Редкие и редкоземельные металлы список

Обновлено: 22.01.2025

Редкоземы — важные и самые дорогие компоненты магнитных, оптических и электронных устройств, которые производят в оборонной и аэрокосмической промышленности: беспилотников, управляемых ракет, приборов лазерного наведения спутниковой связи и т.д.. Их называют «витаминами промышленности». Ведь эти металлы, хоть и в небольшом количестве, используются в важнейших материалах и процессах.

Редкоземельные элементы: что это такое

В Зеленой книге ИЮПАК (Международного союза прикладной и теоретической химии), представлен перечень из 17 редкоземельных металлов. Это:

  • скандий,
  • иттрий,
  • 15 лантаноидов.

В промышленности используют общепринятые аббревиатуры для обозначения редкоземов:

Сокращение

Расшифровка

Где находятся в периодической системе

Обозначение оксидов

Rare earth elements, в переводе редкоземельные элементы

№57-71: от лантана до лютеция, плюс иттрий, №39, скандий, №21

Light rare earth elements, в переводе легкие редкоземельные элементы

№57-62, начиная лантаном и заканчивая самарием

Heavy rare earth elements, в переводе тяжелые редкоземельные элементы

№63-71:, начиная европием и заканчивая лютецием, плюс иттрий

Редкоземельные элементы и минералы перечень, описание и свойства

В одну группу эти элементы объединили из-за похожих признаков. Они образуют простые вещества со следующими свойствами

  • серебристые или серые, с сильным металлическим блеском;
  • пластичные и мягкие;
  • активные, особенно при повышенной температуре или тонком измельчении.

Редкоземельные металлы обладают определенными различиями, поэтому и применяются для разных целей. Вот их краткое описание.

Наименование

Цвет

Ценные свойства металла и его соединений

Тугоплавкий, повышает прочность материалов, усиливает свечение

Повышает жаропрочность и долговечность материалов, улучшает качество свечения

Серебристо-белый, похож на кальций

Ускоряет крекинг нефти, повышает пластичность, жаропрочность и химическую устойчивость материалов

Повышает электропроводность и пластичность металлов, придает розоватый оттенок стеклу, катализатор

Улучшает свойства сверхпроводников и сплавов, придает бледно-зеленый оттенок стеклу, используется в лазерах и для получения пигментов

Улучшает качество стекла и сплавов, растворяет плутоний, повышает контрастность изображения, используется в магнитах, лазерах и излучателях

Способен к люменесценции, используется в атомных батарейках, стержнях реакторов, для ионизации воздуха

Улучшает свойства стержней для ядерных реакторов, магнитов, поглощающего инфракрасные лучи стекла, огнеупорность материалов

Повышает качество микрочипов, карт памяти, сверхпроводников, сплавов и керамики

Сильные парамагнитные свойства для получения сверхнизких температур, используется в полупроводниках и рентгеновских аппаратах

Необходим для сверхмощных магнитов и излучателей ультразвука, катализатор реакций окисления

Повышает пластичность и магнитные свойства материалов, катализатор в нефтехимии, для получения красных люминофоров

Придает сверхпроводящие свойства магнитам, применяется в лазерах, активирует люминофоры

Улучшает качество оптоволокна, магнитных сплавов, стекла, специальной керамики

Применяется в лазерах, магнитных носителях, для дефектоскопии, в диагностических приборах

Улучшает термоэлектрические и магнитные свойства материалов, обеспечивает легкость полупроводников

Повышает мощность магнитов, сверхпроводимость, жаропрочность

Но с точки зрения добычи полезных ископаемых они действительно редкоземельные. Потому что не часто встречаются в концентрированной и экономически выгодной форме.

Чем редкие металлы отличаются от редкоземов

Кроме редкоземельных, выделяют еще группу редких металлов. Их всего 18, в том числе 4 таких металла, которые можно после обогащения получать в виде концентратов: бериллий, ниобий, литий, тантал. Остальные 14 называют попутными микрокомпонентами, или рассеянными редкими металлами.

Редкие металлы значительно различаются между собой по объемам производства и областям применения.

Сколько примерно тонн производится в мире в год

Где используется

Добавка к стали и другим сплавам

В виде карбида для строительства, изготовления абразивов, сплавы в ядерных реакторах

Стекло, литье, керамика, батареи для электромобилей, лекарства

Сплавы со свинцом и другими металлами, для производства лекарств

Стекло, пигменты, фотокопировальные устройства, лекарства, удобрения, солнечные батареи

Пиротехника, сверхпроводники, протезы, зубные имплантаты, посуда, фианиты

конденсаторы для электроники, сплавы для турбин самолетов, медицинские импланты

Жидкокристаллические дисплеи, сенсорные и плоские экраны, смартфоны, компьютеры

Атомные реакторы, системы наведения, спутниковое оборудование, рентгеновские аппараты, формы для выдувания

Сплавы, солнечные батареи, полупроводники

Инфракрасная и волоконная оптика, солнечные батареи, японские ПЭТ-бутылки

Полупроводники, лазеры, светодиоды, микросхемы, безопасный заменитель ртути

Теплоносители, электролиты, измерительная техника

Электромобили и гибридные авто, металлогалогенные лампы

Ядерные реакторы, микропроцессоры

Двигатели для самолетов, ракеты, высокооктановый бензин без свинца, рентгеновские снимки, фотовспышки, лечение опухолей

Батарейки, аккумуляторы, антикоррозионные покрытия

Также к редким металлам относится таллий.

Полезные ископаемые с достаточным для добычи содержанием содержанием редкоземов называют редкоземельными минералами. Первый такой минерал обнаружили в шахте возле шведской деревни Иттерби, Это гадолинит. Он состоит из смеси редкоземельных иттербия, церия, других менее ценных веществ.

Лидирующие по мировой добыче источники РЗЭ - следующих минералы:

  • бастнезит — из него получают лантан, иттрий и церий, местность Маунтин-Пасс в Калифорнии, Байян-Обо в Китае;
  • монацит — источник церия, празеодима, гадолиния, добыча в Австралии, США, Китае, Бразилии, Красноуфимске (Свердловская область);
  • лопарит — в основном цериево-лантановый, в меньшей степени неодим и прометий, найден в Карелии, село Ловозеро, в Прибайкалье, Туве;
  • латеритные ионно-адсорбционные глины — получают иттрий, диспрозий, гадолиний, неодим, месторождения в Китае, на Мадагаскаре, небольшое в Приморье.

Редкоземы есть в ряде ниже перечисленных полезных ископаемых

Минерал

Какие РЗЭ содержит

Месторождения

Празеодим, церий, лантан, неодим, иттрий,

Хибины, Кольский полуостров

Северное Прибайкалье, Монголия

Церий, диспрозий, гольмий

Хабаровский край, Малмыжское месторождение

лютеций, диспрозий, эрбий, гольмий, иттрий, туллий, иттербий

Бразилия, Норвегия, Швеция, Северная Карелия, Южный и Северный Урал, Хабаровский край

Колумбия, Норвегия, Китай, Урал, Северные Саяны

Иттрий, европий, тербий

Южный Урал, Миасс

Кольский полуостров, Тува, Швеция, Норвегия

Эрбий, туллий, иттрий, иттербий

Норвегия, Гренландия, Швеция, Урал, Украина, Зимбабве, США

Дальний Восток, Казахстан

Челябинская область, Монголия, Китай, Кения

Диспризий, гольмий, эрбий

Россия, США, Норвегия, Бразилия, Мадагаскар

Минералы-концентраты с набором разных РЗЭ получают рядом с месторождениями из первичной руды путем ее обогащения. В Мурманской области это лопаритовый концентрат. В мировых масштабах большое всего производится следующих концентрата:

  • насыщенного раствора сорбционно-ионных руд - до 90% РЗЭ в оксидной форме;
  • ксенотимового – 25% оксида иттрия;
  • моноцитового – 55% смеси оксидов РЗЭ;
  • бастнезитового – 60-85% комплекса редкоземельных оксидов.

Чем определяется стоимость редкоземов

Всего по расчетам 2014 года мировые запасы РЗЭ составляют 147 млн тонн:

  • Китай 38% всех разведанных редкоземов,
  • Монголия 21%,
  • Бразилия 15%,
  • США 9%,
  • Япония 5%,
  • Индия 2%,
  • Австралия 1%.

Оставшиеся 9% - все остальные страны.

Но далеко не все обладатели запасов РЗЭ готовы к разработке найденных месторождений. Во-первых, получение редкоземельных металлов связано с сильным загрязнением окружающей среды. При производстве 1 тонны РЗЭ из руды по стандартной китайской технологии образуется:

  • 1 тонна радиоактивных отходов;
  • 12000 кубометров газовой смеси с пылью, фтороводородной и серной кислотой, диоксидом серы;
  • 75 кубометров кислотного раствора.

Это приводит к загрязнению сточных вод, а следом за ними пахотных земель и рек. В том числе Хуанхэ, из которой берут питьевую воду полторы сотни миллионов людей. В нее попадает торий, элемент с высокой радиоактивностью.

Во-вторых, для запуска проектов по добыче редкоземов нужны большие стартовые капиталы. В результате расчетная себестоимость очищенных металлов окажется намного больше, чем у китайских конкурентов.

Например, австралийская компания Nothern Minerals собирается получать окись диспрозия и продавать килограмм по 720$. Китай сейчас продает это же сырье по 400$. Похожие проекты есть у канадских компаний Great Vestern Minerals и Tastan Metals. Последняя предполагает продавать все ту же окись диспрозия за 580$. В США Rare Element Resourse планирует цены на оксид этого же редкозема 655$/кг, а на окись европия 950$/кг.

В ближайшие годы другим странам, желающим производить РЗЭ, будет трудно конкурировать с Китаем. Ведь там дешевая рабочая сила и пренебрежение к требованиям экологии позволяют держать цены на достаточно низком уровне.

Редкоземельные элементы и производство гаджетов
Рост потребности в редкоземах растет параллельно тому, как высокотехнологичная техника становится необходимой для всех и каждого, определяет уровень и качество жизни. Часто цена гаджета в значительной доле определяется наличием и количеством редкоземельных и редких металлов в его электронной начинке.

Почему смартфоны Apple такие дорогие? На это есть ряд причин, и одна из них — использование РЗЭ. Причем не одного-двух, а как минимум девяти:

  • гадолиния — в дисплеях, динамиках и электронных схемах,
  • диспрозия — добавка в магниты электросхем для для сохранения свойств при нагреве и температурных перепадах,
  • европия — для красного светящегося вещества дисплея,
  • иттрия — для дисплеев, светодиодов,
  • лантана — в электронных схемах, дисплее, шлифованном стекле, для оптических линз,
  • неодима — магниты в схемах и динамиках из сплава с железом и бором,
  • празеодима — добавка в неодимовые магниты, дисплей, динамик,
  • тербия — для зеленого люминесцирующего вещества на дисплее, в динамиках, схемах и вибрационном механизме для защиты мини-магнитов от высоких температур,
  • церия — для шлифованного стекла.

Из этих редкоземельных элементов только четыре – церий, лантан, празеодим и неодим –поставляются для Apple американской компанией Molycorp и австралийской Lynas Corp. Остальные пять добывают преимущественно в Китае. Если Китай запретит экспортировать свои РЗЭ, то у Apple могут появиться серьезные проблемы.

В каждом из пяти важнейших узлов iPhone — дисплее, микросхеме, динамиках, механизме вибрации и шлифованном стекле — есть как минимум один редкоземельный металл, который на данный момент можно получить только из Китая.

Можно производить iPhone без европия, неодима, диспрозия и тербия, если заменить их более дешевыми и доступными металлами. Но это ухудшит цветовое отображение на дисплее , увеличит вес гаджета, снизит скорость работы и устойчивость к высоким температурам. То есть качество продукции Apple серьезно пострадает.

Если Apple и другие богатые компании, нуждающиеся в редкоземах, такие как Tesla , Intel , HP , материально поддержат американские проекты по добыче РЗЭ, то это поможет снизить зависимость от Китая. Но пока что цена вопроса слишком большая.

Редкоземельные металлы

Редкоземельные металлы – группа из 17 химических элементов таблицы Менделеева. Они обладают одинаковым строением атомов, а также имеют схожие химические и физические свойства. Редкоземельные элементы применяются в различных промышленных сферах: в радиоэлектронике, атомной энергетике, машиностроении, химической промышленности и металлургии.

Редкоземельные металлы

Металлы, составляющие группу редкоземельных

По состоянию на 2019 г., в список редкоземельных металлов входят следующие химические элементы:

  1. Скандий: назван в честь Скандинавии.
  2. Иттрий: получил наименование в честь населенного пункта Иттербю, расположенного на территории современной Швеции.
  3. Лантан: в переводе с греческого языка наименование этого элемента означает «таинственный, скрытный».
  4. Церий: назван в честь римской богини Цереры и одноименной карликовой планеты в солнечной системе.
  5. Празеодим: в переводе с греческого языка наименование этого элемента обозначает «зеленый близнец».
  6. Прометий: назван в честь древнегреческого мифического персонажа Прометея.
  7. Неодим: в переводе с греческого языка означает «новый близнец».
  8. Самарий: получил наименование в честь минерала самарскит.
  9. Европий: назван в честь одноименной части света.
  10. Гадолиний: получил наименование в честь финского химика Юхана Гадолина.
  11. Диспрозий: в переводе с греческого языка наименование этого элемента означает «труднодоступный».
  12. Гольмий: назван в честь столицы Швеции – Стокгольма.
  13. Эрбий: получил наименование в честь шведской деревни Иттербю.
  14. Лютеций: назван в честь старинного названия столицы Франции, используемого древними римлянами.
  15. Иттербий: получил наименование в честь населенного пункта Иттербю.
  16. Тулий: получил наименование в честь сказочного острова Туле, описанного в скандинавской мифологии.
  17. Тербий: назван в честь деревни Иттербю.

Термин «редкоземельные» образован от словосочетания «редкие земли». Он объединяет химические элементы по следующим признакам:

  1. Вещества редко встречаются в естественной среде. В нынешнее время только 2% редкоземельных металлов добываются в земной коре. Извлечение металлов в большинстве случаев осуществляется из отходов производства минеральных удобрений. Добыча осуществляется с применением инновационных технологий.
  2. При взаимодействии с кислородом элементы образуют тугоплавкие, нерастворимые оксиды, называемые «землями».
  3. Представляют собой серебристо-белые металлы, тускнеющие при взаимодействии с воздухом в результате образования оксидной пленки.

Редкоземельный металл лантан является одним из самых дорогих химических элементов. При взаимодействии с алюминием он образует вещества с повышенной интенсивностью поглощения углерода и азота. Благодаря низкой активности по отношению к H2, его можно применять для изоляции водорода от окружающих газов.

Лантан

Редкоземельные соединения отличаются между собой по химической активности. Этот параметр возрастает от скандия до лантана. До лютеция химическая активность снижается до минимальных значений. Это явления обусловлено постепенным снижением расстояния между атомами и энергетическими уровнями.

В научной литературе редкоземельные металлы имеют следующие обозначения:

  1. TR: аббревиатура, обозначающая “редкие земли” (Terrae rarae).
  2. REE: сокращение английского словосочетания Rare-earth elements (редкоземельные элементы).
  3. REM: сокращение английского словосочетания Rare-earth metals (редкоземельные металлы).

В российских учебниках редкоземельные элементы обозначаются аббревиатурами РЗЭ или РЗМ.

История открытия редкоземельных металлов

Впервые редкоземельные металлы были изучены финским химиком Юханом Гадолином в конце XVIII столетия. В 1794 г. ученый во время изучения рудных образцов, найденных вблизи деревни Иттербю, открыл “редкую землю”, названную иттриевой. В начале XIX в. немецкий химик Мартин Клапрот создал первую классификацию редкоземельных соединений. Он раздел эти элементы 2 группы: иттриевые и цериевые.

Иттрий

Спустя несколько десятилетий шведский химик Мосандер выявил наличие новых редкоземельных металлов. В 1840-х г. ученый выделил из образцов “редких земель” окись церия, тербиевую и эрбиевую земли. К концу XIX столетия в мире было открыто 16 редкоземельных элементов. В XX в. был открыт последний редкоземельный металл — прометий. Ее исследованием занимались русские химики Маринский и Гленделин. На основе их экспериментов были проведены опыты по использованию осколков деления атомов урана в ядерном реакторе. По состоянию на 2019 г. группа редкоземельных металлов состоит из 17 химических соединений. В таблице Менделеева они расположены в ячейках 21, 39 – 57, 57 – 61.

Запасы редкоземельных элементов

Общее количество по массе редкоземельных металлов в природе составляет не более 0,02%. Чаще всего в недрах Земли находятся церий, лантан и неодим. Наименее распространенным соединением является Европий. Ее процентное содержание в недрах Земли составляет не более 0,0013% от его общей массе.

Запасы редкоземельных элементов

В мире редкоземельные металлы находятся в 240 минеральных веществах: фторидах, силикатах и фосфатах. 62 минерала используются в качестве промышленного сырья: монацит, апатит, бастнезит и эвксенит. Процентное соотношение РЗЭ в составе минеральных веществ неодинаково. В бастнезитах содержатся преимущественно представители цериевой подгруппы, в апатитах – иттриевой.

Редкоземельные элементы содержаться в естественной среде совместно, образуя сульфиды или галоидные соединения. Валентность веществ составляет не более 3+. В природе церий может образовывать четырехвалентные соединения, что обусловлено особенностями строения его электронной оболочки.

Основные запасы редкоземельных металлов содержатся в следующих странах:

  • США: 13000000 т;
  • Австралия: 1600000 т;
  • Бразилия: 36000 т;
  • Китай: 55000000 т;
  • Индия: 3100000 т;
  • Малайзия: 30000 т.

В России 90% редкоземельных элементов импортируется из других стран. Это обусловлено тем, что на российском рынке наблюдается низкий спрос на данные соединения. Из-за развития научно-технического прогресса наибольшее количество редкоземельных ресурсов потребляется развитыми странами Европы и Северной Америки.

Добыча

Добыча редкоземельных металлов из отходов фосфорных удобрений является одной из самых инновационных технологий. Наличие в породном отвале большого количества гипса обуславливает высокую водостойкость и механическую прочность сырья. Эта технология извлечения РЗМ позволяет добыть до 800 000 ценных химических элементов и утилизировать отходы при производстве фосфорных удобрений. Она представляет собой замкнутый цикл. В результате переработки минеральных удобрений выделяются строительный гипс и оксиды редкоземельных металлов: неодима, тербия, церия, диспрозия, празеодима и лантана.

Существуют 3 метода переработки отходов от производства удобрений:

  1. Разложение материала с помощью плавиковых или серных кислот: позволяет удалять из веществ оксиды азота в процессе реакции обмена.
  2. Хлорирование: атомы неметаллов сменяются на хлор в результате химической реакции замещения.
  3. Сплавление гидроксидами, растворимыми в воде: в результате реакции гидролиза из РЗМ удаляются сульфированные поверхностно-активные вещества.
  4. Химическое восстановление кальцием: осуществляется в бескислородной среде или в атмосфере аргона. Эта процедура позволяет избавиться от самых прочных химических окислов.

В результате образуется хлориды, сульфаты и оксиды, из которых извлекаются редкоземельные соединения. Для очистки РЗЭ от примесей используются технологии вакуумного переплава или дистилляции.

Добыча РЗМ

Наибольшее количество РЗМ добывается на территории США, Канады, Австралии и КНР. С 2010 г. спрос на эти химические соединения растет во многих индустриальных отраслях: машиностроении, электронике, ядерной энергетике и химической промышленности. Одним из крупнейших месторождений редкоземельных металлов является Bayan Obo, расположенное в Китае. Здесь содержится 44 млн. оксидов. Китай экспортирует сырье во многие страны Европы, Азии, Северной Америки и Африки. С 2010 г. КНР сокращает экспорт РЗМ, что связано с ростом потребления на внутреннем рынке. В результате во многих странах возникла физическая нехватка редкоземельных ресурсов.

В Российской Федерации добыча РЗМ из горных пород является нерентабельным занятием, что обусловлено низким потреблением этих металлов. Наибольшее количество редкоземельных элементов используют государственная корпорация “Ростехнологии” и предприятия оборонной промышленности. В России РЗМ добываются на территории Мурманской области и Республики Саха (Якутии). В данных регионах находятся крупнейшие месторождения редкоземельных металлов: Ловозерское и Томторское. С 2016 г. в РФ действует госпрограмма по созданию отраслевых предприятий, обеспечивающих российскую промышленность редкоземельными элементами. Она позволила улучшить методы добычи РЗМ и ликвидировала зависимости экономики России от импортных материалов.

Свойства редкоземельных металлов

Редкоземельные металлы имеют серебристый или желтый окрас. Они поддаются механической обработке и проводят электрический ток. Свойства РЗМ могут изменяться при переходе веществ из металлического состояния в парообразное. При высоком давлении и большой разнице в энергии атомные радиусы уменьшаются, что приводит к увеличению плотности простых веществ.

Тепловые свойства РЗМ

Физические свойства

Плотность РЗЭ составляет 6000–7000 кг/м 3 . Температура плавления вещества равняется 900 °С. Переход веществ в газообразное состояние осуществляется при температуре от 3500 °С. Наибольшим захватом тепловых нейтронов обладают гадолиний, самарий и европий. При нагревании до высоких температур элементы становятся пластичными и легко поддаются прокатке или ковке.

РЗМ обладают магнитными свойствами. Они относятся к классу парамагнетиков. Магнитная восприимчивость соединений зависит от их температуры. Гадолиний, Диспрозий и Гольмий располагают ферромагнитными свойствами. Они могут увеличить свое магнитное поле в несколько раз при нагреве до критических температур. В естественной среде большая часть редкоземельных металлов являются сверхпроводниками. Переход сверхпроводящее состояние осуществляется при охлаждении веществ до температуры -268,15 °С. Величина данного показателя зависит от избыточного давления.

Механические свойства

Механические свойства РЗЭ находятся в зависимости от количества примесей, содержащихся в веществе: кислорода, серы, азота и углерода. Ими обладают большинство представителей иттриевой и цериевой подгрупп. Чистые металлы, в которых содержится меньше 1% примесей, имеют твердость 500 Мпа. Этот показатель зависит от температуры химического соединения. При охлаждении вещества до 800 °С твердость элемента составляет 30 МПа. Если понизить температуру вещества до 550 °С, то оно полностью размягчится, что обусловлено полиморфным превращением.

Физические свойства лантаноидов

При температурах 20-800 °С повышается пластичность редкоземельных металлов. Во время нагревания внутренняя структура элементов переходит на кубическую модификацию. Во время растяжения РЗМ полностью разрушаются при давлении в 150 Мпа. При более низких значениях этого показателя соединения деформируются. Удельное растяжения металлов составляет не менее 12%.

Химические свойства

При взаимодействии с молекулами кислорода РЗЭ покрываются тонкой оксидной пленкой, защищающей металлы от физических деформаций и воздействия иных химических элементов. При высокой влажности вещества начинаются окисляться с большей интенсивностью и превращаются в щелочи. Данный химический процесс осуществляется при температурах до 250 °С. При дальнейшем нагревании в кислородной среде металлы начнут окисляться с выделением большого количества тепловой энергии.

Наибольшей реакционной способностью располагают скандий и иттрий. При нагревании до 400 °С они вступают в реакции с водородом, образуя гидриды. Полученные вещества имеют высокую плотность и могут взаимодействовать с солями. Церий обладает свойством пирофорности. При разрезании этого элемента на воздухе образуется множество искр. В этом случае выделяется до 220 ккал тепла.

Химические свойства РЗЭ

Степень окисления редкоземельных соединений равняется +3. Поэтому эти способы образовывать тугоплавкие, твердые и крепкие оксиды. При взаимодействии с водой РЗМ образуют малорастворимые гидроксиды. Растворимость элементов зависит от ряда активности и свойств амфотерности. Из-за высокой активности металлов, соли редкоземельных соединений быстро растворяются в сильных кислотах, относящихся к минеральной группе химических веществ. При взаимодействии РЗМ с неметаллами VI – VII групп получаются галогены. РЗЭ могут вступать в реакцию с селеном, бромом, йодом при нагревании. Они инертны к большинству растворимых гидроксидов.

Применение редкоземельных металлов

Редкоземельные металлы нашли применение в следующих областях:

  1. Производство винчестеров и звуковых динамиков.
  2. Изготовление фотокамер, телескопических объективов, проекторов, приспособлений для студийного освещения и аккумуляторов.
  3. Переработка сырой нефти.
  4. Разработка усиленных металлов и стекол, применяющихся в авиационных моторах и защитных масках для строителей.
  5. Создание жидкокристаллических дисплеев, аппаратов для МРТ, рентгеновских систем, энергосберегающих ламп и ядерных реакторов.

Применение РЗМ

Также РЗЭ используются для изготовления добавок и эмалей, необходимых для модификации материалов. Они улучшают пластичность и прочность сырья, что увеличивает срок службы различных аппаратов и металлических устройств. Благодаря повышенной скорости поглощения окисей углерода и азота, РЗМ могут применяться в водородных тиратронах в качестве изолирующего материала.

Применение редкоземельных элементов оказывает негативное влияние на экологию планеты. В результате добычи и производства РЗЭ в атмосферу выбрасывается большое количество вредных веществ и токсинов, включая углерод. В настоящее время разрабатываются технология определения токсичности РЗМ при помощи биотестирования. Ученые создают биосенсоры, определяющие влияние металлов на организм человека при помощи специальных биосенсоров. При изготовлении тестовых приспособлений используются экологически чистые материалы: Paramecium Bursaria и водоросли Chlorella.

На редкоземельной игле


Потребление редкоземельных металлов, или, как их называют специалисты, редких земель растёт достаточно бурно. В 1980 году в мире добывалось 25 тыс. т. К 2010 году эта цифра выросла в пять раз — 125 тыс. т в пересчёте на оксиды (принятая мера учёта). Годовой оборот рынка сегодня оценивается в 10 млрд. долларов и к 2015 году, по прогнозам экспертов, может вырасти вдвое. При современных темпах развития технологий через пять лет нам понадобится не менее 200–225 тыс. т РЗМ.

Так сложилось, что за последние 15–20 лет 95–97% всей редкоземельной продукции на глобальный рынок поставлял Китай. Осенью 2006 года Пекин поднял налоги на её экспорт. В августе 2010 года урезал экспортные квоты на 72%. А в течение 2011 года обещал сократить их ещё на 30%. В 2012–2014 году КНР планирует полностью прекратить вывоз РЗМ за рубеж, объясняя свои намерения истощением ресурсов, нарушением экологии и возрастанием внутренних потребностей. Решение китайских властей вызвало ажиотаж, если не сказать панику, на мировом рынке. Соответственно и цены на РЗМ подскочили на порядок.

ИСТОРИЯ КИТАЙСКОГО УСПЕХА

Экспансия Китая на рынок редких земель 30 лет назад, ещё в 1981 году, когда было открыто и освоено гигантское коренное бастнезитовое месторождение Баян-Обо, потенциал которого оценивался в 36 млн. т оксидов РЗМ. Для сравнения — все мировые запасы исчисляются 88 млн. т.

— Не знаю, миф это или правда, — рассказывает нашей газете начальник лаборатории отделения «Редкие металлы» ВНИИХТ, один из теперь уже немногих в нашей стране экспертов по редкоземельной продукции Андрей Селивановский, — но Ден Сяопину приписывают такие слова: «У нас нет нефти, зато у нас есть редкие земли».

И действительно, в КНР со всей серьёзностью подошли к добыче востребованного сырья. Это стало истинно народным делом.
— Однажды, в 1990‑х, наш институт посетил гость из Китая, — продолжает Андрей Селивановский, — и мы спросили, как у них обстоят дела с редкими землями. Он ответил: в нашей деревне неплохо. Оказалось, это была не шутка.

Некоторая доля суммарных редкоземельных концентратов была выведена из-под государственного контроля. Причина в том, что часть редкоземельных руд Китая — это, по сути, глины. Содержание целевого сырья в них очень мало, а сами глины рассредоточены по обширной территории. Промышленная переработка в этом случае нерентабельна. И вот что было придумано: в крестьянские дворы по всей стране завозились глина и необходимые реактивы, к примеру сульфат натрия и щавелевая кислота. Люди помещали глину в бочки, разводили водой, размешивали палкой или мотором, добавляли сульфат натрия, затем фильтровали раствор, засыпали в него щавелевую кислоту и собирали осадок солей РЗМ с чистотой около 75%. Эти соли сдавали на частные предприятия, естественно, за деньги. Там соли очищали от примесей и получали чистый суммарный редкоземельный концентрат в виде оксидов. Продукт сбывали государству. Разделение же суммарных концентратов на элементы полностью находилось в руках государства. Со временем заводы тоже перешли к частным владельцам, но контроль производства и жёсткое наблюдение за распределением по-прежнему осуществлялись сверху. Страна постоянно наращивала разделительные мощности, чтобы продавать за рубеж как можно больше дорогих отдельных элементов и как можно меньше дешёвого суммарного концентрата. Разница в цене между ними весьма значительная. Суммарные концентраты сегодня стоят в районе 40 долларов за килограмм, а раздельные редкоземельные элементы — от 30 долларов за килограмм самария до 10 тыс. долларов за килограмм лютеция.

С конца 80‑х годов прошлого века Китай регулярно поставлял всему миру редкие земли на самых выгодных условиях. В 90‑х благодаря демпингу Китая цены на сырьё упали в два-четыре раза. Дело и в том, что выделение редкоземельных металлов из породы — процесс не только дорогой, но и экологически «грязный», а в КНР про экологию и экологические законы тогда ещё никто толком не слышал. В результате из-за китайского демпинга большинство рудников со сравнительно высокой себестоимостью добычи повсеместно стали закрываться. В том числе, месторождение «Маунтин Пасс» (Калифорния, США), где запасы полезных компонентов составляли несколько миллионов тонн и которое с середины 60‑х до середины 80‑х оставалось основным источником редкоземельного сырья в мире. СССР, добывавший до 1986 года 8 тыс. т редких земель в год, не стал исключением. Прекратили деятельность разделительные заводы во Франции и Штатах. Китай превратился в почти полного монополиста — по добыче, обогащению, первичной переработке, сепарации с получением индивидуальных элементов и конечных соединений. А в последние годы страна ощутимо увеличила использование редких земель в собственных высокотехнологичных производствах.

— Если посмотреть на графики по добыче и использованию РЗМ в Китае, — подытоживает Андрей Селивановский, — можно увидеть, что к 2012–2014 году обе кривые должны сравняться. Экспорт сойдёт на нет.

Все эти годы и у нас, и на Западе некоторые специалисты продолжали настаивать на том, что редкие земли — стратегическое сырьё и что необходимо их производить самим. Однако данная сфера долгое время оставалась вне поля зрения большинства государств.

ЗАЧЕМ ОНИ НУЖНЫ

Редкие земли — это действительно стратегическое сырьё для любой крупной экономики. Например, выделение плутония из очень похожего по атомным свойствам урана происходит с помощью фторида лантана. В производстве монокристаллов для твердотельных лазеров (алюмоиттриевый, алюмогадолиниевый гранат) используется почти весь спектр редкоземельных элементов, и в первую очередь неодим, иттрий, церий, гадолиний и эрбий. Гадолиний, эрбий, диспрозий и европий благодаря уникальной способности поглощать нейтроны (высокому сечению захвата) добавляют в регулирующие стержни и в топливо для ядерных реакторов (уран-гадолиниевое и уран-эрбиевое). Например, доли процента эрбия могут продлить топливную кампанию на АЭС с трёх до пяти лет. Из этих же металлов делают специальные покрытия для защиты от радиации, используют в нейтронозахватной терапии для лечения запущенных раковых образований в головном мозге.

Редкие земли незаменимы в металлургии. Их смесь, так называемый мишметалл (сплав РЗМ, содержащий 45–50% Се, 20–25% La, 15–17% Nd и 8–10% других элементов), добавляется в сталь и абсорбирует паразитные элементы, такие как кислород, сера, фосфор. В результате сталь становится хладостойкой, жаропрочной, гибкой, улучшается её устойчивость к коррозии и вязкость. Также РЗМ используются для легирования титана, алюминия и других цветных металлов. Например, с помощью ввода иттриевой крошки на наноуровне в нержавеющую сталь во ВНИИНМ им. Бочвара в 2010 году сделали оболочки твэлов для БН‑1200, которые будут выдерживать немыслимые ранее нагрузки — температуру до 1,2 тыс. градусов и мощное облучение.

Из самария-кобальта и ниодима-железа-бора сегодня изготавливают постоянные магниты, значительно превосходящие старые бариевые и стронциевые магнитотвёрдые ферриты. Без редкоземельных магнитов сегодня немыслимо почти ни одно электронное устройство.

Полирит, то есть оксид церия, служит как для полировки обычных зеркал, так и для производства жидкокристаллических дисплеев и светочувствительных стёкол, полировки оптических линз и драгоценных камней. Что же касается добавки РЗМ в состав оптических линз, то именно за счёт них появляются уникальные свойства селективного пропускания и высокого коэффициента преломления. РЗМ востребованы как катализаторы для оптимизации выделения из нефти светлых нефтепродуктов.

Редкие земли используются в люминофорах, компонентах аудиосистем, в качестве маркеров в медицине. Ими легируют кремний для полупроводников. Кроме того, установлена закономерность — чем «выше» технология, тем больше для её применения нужно РЗМ. Так, для одного гибридного автомобиля, соответствующего последним европейским экологическим стандартам, требуется уже около 10 кг редкоземельных металлов — в основном в моторе и в аккумуляторной батарее. В общем, современное мировое сообщество, учитывая его страсть к инновациям, крепко сидит на редкоземельной игле.

СТАРЫЕ НОВЫЕ КОПИ

Теоретически выхода два: слезть с иглы либо уничтожить монополию Китая. Отказываться от достижений современной науки — солнечных батарей, мобильных телефонов и компьютеров, никто не собирается. Так что практически выход один: возродить добычу и производство РЗМ во всём мире. И хотя процесс обещает быть длительным и очень дорогим (по экспертным оценкам возрождение редкоземельной индустрии потребует 10 лет и десятков миллиардов долларов вложений), именно этим сегодня в экстренном режиме занимаются многие государства. Американцы в прошлом году создали специальный консорциум, среди задач которого лоббирование в Конгрессе и правительстве необходимости срочной реанимации промышленного комплекса РЗМ. США не только восстанавливают месторождения на территории страны, но и вне её. Так, компания Less Common Metals планирует запустить работы на законсервированном в 1963 году руднике Стинкапмскраль (ЮАР), бывшем в своё время мировым лидером по добыче тория.

Добавим, что в основном возрождение собственной редкоземельной промышленности в развитых странах сегодня поддерживается государственными инвестициями.

ШАНС ДЛЯ РОСАТОМА

— 20 лет назад редкоземельный комплекс СССР занимал третье место в мире по производству и второе место по запасам, — сказал в конце декабря директор ОАО «ВНИИХТ» Геннадий Сарычев, выступая на одном из совещаний в Рос­атоме, — полностью обеспечивая потребности внутреннего рынка и экспорта. В 1990 году было произведено 8,5 тыс. т РЗМ, при этом 5,5 тыс. т выдали предприятия Минсредмаша. Внутри страны потреблялось порядка 5 тыс. т. В настоящее время указанное производство отсутствует, а все потребности страны удовлетворяются за счёт импорта. Однако ОАО «ВНИИХТ» сохранило все необходимые компетенции, технологии и кадры и способно взять на себя технологическое лидерство по вскрытию руд, выщелачиванию и разделению суммарных концентратов РЗМ с получением групповых и индивидуальных элементов.

Добавим, что в 2010 году вышло распоряжение Росатома по подготовке тематической федеральной целевой программы. ВНИИХТ, как ведущий НИИ в области РЗМ, активно работает этом направлении. В результате, если у всех всё получится, Россия вообще и Росатом в частности могут превратиться в одного из крупнейших поставщиков редкоземельной продукции в мире. Не было бы, как говорится, счастья…

— Доля редкоземельных металлов в промышленной продукции, — говорит Андрей Селивановский, — мала. Вторичная переработка и извлечение РЗМ из отходов производства в основном низкорентабельно. Остаются руды.

В мире для добычи редких земель используются специальные руды. Особенность минерально-сырьевой базы России в том, что чисто редкоземельных руд у нас нет. Есть комплексные, в которых, в том числе, содержатся РЗМ.

Единственным источником сырья в настоящее время является месторождение «Ловозеро» на Кольском полуострове, где добываетсяч минерал лопарит, который затем отправляется на переработку в Соликамск. Там из лопарита извлекают тантал, титан и ниобий. Затем редкоземельный остаток дезактивируется и направляется в Эстонию для получения индивидуальных редкоземельных элементов. И только небольшая часть попадает на наш Чепецкий механический завод, в город Глазов. Если построить новое разделительное производство (его в России нет), то весь цикл можно восстановить.

Правда, остаётся ещё один очень важный вопрос — кадровое обеспечение этой деятельности. Специалисты по редким землям в России есть, но их крайне мало. Впрочем, тема кадрового дефицита сегодня актуальна практически для всех отраслей отечественной промышленности.

РЕСУРСЫ ЕСТЬ

Что же касается потенциального сырья, его в России достаточно: запасы РЗМ составляют 30% от мировых, то есть второе место по разведанным запасам и первое по прогнозным. РЗМ учтены в рудах 14 месторождений, причём преобладающая часть (60,2%) находится в апатит-нефелиновых рудах Кольского полуострова, при переработке которых РЗМ не извлекаются. Остальные запасы относятся к лопаритовым рудам Ловозёрского месторождения (14,2%), редкоземельно-апатитовым рудам Селигдарского месторождения в Якутии (22,8%) и, как попутные компоненты, редкометалльным рудам Улуг-Танзекского и нефтеносным песчаникам Ярегского месторождения.

— Месторождения в республике Саха очень перспективные, — говорит Андрей Селивановский, — но расположены они за полярным кругом, и строительство там комбината обойдётся в гигантскую сумму.

Месторождение на территории Якутии уникальное. Содержание редких земель в его рудах достигает феноменальных показателей в 12%. При этом разведанные запасы руды составляют 150 млн. т, а прогнозные едва ли не больше всех мировых. Более того, эти руды в значительных количествах содержат редкие металлы, в частности большие концентрации (около 5%) ниобия.

— А вот апатиты Кольского полуострова близко, и они вовсю используются, — продолжает мой собеседник, — из них делается лучшее в мире удобрение. По одной из технологий для получения из апатитов удобрений используется азотная кислота. При растворении в ней апатитов, процентов 80 редких земель переходят в раствор вместе с фосфором. И пропадают в полях. Но есть метод, мы принимали участие в его разработке, при котором после небольших изменений процесса переработки апатитов в удобрения можно организовать извлечение редких земель.

По другой технологии удобрение из апатитов делается посредством растворения в серной кислоте. При этом редкие земли в раствор не переходят, а остаются в отвале, который называется фосфогипсом и образует целые горы. На одном Воскресенском заводе фосфогипса 10–12 млн. т. Однако извлечь редкие земли из него куда сложнее, чем из раствора апатита в азотной кислоте. Это можно сделать, только если государство начнёт финансировать уничтожение отвалов фосфогипса. Заметим, что в апатите элементов среднетяжёлой подгруппы уже 8–9%, что совсем неплохо по мировым стандартам.

Ресурс редкоземельных металлов у России есть, находится он недалеко и уже разрабатывается. Осталось построить разделительное производство, войти в цепочку по переработке апатитов и можно восстановить своё третье место в мире по производству РЗМ.

Уникальные свойства редкоземельных металлов и их значение для отечественной промышленности в условиях неопределенности


Основной спрос на РЗМ генерируется технологически развитыми странами: Китай (54%), Япония и Южная Корея (24%), Европейские страны (13%) и США (8%). Тем временем предложение РЗМ на мировом рынке ограничено: 97% рынка приходится на поставки из Китая. Благодаря своим сырьевым запасам, низким экологическим требованиям и дешевой рабочей силе, Китай на протяжении 15 лет поставлял РЗМ на мировой рынок по демпинговым ценам, что приводило к нерентабельности производства РЗМ где-либо за пределами Китая. Поэтому цены на данном рынке подвержены значительным колебаниям и определяются в зависимости от экспортных квот Китая.

Так, в 2010 г. Китай резко сократил экспорт РЗМ и заявил о намерении полностью прекратить экспорт РЗМ к 2015-2016 г, в связи с ростом их внутреннего потребления. В результате, в 2011 г. цены на мировом рынке РЗМ выросли в 5-10 раз. В 2012 г. под угрозой принятия санкций ВТО, Китай частичного восстановил экспортные поставки РЗМ, что отразилось на снижении цен до привычного уровня. Дальнейшее развитие ситуации на рынке прогнозируется в таком же неблагоприятном ключе в силу физической нехватки РЗМ на мировом рынке. Перед странами мира встала серьезная проблема обеспечения своих национальных экономик редкоземельными металлами. В странах-потребителях РЗМ, таких как США и Австралия, были приняты экстренные меры по развитию научно-технологической базы для получения РЗМ, в результате чего к 2020 г. доля Китая на рынке РЗМ должна сократиться в два раза.

С целью «удовлетворения потребностей отечественного оборонно-промышленного комплекса, гражданских отраслей экономики и выхода на зарубежные рынки», как отметил в своем выступлении заместитель Министра промышленности и торговли Российской Федерации Глеб Никитин, в России была разработана программа «Технологии редких и редкоземельных металлов», также на данный момент разработана программа «Развитие промышленности и повышение ее конкурентоспособности на период до 2020 года», в которую входит подпрограмма «Развитие промышленности редких и редкоземельных металлов».

На сегодняшний день Россия занимает второе место после Китая по балансовым запасам РЗМ, которые оцениваются в 28 млн. тонн оксидов, что делает нас серьезным игроком на мировом рынке в перспективе. Прогнозные ресурсы России составляют 5,2 млн. тонн и являются крупнейшими в мире. Российские запасы РЗМ сосредоточены в 16 месторождениях. Из них наибольший интерес вызывают: Ловозерское лопаритовое месторождение, Томторское месторождение и Хибинская группа месторождений апатитовых руд.

Однако, вследствие низкого содержания РЗМ в рудах, их извлечение чаще всего признается нерентабельным. К тому же на внутреннем российском рынке спрос на РЗМ до настоящего времени был не высок, всего около 2 тыс. тонн/год (2-3% от мирового потребления) и генерируется лишь двумя потребителями: госкорпорацией «Ростехнологии» и предприятиями оборонно-промышленного комплекса. Это лишний раз свидетельствует о техническом отставании ряда отраслей промышленности России от мирового уровня развития. В результате, на сегодняшний день РЗМ в России практически не добываются. В незначительных объемах (менее 2 тыс. тонн) добыча идет на Ловоозерском месторождении, вся продукция которого идет на экспорт в силу отсутствия в России предприятий промежуточного передела. Существующий внутренний спрос полностью удовлетворяется за счет импортных поставок РЗМ из Китая. В свете сложившейся ситуации на мировом рынке РЗМ, такая зависимость от китайского импорта является фактором риска для национальной безопасности и развития отечественной промышленности.

Поэтому поставленная задача обеспечения российской экономики РЗМ является стратегической. В рамках разработанной Госпрограммы предполагается освоение месторождения РЗМ Томтор в Якутии уже с 2015 г., что стало возможным в результате развития отечественных технологий и инноваций (руды Томтора радиоактивны). В программе предполагается участие двух крупных государственных корпораций – «Ростехнологии» и «Росатом».

Томторское комплексное редкометальное месторождение находится на северо-западе Республики Саха (Якутия) Российской Федерации, в пределах Оленекского улуса, в 400 км к югу от побережья моря Лаптевых, на водоразделе рек Уджа и Чима-ра. Практическая значимость нового типа руд Томтора определяется набором, колоссальными запасами и уникальными концентрациями ниобия (Nb), иттрия (Y), скандия (Sc) и тербия (Tr). Руды участка первоочередной отработки при планировавшихся незначительных объёмах добычи хватит более чем на 100 лет эксплуатации при окупаемости основных фондов предприятия от 4 до 7 лет. Объём кондиционных руд участка Буранный, подсчитанный по бортовому содержанию Nb2O5 1%, составляет колоссальную цифру 42,7 млн. т. На государственный баланс поставлены запасы нового геолого-промышленного типа по категориям В+С, предназначенные для открытой отработки по бортовому содержанию Nb2O5 3,5% и предельном коэффициенте вскрыши 3,5 м/м3 в объёме около 1,2 млн. т. Таким образом, на сегодняшний день Томторское месторождение по праву является лидером среди редкометалльных гигантов. По запасам и концентрациям Nb2O5 и TR2O3 , оно превышает все известные мировые аналоги и является уникальным. Так, месторождение Араша (Бразилия), дающее более 80% мировой добычи ниобия, содержит руды с концентрациями 2,5% Nb2O5, а в крупнейшем редкоземельном месторождении Bayan Obo (Китай) содержатся руды с концентрациями TR2O3 около 10%.

Содержания в балансовых рудах Томторского меторождения составляют следующие элементы: Ниобий: Nb2O5 - 6,71%; Иттрий: Y2O3 - 0,595%; Скандий: Sc2O3 - 0,048%; Тербий: Tr2O3 9,53%.

В настоящее время свойства и возможности этих элементов по достоинству оценены авиастроением, машиностроением, радиотехникой, химической промышленностью, ядерной энергетикой.

В свою очередь Ниобий нашел свое применение в производстве контейнеров для хранения радиоактивных отходов или установок по их использованию. Легированная ниобием сталь приобретает высокие антикоррозионные свойства и не теряет своей пластичности. Он увеличивает прочность таких металлов, как титан, молибден, цирконий, и одновременно повышает их жаростойкость и жаропрочность. Из ниобийсодержащих сплавов и реже из листового ниобия иногда делают аппаратуру для производства высокочистых кислот. Способность ниобия влиять на скорость некоторых химических реакций используется, например, при синтезе спирта из бутадиена. Из ниобийсодержащих сплавов и чистого ниобия сделаны некоторые детали ракет и бортовой аппаратуры искусственных спутников Земли.

Ценность Скандия заключается в сочетании легкости и высокой теплостойкости, а также прекрасных прочностных характеристиках, значительной химической и коррозионной стойкостью. Некоторые части самолета МИГ-29 сделаны из сплава алюминия со скандием. Иодид скандия используется для производства осветительных элементов, а именно добавляется в ртутно-газовые лампы, производящие очень правдоподобные источники искусственного света, близкого к солнечному, которые обеспечивают хорошую цветопередачу при съёмке на телекамеру. Оксид скандия используется в производстве супер-ЭВМ (ферриты с малой индукцией). Радиоактивный изотоп Sc-46 (период полураспада 83,83 сут.) используется в качестве «метки» в нефтеперерабатывающей промышленности, для контроля металлургических процессов, и лечения раковых опухолей. Изотоп скандий-47 (период полураспада 3,35 сут.) один из лучших источников позитронов.

Другой элемент - Иттрий и его некоторые сплавы не взаимодействуют с расплавленным ураном и плутонием, что позволяет применять их в ядерном газофазном ракетном двигателе. Напыление (детонационное и плазменное) иттрия на детали двигателей внутреннего сгорания позволяет увеличить износостойкость деталей в 400-500 раз по сравнению с хромированием. Хромит иттрия – это материал для лучших высокотемпературных нагревателей сопротивления способных эксплуатироватся в окислительной среде (воздух, кислород). «Иттрий-локс» – твердый раствор двуокиси тория в окиси иттрия. Для видимого света этот материал прозрачен, как стекло, но также он очень хорошо пропускает инфракрасное излучение, поэтому его используют для изготовления инфракрасных «окон» специальной аппаратуры и ракет, а также используют в качестве смотровых «глазков» высокотемпературных печей.

Тербий используется в основном в виде оксидов в люминофорах, частично во флуоресцентных лампах, а также как высокоинтенсивный излучатель зеленого света в проекционных телевизорах. Оксид тербия эффективнее реагирует с рентгеновским возбуждением, и кроме того используется как рентгеновский люминофор. Соединения Тербия также используют в магнитооптической записи фильмов, для производства керамики и стекла и в качестве легирующей добавки в полупроводниковых приборах.

Таким образом, Госпрограмма позволит сформировать и создать целую отрасль, которая обеспечит поставку необходимых материалов для авиации, космоса, атомной промышленности и радиоэлектроники, которая на сегодняшний день практически на 100% зависит от импортных материалов. Необходимость и значимость данной программы заключается, прежде всего, в обеспечении стабильности именно этих отраслей промышленности, что повысит инновационность производства и позволило бы России представить на мировой рынок отечественную наукоемкую продукцию самого высокого качества с высокой добавленной стоимостью. В условиях складывающейся на сегодняшний день ситуации и ввода экономических санкций первостепенным является снижение уровня импортзависимости и решение задачи перевода на внутреннее обеспечений передовых отраслей промышленности и военной отрасли отечественной продукцией.

Редкие металлы – перечень, классификация и значение

В «металлическом» сегменте таблицы Менделеева эта группа считается элитой. Список редких металлов невелик, но каждая позиция драгоценна. Их стоимость на мировом рынке подтверждает пословицу: «Что редко – дорого».

Редкие металлы

История

Понятие «редкие металлы» вошло в обиход с середины 1920-х годов. Тогда так называли элементы без собственных месторождений, рассеянные в массиве других руд.

Иногда отождествляются термины «редкий металл» и «редкий элемент». Это ошибка:

  • Редкие элементы – более широкое понятие.
  • Оно подразумевает металлы, неметаллы, инертные газы.
  • Из шести десятков позиций списка редких элементов на металлы приходится 50.

Второе наименование этой группы – менее обычные (привычные) металлы.

Что считается «менее обычным» материалом

К редким металлам относится элемент, соответствующий хотя бы одному критерию:

  1. Малая распространенность в литосфере, рассеянность без коренных месторождений.
  2. Сложная технология извлечения из руды, получения чистого вещества.
  3. Новизна, неосвоенность материала для практического применения.

Последнее условие – самое мобильное. Развитие технологий, появление новых сфер использования, масштабирование производства переводят элемент в привычные.

Классификация

Материал распределяется по нескольким основаниям. Первая основа деления – по происхождению. Различают природный (натуральный) и созданный человеком.

Природные металлы

За основу принадлежности к группе берут свойство, более других влияющее на кондиции элемента либо благодаря которому он востребован.

По базовому признаку различают пять видов редких металлов:

Классификация однобока: многие элементы подпадают под разные группы:

  • Рубидий с цезием – легкие рассеянные.
  • Легкий тугоплав – титан.
  • Рассеянные тугоплавы – рений, гафний, вольфрам.

Есть деление по субъективному признаку. Редкими благородными металлами признаны золото, платина, родий. (Их второе название – драгоценные). А также платиноид осмий, плотность которого наивысшая среди веществ Земли.

платина

Платина

Самые редкие цветные металлы, созданные природой, – осмий, галлий, тантал, рений.

Искусственные

Элементы, созданные на ядерных реакторах: технеций, нептуний, плутоний, прочие трансурановые.

Они причислены к радиоактивной группе.

Самый редкий металл на Земле – калифорний-282.

Ежегодный объем синтезирования калифорния – менее грамма. Глобальный резерв – пять граммов.

А слышали про металл туллий? Смотрите видео:

Где и как добываются

Источник редкостного материала – природные руды:

  • Почти всегда это конгломерат компонентов.
  • Доля металлов исчисляется тысячными либо меньше долями процента.
  • Стандартный способ добычи – закрытый (шахтный), реже – открытый карьерный.

Главный поставщик сырья на мировой рынок – Китай. Он диктует расклад, номенклатуру, цены. Главный потребитель – США.

Российский источник редкого сырья номер один – Кольский полуостров. На его руды, содержащие титан, приходится 40% разведанных запасов страны.

Стержень, состоящий из титановых кристаллов высокой чистоты

Стержень, состоящий из титановых кристаллов высокой чистоты

Технология получения

Редкие металлы вычленяют из отходов металлургического производства.

  1. Обогащение сырья.
  2. Выделение, разделение компонентов.
  3. Очистка.
  4. Восстановление.

Используется металлотермия, электролиз, плавка.

На тугоплавкую группу воздействуют методами порошковой металлургии.

Редкоземельные металлы « разлучают » экстракцией. Катализаторами выступают ионообменные процессы и органические растворители.

Где используются

В отличие от других сегментов промышленности, металлургия «менее привычных» элементов кризисы переносит спокойно. Это закономерно: материал добывается ограниченными партиями, дорогой, всегда востребован.

В чистом виде не используется: слишком накладно. Только как компонент сплавов либо легирующая добавка.

Традиционные сферы

Области использования редкостного материала:

    Ядерная энергетика. Уран и торий – топливо для атомных станций. Сегодня это самый экологичный вид энергии.

Это также сплавы для нужд космического и оборонного комплекса (орудия, снаряды), взрывчатые вещества.

Новые направления

В новом тысячелетии на первый план вышло использование лития как материала компактных мощных батарей-аккумулятров и магнитов:

  • Батареями-аккумуляторами снабжают электромобили, смартфоны, планшеты, другие гаджеты.
  • Магниты присутствуют в объектах «зеленой» энергетики (солнечные панели, ветряки), автомобилях с гибридным двигателем, мониторах.

Материал поколения 2.0 – магнитопласт. Из него делают мини-динамики, гибкие панели, рекламную «инфраструктуру».

Калифорний-282 востребован геологами, физиками-ядерщиками, медициной.

Стоимость

Цены редких элементов различны, но всегда высоки.

Так, самый дорогой химический элемент – калифорний-282. Грамм оценивают в $250 млн.

Читайте также: