиг, очень сильно уступает в скорости лазерному станку, в десятки раз медленнее лазера.

    Как быстро окупается лазерный станок?

    1. На лазерном станке делаются сложные высокомаржинальные изделия, которые приносят хорошую прибыль;
    2. При большой скорости увеличивается выработка;
    3. Не нужны дополнительные устройство и время на постобработку изделия.

    Поэтому лазер, несмотря на то, что превосходит плазморез в пять раз по цене, окупается гораздо быстрее. Например, если его стоимость 3 миллиона, в у плазмы 1 миллион, то плазма окупится за два месяца. При этом металлорез тоже может окупиться за два месяца, но он сделает больше выработки, чем плазма. И в следующие два месяца он принесёт гораздо больше прибыли. К примеру, плазма принесёт 1 миллион рублей, а металлорез - 3 мл рублей.

    И кроме того, функционал лазерного станка шире, чем у плазмареза. Он может резать и сложные, и простые объекты, раскладывать материал, также обладает многими функциями, о которых компания “Лазеркат” рассказывает на пусконаладке. Если раскрыть весь потенциал металлореза, он окупится ещё быстрее, отчасти благодаря более дешевым расходникам.

    Например, один наш клиент из Узбекистана, купивший нас станок для лазерной резки металла, заказал обучение и замену лазерной головы. После этого клиент спросил, почему у него при резке расходуется от 12 и более баллонов азота в день. Он вырезал круги и квадраты без режима Flycut, только по контуру. Использование данного режима позволяет резать в 10 раз быстрее, тем самым экономить ресурс излучателя, увеличивать количество производимой продукции и что самое важное - расходовать меньше газа. То есть, посредством экономии на расходниках мы имеем более быструю окупаемость.

    лазерный станок по металлу

    Благодаря совокупности этих факторов металлорез эффективнее плазмореза в десятки раз.

    Он не может конкурировать с плазмой только в единственном случае, когда нужна резка очень толстых материалов от 25 мм. Такие материалы используются, например, для производства рельс.

    Когда металлорезчик режет, например, металл толщиной 20 мм, всё равно возникает определённая шероховатость, требующая доработки. Она ниже, но она лучше, чем у плазмы. Но тем не менее шероховатость нуждается в дополнительной обработке. В такой ситуации логика приобретения лазерного станка пропадает.

    Плазменная или лазерная резка дешевле и лучше?

    Для начала необходимо разобраться, по какому принципу работают эти станки.

    Плазменная резка

    В роли режущего вещества выступает узкая струя высокотемпературной плазмы. Между соплом станка и электродом под действием высокого напряжения зажигается электрическая дуга. В сопло под давлением подается газ, который под действием разряда превращается в плазменный резак. Фактически, обработка ведется воздухом, доведенным до состояния ионизированного газа, то есть плазмы.

    Лазерная резка

    Принцип действия лазерного станка иной. Здесь в роли режущего инструмента выступает узкосфокусированный лазерный луч, обладающий необходимыми характеристиками: интенсивностью, длиной волны, другими. Продукты сгорания удаляются потоком газа.

    Данные способы резки металла в настоящее время считаются наиболее прогрессивными и эффективными. Каждый из них имеет свои преимущества и недостатки. Эти технологии в большей степени дополняют друг друга, чем конкурируют, хотя есть сферы, где можно использовать обе, и тогда разгораются споры о преимуществе одной из них.

    Так что же выбрать? Ниже будет приведен сравнительный анализ. Для корректности будет считаться, что используется оборудование одинакового уровня, например класса станков от Rabbit и Elixmate.

    Толщина и вид разрезаемого металла

    В принципе обе технологии позволяют резать любые металлы. В их числе сталь всех видов, цветные и черные металлы. При использовании лазера требуется оптимизация параметров, подбор линз и газа под конкретный металл. Допустим, в среде кислорода нержавеющую сталь качественно лазером не разрежешь, нужен инертный газ. А для черных металлов наоборот, лучше кислород. Плазма вообще режет любые токопроводящие материалы. Все зависит от состава плазмообразующего газа и зазора между поверхностью металла и соплом.

    Лазер

    Эффективен при обработке металла толщиной до 5 – 6 мм. Резка тонколистового металла осуществляется с гораздо большей скоростью, чем в принципе может плазмотрон. При обработке более толстых материалов увеличиваются энергозатраты, снижаются производительность и качество реза. Мощность приходится увеличивать в два и более раза, устанавливать линзу с более длинным фокусным расстоянием.

    Плазморез

    Для обработки тонколистовых металлов не подходит, что обусловлено чрезмерно высокой температурой плазмы и деформацией кромок. Преимущества начинают сказываться при раскрое металла толщиной от 6 мм и выше, если речь идет о стали.

    Качество реза

    Лазер

    Лазерный резак воздействует на поверхность металла сфокусированным лазерным лучом очень маленького диаметра, что обеспечивает минимальную ширину реза, равную 0,1 мм. Обычно она составляет 0,2– 0,3 мм. Это позволяет производить раскрой заготовок по сложным контурам с высокой точностью и гладкой кромкой. Сочленение вырезанных деталей не представляет сложности.

    Нагрев носит локальный характер, поэтому соседние с разрезом области не повреждаются. Также отсутствуют термические и механические напряжения и деформации металла в этих зонах. Когда подобраны правильные настройки, разрезанное изделие сразу готово к дальнейшему использованию, дополнительная обработка кромки не требуется.

    Плазма

    При обработке плазмотроном ширина реза значительно выше, и изменяется в диапазоне 0,8–5,0 мм. в зависимости от толщины металла и износа расходных материалов. Конусность колеблется от 1 до 5 градусов. О сопоставимой с лазером точности говорить не приходится. Вырезать плазмотроном отверстие геометрически правильной формы возможно, только если его диаметр в 2 раза больше толщины листа.

    Добиться гладких швов нельзя, образуется окалина. Мешает и большое количество образующегося грата. Избежать дополнительной финишной обработки не удастся. Недостатком считается невозможность обеспечить острые углы. Например, нельзя точно воспроизвести профиль колесных зубьев, причиной чего является широкий рез.

    Стоимость оборудования, затраты на эксплуатацию

    Портальная плазменная установка стоит в 5 – 6 раз меньше сопоставимого лазерного станка. Но затраты после приобретения оборудования не заканчиваются, важную роль играют эксплуатационные расходы. Они состоят из стоимости расходных материалов, комплектующих, потраченной электроэнергии, используемых газов. Помимо этого, необходимо учесть, что в отличие от лазерного плазменный рез нуждается в финишной обработке, а это дополнительное оборудование, и не дешевое.

    Комплектующие

    Главные компоненты лазерного излучателя — 3 зеркала и линза для фокусировки луча. При правильной эксплуатации срок службы линзы составляет около 6 тыс. часов, дальше она нуждается в замене. В плазмотроне периодической замене подлежит электрод, которого хватает на 800 разрядов, иногда выходит из строя сопло. И то и другое дешевле лазерных расходников. Но замена защитного экрана, кожухов меняет ситуацию.

    Затраты на расходные материалы плазмотрона в общем составляют от 44 тыс. до 74 тыс. руб., что значительно но выше, чем у лазерного резака — около 3 тыс.руб.

    Экономичность раскроя

    Лазер, благодаря узкому резу, дает возможность закрепить заготовки на минимальном расстоянии друг от друга. Тогда материал используется эффективно, количество отходов невелико.

    Плазморезу требуется «входная точка» на определенном расстоянии от зоны раскроя. Если к этому добавить более широкий рез, то материал расходуется однозначно менее рационально, чем при использовании лазерного станка.

    Затраты электроэнергии

    Здесь лазерный станок незначительно выигрывает, опять же когда раскраивается тонкий лист. При увеличении толщины ситуация меняется, лазерный резак становится более энергозатратным, и чем больше толщина, тем сильнее разница.

    Окупаемость станков

    Срок возврата вложенных денег приблизительно одинаков у обоих станков, несмотря на пятикратную разницу в стоимости. Дело в том, что благодаря более высокой точности реза и качеству кромки лазерная резка существенно выгоднее, норма прибыли выше. К этому добавляется преимущество в производительности, более широкий функционал, меньшие затраты на обслуживание. Когда оборудование окупится, лазерный станок начнет приносить большую прибыль, и значительно, особенно если полностью реализовать заложенный потенциал.

    Подытоживая, можно сказать, что при обработке тонкого металла, потребности в точном раскрое, все преимущества на стороне лазерной резки, за исключением стоимости станка. При работе с материалами толщиной около 6 мм технологии сопоставимы по эффективности. Металлы толщиной 10, 20 мм и выше лучше обрабатывать плазмотроном.

    Лазерная и плазменная резка металла: отличия

    Читайте также: