Реакция с активными металлами у спиртов

Обновлено: 07.01.2025

В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.

Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4).

Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:

Атом кислорода в спиртах находится в состоянии sp 3 -гибридизации.

В образовании химических связей с атомами C и H участвуют две 2sp 3 -гибридные орбитали, а еще две 2sp 3 -гибридные орбитали заняты неподеленными электронными парами атома кислорода.

Поэтому валентный угол C–О–H близок к тетраэдрическому и составляет почти 108 о .

Водородные связи и физические свойства спиртов

Спирты образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул спиртов:

Водородные связи образуются не только между молекулами спиртов, но и между молекулами спиртов и воды. Поэтому спирты очень хорошо растворимы в воде. Молекулы спиртов в воде гидратируются:

Чем больше углеводородный радикал, тем меньше растворимость спирта в воде. Чем больше ОН-групп в спирте, тем больше растворимость в воде.

Этанол смешивается с водой в любых соотношениях.

Изомерия спиртов

Структурная изомерия

Для этанола характерна структурная изомерия – межклассовая изомерия.

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Спирты являются межклассовыми изомерами с простыми эфирами. Общая формула и спиртов, и простых эфиров — CnH2n+2О.

Например. Межклассовые изомеры с общей формулой С2Н6О этиловый спирт СН3–CH2–OH и диметиловый эфир CH3–O–CH3

Этиловый спирт Диметиловый эфир
СН3–CH2–OH CH3–O–CH3

Химические свойства этанола

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

1. Кислотные свойства

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии этанола с растворами щелочей реакция практически не идет, т. к. образующийся алкоголят почти полностью гидролизуется водой.

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому этанол не взаимодействуют с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Этанол взаимодействует с активными металлами (щелочными и щелочноземельными).

Например, этанол взаимодействует с калием с образованием этилата калия и водорода .


Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

Например, этилат калия разлагается водой:


2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.

Например, этанол реагирует с бромоводородом.


2.2. Взаимодействие с аммиаком

Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.

Например, при взаимодействии этанола с аммиаком образуется этиламин.


2.3. Этерификация (образование сложных эфиров)

Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.


Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):


2.4. Взаимодействие с кислотами-гидроксидами

Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат :


3. Реакции замещения группы ОН

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.

3.1. Внутримолекулярная дегидратация

При высокой температуре (больше 140 о С) происходит внутримолекулярная дегидратация и образуется соответствующий алкен.

Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен:


В качестве катализатора этой реакции также используют оксид алюминия.

3.2. Межмолекулярная дегидратация

При низкой температуре (меньше 140 о С) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.

Например, при дегидратации этанола при температуре до 140 о С образуется диэтиловый эфир:


4. Окисление этанола

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

4.1. Окисление оксидом меди (II)

Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества.

Например, этанол окисляется оксидом меди до уксусного альдегида

4.2. Окисление кислородом в присутствии катализатора

Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.).

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот.

Например, при взаимодействии этанола с перманганатом калия в серной кислоте образуется уксусная кислота


4.4. Горение спиртов

Образуются углекислый газ и вода и выделяется большое количество теплоты.

Например, уравнение сгорания этанола:

5. Дегидрирование этанола

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования.

Например, при дегидрировании этанола образуется этаналь


Получение этанола

1. Щелочной гидролиз галогеналканов

При взаимодействии галогеналканов с водным раствором щелочей образуются спирты. Атом галогена в галогеналкане замещается на гидроксогруппу.

Например, при нагревании хлорэтана с водным раствором гидроксида натрия образуется этанол

2. Гидратация алкенов

Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.

Например, при взаимодействии этилена с водой образуется этиловый спирт.

3. Гидрирование карбонильных соединений

Присоединение водорода к альдегидам и кетонам протекает при нагревании в присутствии катализатора. При гидрировании альдегидов образуются первичные спирты, при гидрировании кетонов — вторичные спирты, а из формальдегида образуется метанол.

Например, при гидрировании этаналя образуется этанол


4. Получение этанола спиртовым брожением глюкозы

Для глюкозы характерно ферментативное брожение, то есть распад молекул на части под действием ферментов. Один из вариантов — спиртовое брожение.

Химические свойства спиртов


Химические реакции гидроксисоединений идут с разрывом одной из связей: либо С–ОН с отщеплением группы ОН, либо связи О–Н с отщеплением водорода. Это реакции замещения, либо реакции отщепления (элиминирования).

Свойства спиртов определяются строением связей С–О–Н. Связи С–О и О–Н — ковалентные полярные. При этом на атоме водорода образуется частичный положительный заряд δ+, на атоме углерода также частичный положительный заряд δ+, а на атоме кислорода — частичный отрицательный заряд δ–.

Такие связи разрываются по ионному механизму. Разрыв связи О–Н с отрывом иона Н + соответствует кислотным свойствам гидроксисоединения. Разрыв связи С–О соответствует основным свойствам и реакциям нуклеофильного замещения.

С разрывом связи О–Н идут реакции окисления, а с разрывом связи С–О — реакции восстановления.

  • слабые кислотные свойства, замещение водорода на металл;
  • замещение группы ОН
  • отрыв воды (элиминирование) – дегидратация
  • окисление
  • образование сложных эфиров — этерификация


1. Кислотные свойства

При взаимодействии спиртов с растворами щелочей реакция практически не идет, т. к. образующиеся алкоголяты почти полностью гидролизуются водой.

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция практически не идет.

Спирты взаимодействуют с активными металлами. При этом образуются алкоголяты. При взаимодействии с металлами спирты ведут себя, как кислоты.

Многоатомные спирты также реагируют с активными металлами:


1.3. Взаимодействие с гидроксидом меди (II)

Многоатомные спирты взаимодействуют с раствором гидроксида меди (II) в присутствии щелочи, образуя комплексные соли (качественная реакция на многоатомные спирты).

Например, при взаимодействии этиленгликоля со свежеосажденным гидроксидом меди (II) образуется ярко-синий раствор гликолята меди:


Многоатомные спирты также, как и одноатомные спирты, реагируют с галогеноводородами.

Например, этиленгликоль реагирует с бромоводородом:


Многоатомные спирты вступают в реакции этерификации с органическими и неорганическими кислотами.

Например, этиленгликоль реагирует с уксусной кислотой с образованием ацетата этиленгликоля:


Например, глицерин под действием азотной кислоты образует тринитрат глицерина (тринитроглицерин):


Отщепление воды от несимметричных спиртов проходит в соответствии с правилом Зайцева: водород отщепляется от менее гидрогенизированного атома углерода.

Например, в присутствии концентрированной серной кислоты при нагревании выше 140 о С из бутанола-2 в основном образуется бутен-2:


4. Окисление спиртов

Вторичные спирты окисляются в кетоны: в торичные спирты → кетоны

Легкость окисления спиртов уменьшается в ряду:

Продукты окисления многоатомных спиртов зависят от их строения. При окислении оксидом меди многоатомные спирты образуют карбонильные соединения.

Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества. Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, пропанол-2 окисляется оксидом меди (II) при нагревании до ацетона

Третичные спирты окисляются только в жестких условиях.

Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.). Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, при окислении пропанола-1 образуется пропаналь


Например, пропанол-2 окисляется кислородом при нагревании в присутствии меди до ацетона

При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот, вторичные спирты окисляются до кетонов, метанол окисляется до углекислого газа.

При нагревании первичного спирта с перманганатом или дихроматом калия в кислой среде может образоваться также альдегид, если его сразу удаляют из реакционной смеси.

Третичные спирты окисляются только в жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов. При этом происходит разрыв углеродной цепи и могут образоваться углекислый газ, карбоновая кислота или кетон, в зависимости от строения спирта.

Спирт/ Окислитель KMnO4, кислая среда KMnO4, H2O, t
Метанол СН3-ОН CO2 K2CO3
Первичный спирт R-СН2-ОН R-COOH/ R-CHO R-COOK/ R-CHO
Вторичный спирт R1-СНОН-R2 R1-СО-R2 R1-СО-R2

Например, при взаимодействии метанола с перманганатом калия в серной кислоте образуется углекислый газ


Например, при взаимодействии изопропанола с перманганатом калия в серной кислоте образуется ацетон


Например, уравнение сгорания метанола:

5. Дегидрирование спиртов

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования. При дегидрировании метанола и первичных спиртов образуются альдегиды, при дегидрировании вторичных спиртов образуются кетоны.

Реакция с активными металлами у спиртов

Химические свойства спиртов ROH определяются наличием полярных связей В химических реакциях спиртов возможно разрушение одной из двух связей: C–OH (с отщеплением гидроксильной группы)

O–H (с отщеплением водорода)

Это могут быть реакции замещения, в которых происходит замена ОН или Н, или реакция отщепления (элиминирования), когда образуется двойная связь.

Полярный характер связей С–О и О–Н способствует гетеролитическому их разрыву и протеканию реакций по ионному механизму. При разрыве связи О–Н с отщеплением протона (Н + ) проявляются кислотные свойства гидроксисоединения, а при разрыве связи С–О — свойства основания и нуклеофильного реагента.


С разрывом связи О–Н идут реакции окисления, а по связи С–О – восстановления.

Различают два основных типа реакций спиртов с участием функциональной группы –ОН:

1) Реакции с разрывом связи О-Н:

а) взаимодействие спиртов со щелочными металлами с образованием алкоголятов;

б) реакции спиртов с органическими и минеральными кислотами с образованием сложных эфиров;

в) окисление спиртов под действием дихромата или перманганата калия до карбонильных соединений.


2) Реакции сопровождающиеся разрывом связи С-О:

а) каталитическая дегидратация с образованием алкенов (внутримолекулярная дегидратация) или простых эфиров (межмолекулярная дегидратация);

б) замещение группы –ОН галогеном, например при действии галогеноводородов с образованием алкилгалогенидов.


Спирты – амфотерные соединения.

Реакции замещения

Кислотно-основные свойства
Кислотные свойства уменьшаются в ряду, а основные возрастают:
Кислотные свойства

1. Взаимодействие со щелочными и щелочноземельными металлами (Li, Na, K, Ca, Ba, Sr)

Реакции с разрывом связи О-Н

При действии на спирты активных металлов в безводной среде атом водорода гидроксильной группы замещается на металл:


Образующиеся соединения (соли спиртов) называются алкоголятами — производные метилового спирта – метил ат ами, производные этилового спирта – этил ат ами.

Видеоопыт «Взаимодействие спиртов с металлическим натрием»

Алкоголяты химически не стабильны и при действии воды они полностью гидролизуются с образованием исходного спирта и щелочи:


Эта реакция показывает, что спирты по сравнению с водой являются более слабыми кислотами (сильная кислота вытесняет слабую). При взаимодействии с растворами щелочей спирты не образуют алкоголяты.


Спирты не взаимодействуют с водными растворами щелочей.

Основные свойства

2.Взаимодействие с галогенводородными кислотами

Реакции с разрывом связи С-О

Замещение гидроксила ОН на галоген происходит в реакции спиртов с галогеноводородами в присутствии катализатора – сильной минеральной кислоты (например, конц. H2SO4). При этом спирты проявляют свойства слабых оснований:



Видеоопыт «Взаимодействие этилового спирта с бромоводородом»

Реакции этерификации

Спирты вступают в реакции с минеральными и органическими кислотами, образуя сложные эфиры. Реакция обратима (обратный процесс – гидролиз сложных эфиров).

Отличительной особенностью этой реакции является то, что атом Н отщепляется от спирта, а группа ОН – от кислоты:



Реакционная способность одноатомных спиртов в этих реакциях убывает от первичных к третичным.

Реакции отщепления

1. Дегидратация (отщепление воды)

При действии на спирты водоотнимающих реагентов, например, концентрированной серной кислоты, происходит отщепление воды – дегидратация.

Она может протекать по двум направлениям: с участием одной молекулы спирта (внутримолекулярная дегидратация, приводящая к образованию алкенов) или с участием двух молекул спирта (межмолекулярная дегидратация, приводящая к получению простых эфиров).

При переходе от первичных спиртов к третичным увеличивается склонность к отщеплению воды и образованию алкенов и уменьшается способность образовывать простые эфиры.


а) Межмолекулярная дегидратация спиртов с образованием простых эфиров R-O-R'. Эти реакции могут протекать с участием одного спирта или смеси двух и более спиртов:

б) Внутримолекулярная дегидратация спиртов с образованием алкенов. Протекает при более высокой температуре. В отличие от межмолекулярной дегидратации в процессе этих реакций происходит отщепление молекулы воды от одной молекулы спирта:


Такие реакции отщепления называются реакциями элиминирования.

Первый член гомологического ряда алканолов – метанол СН3ОН – не вступает в реакции внутримолекулярной дегидратации.

Дегидратация вторичных и третичных спиртов происходит по правилу Зайцева:


2. Дегидрирование

Реакции с разрывом связей О-Н и С-Н

а) При дегидрировании первичных спиртов образуются альдегиды:


Реакция происходит при пропускании нагретых до 300 0 С паров спирта без доступа воздуха над металлическими катализаторами (Cu или металлы платиновой группы – Pd, Pt, Ni). Ni является типичным катализатором дегидрирования или гидрирования, т.е. отщепления или присоединения водорода.

В организме человека этот процесс происходит под действием (алкогольдегидрогеназы).

б) При дегидрировании вторичных спиртов образуются кетоны:


Третичные спирты не подвергаются дегидрированию.

Реакции окисления

Для спиртов характерны реакции горения с образованием углекислого газа и воды, а также реакции окисления, приводящие к получению альдегидов, кетонов и карбоновых кислот.

В лабораторных условиях для окисления спиртов обычно используют подкисленные растворы перманганата или дихромата калия, оксид меди и т.д.

1. Горение (полное окисление)

Спирты горят на воздухе с выделением большого количества тепла. С увеличением массы углеводородного радикала – пламя становится всё более коптящим.


При сгорании спиртов выделяется большое количество тепла:


Благодаря высокой экзотермичности реакции горения этанола, он считается перспективным и экологически чистым заменителем бензинового топлива в двигателях внутреннего сгорания. В этом случае энергия химических связей переходит в тепловую энергию, а затем в механическую, что позволяет двигаться автомобилям. В лабораторной практике этанол применяется как горючее для «спиртовок».

2. Неполное окисление

1). В присутствии окислителей [O] – K 2 Cr 2 O 7 или KMnO 4 спирты окисляются до карбонильных соединений:


Первичные спирты при окислении образуют альдегиды, которые затем легко окисляются до карбоновых кислот.


При окислении вторичных спиртов образуются кетоны.




Видеоопыт «Окисление этилового спирта раствором перманганата калия»

Видеоопыт «Окисление этилового спирта кристаллическим перманганатом калия»

Видеоопыт «Каталитическое окисление этанола»

Видеоопыт «Окисление этанола (тест на алкоголь)»

Третичные спирты более устойчивы к действию окислителей. Они окисляются только в жестких условиях (кислая среда, повышенная температура), что приводит к разрушению углеродного скелета молекулы и образованию смеси продуктов (карбоновых кислот и кетонов с меньшей молекулярной массой).

Качественные реакции на спирты

1. Окисление спиртов дихроматом (Na2Cr2O7) или перманганатом (КMnО4)

Качественная реакция на первичные и вторичные спирты!

В кислой среде

Для первичных и вторичных одноатомных спиртов качественной реакцией является взаимодействие их с раствором дихромата натрия. Для повышения скорости реакции ее проводят при нагревании, для создания кислой среды добавляют серную кислоту.

Первичные спирты окисляются дихроматом натрия до альдегидов.

Растворы дихроматов имеют оранжевый цвет и содержат хром в степени окисления +6. В кислой среде они переходят в растворы солей хрома в степени окисления +3 и приобретают зеленый цвет.


На изменении цвета соединений хрома также основана работа алкотестеров, когда пары спирта, содержащиеся в выдыхаемом водителем воздухе, восстанавливают дихромат в стеклянной трубочке.

Вторичные спирты окисляются дихроматом натрия до кетонов.


Третичные спирты в реакции с дихроматами не вступают.

Т.к. перманганат калия в кислой среде более сильный окислитель, чем дихромат, то окисление спирта не останавливается на стадии альдегида и продолжается дальше до карбоновой кислоты.


Также как и дихроматом натрия, перманганатом калия вторичные спирты могут окисляться до кетонов. Далее возможна деструкция, т.е. разрушение органической молекулы и получение смеси веществ, которые не имеют практического применения.

В жёстких условиях с перманганатом калия третичные спирты окисляются с расщеплением связей С-С и образованием смеси веществ.

Метиловый спирт окисляется перманганатом калия до углекислого газа.


2. Окисление спиртов оксидом меди (II)

Качественная реакция на первичные спирты!

Первичные спирты окисляются оксидом меди (II) до альдегидов.

Видеоопыт «Окисление этилового спирта оксидом меди (II)»


Видеоопыт «Качественная реакция на этанол»

Вторичные спирты окисляются оксидом меди (II) до кетонов.


Третичные спирты оксидом меди (II) не окисляются.

Реакции неполного окисления спиртов по своим результатам аналогичны реакциям дегидрирования.

Многоатомные спирты по химическим свойствам сходны с одноатомными спиртами. Однако в химических свойствах многоатомных спиртов есть особенности, обусловленные присутствием в молекуле двух и более гидроксильных групп.

Если в многоатомных спиртах ОН-группы находятся при соседних атомах углерода, то вследствие взаимного влияния этих групп (–I-эффект одной ОН-группы по отношению к другой), разрыв связи О-Н происходит легче, чем в одноатомных спиртах.

Кислотные свойства

1. С щелочными металлами

Многоатомные спирты с ОН-группами у соседних атомов углерода (этиленгликоль, глицерин и т.п.) вследствие взаимного влияния атомов (-I-эффект ОН-групп) являются более сильными кислотами, чем одноатомные спирты. Они образуют соли не только в реакциях с активными металлами, но и под действием их гидроксидов.

Видеоопыт «Взаимодействие глицерина с металлическим натрием»


2. С гидроксидом меди(II) — качественная реакция!

Наличие нескольких ОН-групп в молекулах многоатомных спиртов обусловливает увеличение подвижности и способности к замещению гидроксильных атомов водорода по сравнению с одноатомными спиртами. Поэтому, в отличие от алканолов, многоатомные спирты взаимодействуют с гидроксидами тяжелых металлов (например, с гидроксидом меди (II) Cu (OH)2).

Продуктами этих реакций являются комплексные («хелатные») соединения, в молекулах которых атом тяжелого металла образует как обычные ковалентные связи Ме–О за счет замещения атомов водорода ОН-групп, так и донорно-акцепторные связи Ме←О за счет неподеленных пар атомов кислорода других ОН-групп.

При взаимодействии многоатомного спирта с гидроксидом меди (II) в щелочной среде образуется темно-синий раствор (гликолят меди и глицерат меди). Эта реакция является качественной реакцией на многоатомные спирты.

Видеоопыт «Взаимодействие многоатомных спиртов с гидроксидом меди (II)»

Гликолят меди


Глицерат меди



По аналогии с алкоголятами соли двухатомных спиртов называются гликолятами, а трехатомных — глицератами.

Многоатомные спирты с несоседними ОН-группами подобны по свойствам одноатомным спиртам (не проявляется взаимное влияние групп ОН).

Основные свойства

1. С галогенводородными кислотами

При взаимодействии этиленгликоля с галогеноводородами (НСl, HBr) одна гидроксильная группа замещается на галоген:


Вторая гидроксогруппа замещается труднее, под действием РСl5.

2. Реакция этерификации (с органическими и неорганическими кислотами)

Многоатомные спирты взаимодействуют с органическими и неорганическими кислотами с образованием сложных эфиров.

С карбоновыми кислотами глицерин образует сложные эфиры – жиры и масла.


При взаимодействии глицерина с азотной кислотой в присутствии концентрированной серной кислоты образуется нитроглицерин (тринитрат глицерина):

Тринитрат глицерина (тривиальное название – нитроглицерин) – тяжелая маслянистая жидкость, известное взрывчатое вещество (взрывается от легкого сотрясения и нагревания). И одновременно лекарственный препарат (спиртовые растворы его не взрываются): 1% спиртовой раствор нитроглицерина применяется в медицине в качестве средства расширяющего сосуды сердца.

3. Окисление

Видеоопыт «Взаимодействие глицерина с кристаллическим перманганатом калия»

Какая разница между третичным и трехатомным спиртом?

Третичным называется спирт, в котором функциональная группа -ОН связана с третичным атомом углерода. Трехатомным называют спирт, в котором имеется три функциональных группы – ОН.

Химические свойства фенолов определяются наличием в молекуле гидроксильной группы и бензольного кольца.

I. Реакции с участием гидроксильной группы

Фенолы являются более сильными кислотами, чем спирты и вода, т.к. за счет участия неподеленной электронной пары кислорода в сопряжении с π-электронной системой бензольного кольца полярность связи О–Н увеличивается.


Фенолы в водных растворах диссоциируются по кислотному типу: на фенолят-ионы и ионы водорода:

Фенол диссоциирует обратимо, это слабая кислота. Однако его силы кислотных свойств достаточно, чтобы изменять окраску индикатора, имеющего в нейтральной среде фиолетовый цвет. В растворе фенола лакмус краснеет.


1) Взаимодействие с активными металлами с образованием фенолятов (сходство со спиртами)


Видеоопыт «Взаимодействие фенола с металлическим натрием»

2) Взаимодействие со щелочами с образованием фенолятов (отличие от спиртов)


Видеоопыт «Взаимодействие фенола с раствором щелочи»


Образующиеся в результате реакций феноляты легко разлагаются при действии кислот. Даже такая слабая кислота, как угольная, вытесняет фенол из фенолятов. Следовательно, !Феноляты – соли слабой карболовой кислоты, разлагаются угольной кислотой:

По кислотным свойствам фенол превосходит этанол в 10 6 раз. При этом во столько же раз уступает уксусной кислоте. В отличие от карбоновых кислот, фенол не может вытеснить угольную кислоту из её солей

C6H5-OH + NaHCO3 = реакция не идёт – прекрасно растворяясь в водных растворах щелочей, он фактически не растворяется в водном растворе гидрокарбоната натрия.

Кислотные свойства фенола усиливаются под влиянием связанных с бензольным кольцом электроноакцепторных групп (NO2 - , Br - )


2,4,6-тринитрофенол или пикриновая кислота сильнее угольной.

3) Образование сложных и простых эфиров


Как и спирты, фенолы могут образовывать простые и сложные эфиры. Фенолы не образуют сложные эфиры в реакциях с кислотами. Сложные эфиры образуются при взаимодействии фенола с ангидридами или хлорангидридами карбоновых кислот:

Простые эфиры образуются при взаимодействии фенолятов с алкилгалогенидами:


II. Реакции, с участием бензольного кольца

Взаимное влияние атомов в молекуле фенола проявляется не только в особенностях поведения гидроксигруппы, но и в большей реакционной способности бензольного ядра. Гидроксильная группа повышает электронную плотность в бензольном кольце, особенно, в орто- и пара- положениях (+ М -эффект ОН-группы):


Поэтому фенол значительно активнее бензола вступает в реакции электрофильного замещения в ароматическом кольце.

Реакции замещения

1) Нитрование

Под действием 20% азотной кислоты HNO3 фенол легко превращается в смесь орто- и пара- нитрофенолов:



При использовании концентрированной HNO3 образуется 2,4,6-тринитрофенол (пикриновая кислота):

У нее кислотные свойства выражены сильнее, чем у фенола, т.к. нитрогруппы оттягивают электронную плотность от бензольного кольца и делают связь О-Н еще более полярной.

Пикриновая кислоты является взрывчатым веществом, в чистом виде представляет собой желтые кристаллы.


2) Галогенирование


Фенол легко при комнатной температуре взаимодействует с бромной водой с образованием белого осадка 2,4,6-трибромфенола ( качественная реакция на фенол! ):

Образуется белый осадок трибромфенола.

Видеоопыт «Взаимодействие фенола с бромной водой»

3) Сульфирование


Соотношение о- и п-изомеров определяется температурой реакции: при комнатной температуре в основном образуется о-фенолсульфокислота, при t=1000С – пара-изомер:Реакции присоединения

1) Гидрирование фенола

Эта реакция идет с разрушением ароматического кольца. Продукт реакции циклический одноатомный спирт — циклогексиловый спирт (циклогексанол).


2) Конденсация с альдегидами

При нагревании фенола с формальдегидом в присутствии кислотных или основных катализаторов происходит реакция поликонденсации и образуется фенолформальдегидная смола.

Данная реакция имеет большое практическое значение и используется при получении фенолформальдегидных смол.

III. Реакция окисления

Фенолы легко окисляются даже под действием кислорода воздуха. При стоянии на воздухе фенол постепенно окрашивается в розовато-красный цвет.

1) Горение (полное окисление)

Фенолы, как и большинство органических веществ, сгорают до углекислого газа и воды.


2) Окисление хромовой смесью

При энергичном окислении фенола хромовой смесью основным продуктом окисления является хинон. Двухатомные фенолы окисляются еще легче. При окислении гидрохинона также образуется хинон:


IV. Качественная реакция! - обнаружение фенола

Для обнаружения фенолов используется качественная реакция с хлоридом железа (III). Одноатомные фенолы дают устойчивое сине-фиолетовое окрашивание, что связано с образованием комплексных соединений железа.

Видеоопыт «Качественная реакция на фенол»

Образование фиолетового окрашивания при добавлении раствора FeCl3 служит качественной реакцией на фенол:


Для фенолов реакции по связям С-О не характерны, поскольку атом кислорода прочно связан с атомом углерода бензольного кольца за счет участия своей неподеленной электронной пары в системе сопряжения.

Теги: Фенолы

Обожаю ваш сайт. Но в этом году в других источниках встретила утверждение, что «фенол НЕ изменяет цвет индикатора».Однако, если в пособиях разного уровня утверждалось, что «фенол диссоциирует на катион водорода. », то КАК это было доказано? Только реакцией с щёлочью? Я не имею возможности на опыте проверить, но была уверена в том, что р-р фенола «достаточно кислота» и МЕНЯЕЕТ цвет лакмуса. КАК быть?

1. Подобно кислотам фенол в водных растворах диссоциирует по кислотному типу: на фенолят-ионы и ионы водорода. Фенол диссоциирует обратимо, НО… силы его кислотных свойств достаточно, чтобы изменить окрасу индикатора (в растворе фенола лакмус краснеет).

Старинное название фенола – карболовая кислота.

2. Кислотные свойства фенола проявляются при взаимодействии его активными металлами и с их гидроксидами с образованием фенолятов (солей фенола).

3. Феноляты легко разлагаются под действием кислот, даже такой слабой, как угольная. Из этого следует, что фенол – более слабая кислота, чем H2CO3.

C6H5ONa + СО2 + Н2О → С6Н5ОН + NaHCO3

4. Феноляты подвергаются гидролизу, как соли слабой кислоты и сильного основания.

Читайте также: