Реагируют ли металлы с водой
Изучить взаимодействие оксида кальция CaO с водой. Для этого небольшое количество CaO добавляют в стакан воды и хорошо перемешивают. Это вызывает химическую реакцию: CaO затем смешивается с небольшим количеством воды.
Какие металлы взаимодействуют с водой при повышенной температуре
Металлы традиционно делятся на различные группы. Они характеризуются отличной от других металлов химической активностью. Эти группы следующие.
- благородные металлы (серебро, золото, платина);
- щелочные металлы (металлы, образованные элементами (I)А группы периодической системы);
- щелочноземельные металлы (кальций, стронций, барий, радий).
Простые вещества со свойствами металлов всегда восстанавливаются в химических реакциях. Положение металла в последовательности активности указывает на то, насколько активен металл в химической реакции (т.е. насколько он восстановлен).
Серия реактивных металлов.
1. чем дальше по шкале в левой части находится металл, тем более сильным восстановителем он является.
2.Металл, расположенный справа от каждого металла в последовательности действий, может быть преобразован в соль. 3.3.
Металлы, расположенные слева от водорода в последовательности действий, могут замещать водород из кислых растворов.
Щелочные и щелочноземельные металлы реагируют с водой во всех водных растворах.
Общие химические свойства металлов
Взаимодействие с простыми неметаллами
1. металлы реагируют с кислородом, образуя оксиды.
Например, при взаимодействии магния с кислородом образуется оксид магния.
Серебро, золото и платина не реагируют с кислородом.
2. металлы реагируют с галогенами (фтор, хлор, бром и йод) с образованием галогенидов.
Металл + галоген → галогенид металла.
Например, при взаимодействии натрия с хлором образуется хлорид натрия. 3:
3. металлы взаимодействуют с серой, образуя сульфиды.
Металл + сера → сульфид металла.
Например, при взаимодействии цинка с серой образуется сульфид цинка.
Цинк реагирует с серой
4Активные металлы при нагревании реагируют с азотом, фосфором и другими неметаллами.
Например, литий реагирует с азотом, образуя нитрид лития.
Когда кальций взаимодействует с фосфором, образуется фосфид кальция.
Взаимодействие со сложными веществами.
1. щелочные металлы и щелочноземельные металлы взаимодействуют с водой при нормальных условиях с образованием водорастворимых оснований (щелочей) и водорода.
Активный металл + вода → щелочь + водород.
Например, при взаимодействии натрия с водой образуется гидроксид натрия и водород.
Взаимодействие натрия с водой
Некоторые промежуточные продукты реагируют с водой при высоких температурах с образованием оксидов металлов и водорода.
Например, расплавленное железо реагирует с водяным паром с образованием смешанного оксида железа (окалина Fe_3O_4 и водород).
2. металлы, расположенные слева от водорода в последовательности металл-актив, реагируют с кислыми растворами с образованием солей и водорода.
Взаимодействие с простыми веществами
с кислородом
Бериллий и магний не реагируют ни с кислородом воздуха, ни с чистым кислородом, если их не нагревать. Это объясняется тем, что бериллий и магний покрыты тонкой защитной пленкой, состоящей из оксидов BeO и MgO соответственно. Их хранение не требует специальной защиты от ветра или влаги, в отличие от щелочноземельных металлов, которые хранятся под слоем инертной жидкости, обычно парафина.
Be, Mg, Ca и Sr при сгорании в кислороде образуют оксиды MeO, а Ba — смесь оксида бария (BaO) и пероксида бария (BaO2).
Следует отметить, что при сгорании щелочно-гибридных металлов и магния на воздухе они реагируют с азотом воздуха, образуя нитриды с общей формулой ME3N2, в дополнение к соединениям металлов с кислородом.
с галогенами
Бериллий реагирует с лошадью только при высоких температурах, а другие металлы группы IIA — уже при комнатной температуре:.
Mg + I2 = MGI2 — йодистый магний
CA + BR2 = CABR2 — кальций бромелиевый
BA + CL2 = BACL2 — хлорид бария
с неметаллами IV–VI групп
Все металлы группы IIA реагируют при нагревании со всеми неметаллами групп IV-VI, но требуют разной степени нагрева, в зависимости от положения металла в группе и активности неметалла. Бериллий — самый химически инертный из всех металлов группы IIA, поэтому для его неметаллических реакций требуются значительно более высокие температуры.
Следует отметить, что реакции металл-углерод могут приводить к образованию карбидов с различными свойствами. Различают гидрокарбиды метана, которые считаются обычными производными метана, где все атомы водорода заменены на металлы. Как и метан, они содержат углерод в степени окисления -4, и при гидролизе или реакции с неокисляющими кислотами одним из продуктов является метан. Существует также другой тип карбида, ацетилененид, который фактически содержит C22-, фрагмент молекулы ацетилена. Карбиды ацетилена образуют ацетилен как один из продуктов гидролиза или реакции с неокисляющими кислотными взаимодействиями. Тип карбида — метанового или ацетиленового — который образуется при взаимодействии металла и углерода, зависит от размера катиона металла. Как правило, метаны образуются с ацетиленом, содержащим ионы металлов малого радиуса и более крупные ионы металлов. Для металлов группы II метан образуется при взаимодействии бериллия с углеродом.
Другие металлы группы IIA образуют ацетилен с углеродом:.
Металлы группы IIA образуют пирит кремния — соединение в форме ME2SI, азота — азот — азот (ME3N2), фосфора — фосфид (ME3P2):.
с водородом
Все щелочноземельные металлы при нагревании реагируют с водородом. Чтобы заставить магний реагировать с водородом, недостаточно одного лишь нагревания, как в случае со щелочными землями, в дополнение к высокой температуре. Также требуется повышение давления водорода. Бериллий не реагирует с водородом ни при каких обстоятельствах.
Взаимодействие со сложными веществами
с водой
Все щелочноземельные металлы положительно реагируют с водой, образуя щелочи (растворимые гидроксиды) и водород. Магний реагирует с водой только при кипячении, так как защитная пленка оксида MGO растворяется при нагревании. В случае берилла оксидная защитная пленка очень прочная. Вода не вступает с ним в реакцию при кипячении или даже в горячем состоянии.
c кислотами-неокислителями
Все металлы главной подгруппы II подгруппы реагируют с неокисляющими кислотами, поскольку в порядке активности они находятся слева от водорода. В результате образуются соли этой кислоты и водорода. Пример реакции.
CA + 2CH3COOH = (CH3COO)2CA + H2↑
c кислотами-окислителями
− разбавленной азотной кислотой
Все металлы группы IIA реагируют с редкой азотной кислотой. В этом случае при восстановлении вместо водорода (как в случае неокисляющихся кислот) образуется в основном оксид азота (I) (N2O), а в случае очень разреженной азотной кислоты — нитрат аммония (NH4NO3): оксид азота (N2O)
4mg + 10hno3 (очень разбавленный) = 4mg(no3)2 + nh4no3 + 3h2o
− концентрированной азотной кислотой
Концентрированная азотная кислота пассивирует бериллий при комнатной (или низкой) температуре. Другими словами, он не вступает в реакцию с бериллием. В условиях кипения возможны реакции, которые протекают в основном в соответствии со следующим уравнением
Магний и щелочноземельные металлы реагируют с концентрированной азотной кислотой с образованием различных продуктов восстановления азота.
− концентрированной серной кислотой
Бериллий пассивируется концентрированной серной кислотой. Это означает, что при нормальных условиях он не вступает в реакцию, но в условиях кипения реакция продолжается с образованием сульфата бериллия, диоксида серы и воды.
Барий также пассивируется концентрированной серной кислотой, образуя нерастворимый сульфат бария, который вступает в реакцию при нагревании. Сульфат бария превращается в сульфат водорода бария и растворяется в концентрированной серной кислоте при нагревании.
Другие основные металлы группы IIA реагируют с концентрированной серной кислотой при любых условиях, даже при низких температурах. Сера в основном восстанавливается до сероводорода.
4Mg + 5H2SO4 (агломерация) = 4MgSO4+H2S↑+4H2O
с щелочами
Магний и щелочноземельные металлы не реагируют со щелочами, тогда как бериллий легко реагирует с безводными щелочами в щелочных растворах и плавится. Если реакция протекает в водном растворе, то в реакции участвует вода, а продуктами являются щелочные или щелочноземельные тетрагидроксобутиратные соли и газообразный водород:.
Be + 2KOH + 2H2O = H2↑+K2Be(OH)4-тетрагидроксибутират калия
При реакции с твердой щелочью при плавлении образуются щелочные или щелочноземельные соли бериллия и водород.
Be + 2KOH = H2↑+K2BeO2-калиевый бериллий
с оксидами
Щелочноземельные металлы и магний можно нагревать для восстановления менее активных металлов и некоторых неметаллов из их оксидов. Например
Метод восстановления металлов из оксидов с помощью магния называется магнитотермией.
- Химические свойства щелочных металлов: взаимодействие, получение
- Химические свойства щелочноземельных металлов: взаимодействие, получение
- Химические свойства алюминия
- Химические свойства переходных металлов (меди, цинка, хрома, железа)
Все элементы группы IIA являются s-элементами. Это означает, что плоскость s-sub содержит все валентные электроны. Поэтому электронная конфигурация внешней электронной оболочки всех химических элементов этой группы имеет вид ns 2 где n — номер периода, в котором расположен элемент.
Урок 28. Химические свойства воды
В Уроке 28 «Химические свойства воды» урока «Химия тупых вещей» вы узнаете о взаимодействии воды с различными веществами.
При нормальных условиях вода очень активна по сравнению с другими веществами. Это означает, что он вступает в химическую реакцию со многими из них.
Взаимодействие с оксидами неметаллов
В случае струи монооксида углерода (IV) CO2 (углекислый газ) направляется к воде, часть его растворяется (рис. 109).
В результате химических реакций в растворе образуется новое вещество — карбоновая кислота H2CO3:.
Кстати, Дж. Пристли обнаружил, что, собирая углекислый газ в воде, часть газа растворяется в воде, придавая ей приятный горький вкус. Фактически, Пристли был первым, кто получил такие напитки, как газированная вода и содовая вода.
Комбинированные реакции также происходят в случае твердых оксидов фосфора (V)P2O5 Происходит химическая реакция, в результате которой образуется H-фосфорная кислота3PO4 (рис. 110):.
Испытайте растворы, полученные в результате взаимодействия CO2 и P2O5С водой, метелкокальциевый индекс. Для этого в полученный раствор добавьте одну-две капли раствора индекса. Цвет индекса меняется с оранжевого на красный, что указывает на присутствие кислоты в растворе. Это подразумевает взаимодействие между CO2 и P2O5 h, который фактически образует кислоту в воде.2CO3 и h3PO4.
Оксиды, такие как со2 и P2O5которые образуют кислоты при реакции с водой, называются кислотными оксидами.
Окисляющие кислоты являются оксидами, соответствующими оксидам.
Некоторые из этих кислотных оксидов и соответствующих кислот перечислены в таблице 11. Обратите внимание, что это безотходные продукты. Как правило, неметаллические оксиды являются кислотными оксидами.
Взаимодействие с оксидами металлов
Вода по-разному реагирует с неметаллическими оксидами.
Изучить взаимодействие оксида кальция CaO с водой. Для этого небольшое количество CaO добавляют в стакан воды и хорошо перемешивают. Это вызывает химическую реакцию: CaO затем смешивается с небольшим количеством воды.
В результате образуется новое вещество под названием Ca(OH)2, которое относится к категории основных. Литий и оксид натрия одинаково реагируют с водой. При этом также образуется база, например.
Узнайте больше об основаниях в следующем уроке. Оксиды металлов, основания которых соответствуют основным оксидам.
Основной оксид — это оксид, которому соответствует основание.
В таблице 12 приведены конкретные типы основных оксидов и соответствующие им основания. Обратите внимание, что, как и кислотные оксиды, основные оксиды содержат атомы металлов. Большинство оксидов металлов являются основными оксидами.
Каждый основной оксид соответствует основанию, но не все основные оксиды, содержащие воду, такие как CAO, взаимодействуют с образованием основания.
При сокрушительно высоких температурах алюминий бурно реагирует с кислородом, выделяя большое количество тепла. В результате образуется оксид алюминия.
Взаимодействие металлов с кислотами. ряд активности металлов
Что такое кислоты? Какие кислотные вещества вы встречали в природе?
По определению, кислоты должны реагировать с металлами. Все ли металлы реагируют с кислотами? Это можно подтвердить опытным путем.
В четыре пронумерованные пробирки налейте одинаковое количество раствора соляной кислоты и добавьте следующим образом: вторая пробирка — добавьте от второго Зн- к четвертому Зп- к третьему Зп-.
Как видите, не все металлы, включая кислоты, могут взаимодействовать и имеют разные скорости взаимодействия (рис. 18).
На основе интенсивности взаимодействия металла с кислотой русский ученый н.н. Бекетов составил ряд активностей:.
li k ca na mg al zn fe ni sn pb (h2) cu hg ag au
При использовании серии химических мероприятий необходимо учитывать следующие правила
1) металлы, стоящие в начале этого ряда, химически активны, они могут вытеснить водород из воды. 2) активность металлов в этом ряду снижается слева направо 3) только металлы, стоящие в ряду активности до водорода, вытесняют водород из растворов кислот
Активный металл + кислота — > соль + водород
Происходят реакции замещения. Металлы, следующие за водородом в порядке реакционной способности, не реагируют с растворами редких кислот (Таблица 6).
Лабораторный эксперимент 3 Взаимодействие металлов с кислыми растворами
Цель: исследовать реакции различных металлов с кислыми растворами и сделать выводы о наличии химических минералов.
Раствор соляной кислоты наливают в четыре пробирки. В одну пробирку насыпают порошок магния, в другую — зерна цинка, в третью — железную стружку, в четвертую — медную.
Можно ли разъесть железо? Да, если он очень чистый. Например, в Дели (Индия) есть колонна высотой 7 м и весом 6,5 тонн. Он был заселен в IX веке до н.э. Он содержит 99,72% Fe. До сих пор колонна не подвергалась коррозии.
Взаимодействие металлов с растворами солей
С какими солями вы сталкивались в повседневной жизни?
Химически активные металлы вытесняют менее активные металлы, чем солевые растворы, вызывая реакции вытеснения. Например, железо вытесняет медь из раствора сульфата меди (III) (рис. 19).
Выделение красного налета меди является признаком реакции. Обратная реакция не протекает
Форма реакции смещения выглядит следующим образом
Соль 4 — активный металл = новая соль + новый металл (менее активный)
Этот тип реакции происходит при следующих условиях: 1) соль, с которой происходит взаимодействие, должна быть растворима в воде; 2) новый металл должен быть активен в воде.
Демонстрация трех вытеснений металла из солевого раствора
Цель: Понять, что более активный металл вытесняет менее активный металл, чем его соль.
Поместите гранулу цинка в пробирку и прилейте раствор сульфата меди. В другую пробирку поместите небольшой кусочек железа и залейте раствором сульфата меди. Что вы заметили? Напишите уравнение реакции. Сделайте вывод.
Рабочий лист 1 Сравнение действий с металлами
Цель: Разработать серию мероприятий по металлу. Обобщите результаты и сделайте выводы.
Налейте 5 мл солевого раствора в пять пробирок и поместите медный наконечник в каждую пробирку. Затем повторите эксперимент с другими металлами. Наблюдайте за интенсивностью реакции. Заполните таблицу: где происходят реакции и символы» — «нет». Составьте ряд активности металлов на основе сравнительной интенсивности, т.е. по количеству происходящих реакций.
- 1. Атомы металлов в реакциях только отдают электроны, образуя положительно заряженные ионы.
- 2. Самопроизвольное разрушение металлов в результате их взаимодействия с веществами окружающей среды называется коррозией.
- 3. Сравнительную активность металлов можно определить с помощью ряда активности, составленного Н. Н. Бекетовым.
- 4. Металлы IA, НА группы очень легко вступают во взаимодействие с кислородом и водой. Многие металлы образуют оксидную пленку, которая препятствует дальнейшему окислению. Благородные металлы вообще не реагируют с кислородом и водой.
Лекции по химии:.
Лекции по неорганической химии:.
Лекции по органической химии:.
Отправляйте задания в любое время дня и ночи
Официальный сайт Брилёновой Натальи Валерьевны, профессора факультета информатики Екатеринбургского государственного института.
2.2.2. Химические свойства металлов IIA группы.
IIA группа содержит только металлы – Be (бериллий), Mg (магний), Ca (кальций), Sr (стронций), Ba (барий) и Ra (радий). Химические свойства первого представителя этой группы — бериллия — наиболее сильно отличаются от химических свойств остальных элементов данной группы. Его химические свойства во многом даже более схожи с алюминием, чем с остальными металлами IIA группы (так называемое «диагональное сходство»). Магний же по химическим свойствами тоже заметно отличается от Ca, Sr, Ba и Ra, но все же имеет с ними намного больше сходных химических свойств, чем с бериллием. В связи со значительным сходством химических свойств кальция, стронция, бария и радия их объединяют в одно семейство, называемое щелочноземельными металлами.
Все элементы IIA группы относятся к s-элементам, т.е. содержат все свои валентные электроны на s-подуровне. Таким образом, электронная конфигурация внешнего электронного слоя всех химических элементов данной группы имеет вид ns 2 , где n – номер периода, в котором находится элемент.
Вследствие особенностей электронного строения металлов IIA группы, данные элементы, помимо нуля, способны иметь только одну единственную степень окисления, равную +2. Простые вещества, образованные элементами IIA группы, при участии в любых химических реакциях способны только окисляться, т.е. отдавать электроны:
Ме 0 – 2e — → Ме +2
Кальций, стронций, барий и радий обладают крайне высокой химической активностью. Простые вещества, образованные ими, являются очень сильными восстановителями. Также сильным восстановителем является магний. Восстановительная активность металлов подчиняется общим закономерностям периодического закона Д.И. Менделеева и увеличивается вниз по подгруппе.
Без нагревания бериллий и магний не реагируют ни с кислородом воздуха, ни с чистым кислородом ввиду того, что покрыты тонкими защитными пленками, состоящими соответственно из оксидов BeO и MgO. Их хранение не требует каких-либо особых способов защиты от воздуха и влаги, в отличие от щелочноземельных металлов, которые хранят под слоем инертной по отношению к ним жидкости, чаще всего керосина.
Be, Mg, Ca, Sr при горении в кислороде образуют оксиды состава MeO, а Ba – смесь оксида бария (BaO) и пероксида бария (BaO2):
Следует отметить, что при горении щелочноземельных металлов и магния на воздухе побочно протекает также реакция этих металлов с азотом воздуха, в результате которой, помимо соединений металлов с кислородом, образуются также нитриды c общей формулой Me3N2.
Бериллий реагирует с галогенами только при высоких температурах, а остальные металлы IIA группы — уже при комнатной температуре:
Все металлы IIA группы реагируют при нагревании со всеми неметаллами IV–VI групп, но в зависимости от положения металла в группе, а также активности неметаллов требуется различная степень нагрева. Поскольку бериллий является среди всех металлов IIA группы наиболее химически инертным, при проведении его реакций с неметаллами требуется существенно большая температура.
Следует отметить, что при реакции металлов с углеродом могут образовываться карбиды разной природы. Различают карбиды, относящиеся к метанидам и условно считающимися производными метана, в котором все атомы водорода замещены на металл. Они так же, как и метан, содержат углерод в степени окисления -4, и при их гидролизе или взаимодействии с кислотами-неокислителями одним из продуктов является метан. Также существует другой тип карбидов – ацетилениды, которые содержат ион C2 2- , фактически являющийся фрагментом молекулы ацетилена. Карбиды типа ацетиленидов при гидролизе или взаимодействии с кислотами-неокислителями образуют ацетилен как один из продуктов реакции. То, какой тип карбида – метанид или ацетиленид — получится при взаимодействии того или иного металла с углеродом, зависит от размера катиона металла. С ионами металлов, обладающих малым значением радиуса, образуются, как правило, метаниды, с ионами более крупного размера – ацетилениды. В случае металлов второй группы метанид получается при взаимодействии бериллия с углеродом:
Остальные металлы II А группы образуют с углеродом ацетилениды:
С кремнием металлы IIA группы образуют силициды — соединения вида Me2Si, с азотом – нитриды (Me3N2), фосфором – фосфиды (Me3P2):
Все щелочноземельные металлы реагируют при нагревании с водородом. Для того чтобы магний прореагировал с водородом, одного нагрева, как в случае со щелочноземельными металлами, недостаточно, требуется, помимо высокой температуры, также и повышенное давление водорода. Бериллий не реагирует с водородом ни при каких условиях.
Все щелочноземельные металлы активно реагируют с водой с образованием щелочей (растворимых гидроксидов металлов) и водорода. Магний реагирует с водой лишь при кипячении вследствие того, что при нагревании в воде растворяется защитная оксидная пленка MgO. В случае бериллия защитная оксидная пленка очень стойкая: с ним вода не реагирует ни при кипячении, ни даже при температуре красного каления:
Все металлы главной подгруппы II группы реагируют с кислотами-неокислителями, поскольку находятся в ряду активности левее водорода. При этом образуются соль соответствующей кислоты и водород. Примеры реакций:
С разбавленной азотной кислотой реагируют все металлы IIA группы. При этом продуктами восстановления вместо водорода (как в случае кислот-неокислителей) являются оксиды азота, преимущественно оксид азота (I) (N2O), а в случае сильно разбавленной азотной кислоты – нитрат аммония (NH4NO3):
Концентрированная азотная кислота при обычной (или низкой) температуре пассивирует бериллий, т.е. в реакцию с ним не вступает. При кипячении реакция возможна и протекает преимущественно в соответствии с уравнением:
Магний и щелочноземельные металлы реагируют с концентрированной азотной кислотой с образованием большого спектра различных продуктов восстановления азота.
Бериллий пассивируется концентрированной серной кислотой, т.е. не реагирует с ней в обычных условиях, однако реакция протекает при кипячении и приводит к образованию сульфата бериллия, диоксида серы и воды:
Барий также пассивируется концентрированной серной кислотой вследствие образования нерастворимого сульфата бария, но реагирует с ней при нагревании, сульфат бария растворяется при нагревании в концентрированной серной кислоте благодаря его превращению в гидросульфат бария.
Остальные металлы главной IIA группы реагируют с концентрированной серной кислотой при любых условиях, в том числе на холоду. Восстановление серы происходит преимущественно до сероводорода:
Магний и щелочноземельные металлы со щелочами не взаимодействуют, а бериллий легко реагирует как растворами щелочей, так и с безводными щелочами при сплавлении. При этом при осуществлении реакции в водном растворе в реакции участвует также и вода, а продуктами являются тетрагидроксобериллаты щелочных или щелочноземельных металлов и газообразный водород:
При осуществлении реакции с твердой щелочью при сплавлении образуются бериллаты щелочных или щелочноземельных металлов и водород
с оксидами
Щелочноземельные металлы, а также магний могут восстанавливать менее активные металлы и некоторые неметаллы из их оксидов при нагревании, например:
Метод восстановления металлов из их оксидов магнием называют магниетермией.
Химические свойства металлов
Свойства металлов начинают изучать на уроках химии в 8–9 классе. В этом материале мы подробно разберем химические свойства этой группы элементов, а в конце статьи вы найдете удобную таблицу-шпаргалку для запоминания.
О чем эта статья:
8 класс, 9 класс, ЕГЭ/ОГЭ
Металлы — это химические элементы, атомы которых способны отдавать электроны с внешнего энергетического уровня, превращаясь в положительные ионы (катионы) и проявляя восстановительные свойства.
В окислительно-восстановительных реакциях металлы способны только отдавать электроны, являясь сильными восстановителями. В роли окислителей выступают простые вещества — неметаллы (кислород, фосфор) и сложные вещества (кислоты, соли и т. д.).
Металлы в природе встречаются в виде простых веществ и соединений. Активность металла в химических реакциях определяют, используя электрохимический ряд, который предложил русский ученый Н. Н. Бекетов. По химической активности выделяют три группы металлов.
Ряд активности металлов
Металлы средней активности
Общие химические свойства металлов
Взаимодействие с неметаллами
Щелочные металлы сравнительно легко реагируют с кислородом, но каждый металл проявляет свою индивидуальность:
оксид образует только литий
натрий образует пероксид
калий, рубидий и цезий — надпероксид
Остальные металлы с кислородом образуют оксиды:
2Zn + O2 = 2ZnO (при нагревании)
Металлы, которые в ряду активности расположены левее водорода, при контакте с кислородом воздуха образуют ржавчину. Например, так делает железо:
С галогенами металлы образуют галогениды:
Медный порошок реагирует с хлором и бромом (в эфире):
При взаимодействии с водородом образуются гидриды:
Взаимодействие с серой приводит к образованию сульфидов (реакции протекают при нагревании):
Реакции с фосфором протекают до образования фосфидов (при нагревании):
Основной продукт взаимодействия металла с углеродом — карбид (реакции протекают при нагревании).
Из щелочноземельных металлов с углеродом карбиды образуют литий и натрий:
Калий, рубидий и цезий карбиды не образуют, могут образовывать соединения включения с графитом:
С азотом из металлов IA группы легко реагирует только литий. Реакция протекает при комнатной температуре с образованием нитрида лития:
Взаимодействие с водой
Все металлы I A и IIA группы реагируют с водой, в результате образуются растворимые основания и выделяется H2. Литий реагирует спокойно, держась на поверхности воды, натрий часто воспламеняется, а калий, рубидий и цезий реагируют со взрывом:
Металлы средней активности реагируют с водой только при условии, что металл нагрет до высоких температур. Результат данной реакции — образование оксида.
Неактивные металлы с водой не взаимодействуют.
Взаимодействие с кислотами
Если металл расположен в ряду активности левее водорода, то происходит вытеснение водорода из разбавленных кислот. Данное правило работает в том случае, если в реакции с кислотой образуется растворимая соль.
2Na + 2HCl = 2NaCl + H2
При взаимодействии с кислотами-окислителями, например, азотной, образуется продукт восстановления кислоты, хотя протекание реакции также неоднозначно.
Металлы IА группы:
Металлы IIА группы
Такие металлы, как железо, хром, никель, кобальт на холоде не взаимодействуют с серной кислотой, но при нагревании реакция возможна.
Взаимодействие с солями
Металлы способны вытеснять из растворов солей другие металлы, стоящие в ряду напряжений правее, и могут быть вытеснены металлами, расположенными левее:
Zn + CuSO4 = ZnSO4 + Cu
На металлы IА и IIА группы это правило не распространяется, так как они реагируют с водой.
Реакция между металлом и солью менее активного металла возможна в том случае, если соли — как вступающие в реакцию, так и образующиеся в результате — растворимы в воде.
Взаимодействие с аммиаком
Щелочные металлы реагируют с аммиаком с образованием амида натрия:
Взаимодействие с органическими веществами
Металлы IА группы реагируют со спиртами и фенолами, которые проявляют в данном случае кислотные свойства:
Также они могут вступать в реакции с галогеналканами, галогенпроизводными аренов и другими органическими веществами.
Взаимодействие металлов с оксидами
Для металлов при высокой температуре характерно восстановление неметаллов или менее активных металлов из их оксидов.
3Са + Cr2O3 = 3СаО + 2Cr (кальциетермия)
Вопросы для самоконтроля
С чем реагируют неактивные металлы?
С чем связаны восстановительные свойства металлов?
Верно ли утверждение, что щелочные и щелочноземельные металлы легко реагируют с водой, образуя щелочи?
Методом электронного баланса расставьте коэффициенты в уравнении реакции по схеме:
Mg + HNO3 → Mg(NO3)2 + NH4NO3 + Н2O
Как металлы реагируют с кислотами?
Подведем итоги
От активности металлов зависит их химические свойства. Простые вещества — металлы в окислительно-восстановительных реакциях являются восстановителями. По положению металла в электрохимическом ряду можно судить о том, насколько активно он способен вступать в химические реакции (т. е. насколько сильно у металла проявляются восстановительные свойства).
Напоследок поделимся таблицей, которая поможет запомнить, с чем реагируют металлы, и подготовиться к контрольной работе по химии.
Таблица «Химические свойства металлов»
Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb
Cu, Hg, Ag, Pt, Au
Восстановительная способность металлов в свободном состоянии
Возрастает справа налево
Взаимодействие металлов с кислородом
Быстро окисляются при обычной температуре
Медленно окисляются при обычной температуре или при нагревании
Взаимодействие с водой
Выделяется водород и образуется гидроксид
При нагревании выделяется водород и образуются оксиды
Водород из воды не вытесняют
Взаимодействие с кислотами
Вытесняют водород из разбавленных кислот (кроме HNO3)
Не вытесняют водород из разбавленных кислот
Реагируют с концентрированными азотной и серной кислотами
С кислотами не реагируют, растворяются в царской водке
Взаимодействие с солями
Не могут вытеснять металлы из солей
Более активные металлы (кроме щелочных и щелочноземельных) вытесняют менее активные из их солей
Взаимодействие с оксидами
Для металлов (при высокой температуре) характерно восстановление неметаллов или менее активных металлов из их оксидов
2.2.1. Характерные химические свойства щелочных металлов.
У атомов ЩМ на внешнем электронном уровне находится только один электрон на s-подуровне, легко отрывающийся при протекании химических реакций. При этом из нейтрального атома ЩМ образуется положительно заряженная частица – катион с зарядом +1:
Семейство ЩМ является наиболее активным среди прочих групп металлов в связи с чем в природе обнаружить их в свободной форме, т.е. в виде простых веществ невозможно.
Простые вещества щелочные металлы являются крайне сильными восстановителями.
Взаимодействие щелочных металлов с неметаллами
Щелочные металлы реагируют с кислородом уже при комнатной температуре, в связи с чем их требуется хранить под слоем какого-либо углеводородного растворителя, такого как, например, керосина.
Взаимодействие ЩМ с кислородом приводит к разным продуктам. С образованием оксида, с киcлородом реагирует только литий:
Натрий в аналогичной ситуации образует с кислородом пероксид натрия Na2O2:
а калий, рубидий и цезий – преимущественно надпероксиды (супероксиды), общей формулы MeO2:
Щелочные металлы активно реагируют с галогенами, образуя галогениды щелочных металлов, имеющих ионное строение:
2Li + Br2 = 2LiBr бромид лития
2Na + I2 = 2NaI иодид натрия
2K + Cl2 = 2KCl хлорид калия
с азотом
Литий реагирует с азотом уже при обычной температуре, с остальными же ЩМ азот реагирует при нагревании. Во всех случаях образуются нитриды щелочных металлов:
с фосфором
Щелочные металлы реагируют с фосфором при нагревании, образуя фосфиды:
3Na + P = Na3Р фосфид натрия
3K + P = K3Р фосфид калия
Нагревание щелочных металлов в атмосфере водорода приводит к образованию гидридов щелочных металлов, содержащих водород в редкой степени окисления – минус 1:
Н2 + 2K = 2KН -1 гидрид калия
Н2 + 2Rb = 2RbН гидрид рубидия
с серой
Взаимодействие ЩМ с серой протекает при нагревании с образованием сульфидов:
S + 2Na = Na2S сульфид натрия
Взаимодействие щелочных металлов со сложными веществами
Все ЩМ активно реагируют с водой с образованием газообразного водорода и щелочи, из-за чего данные металлы и получили соответствующее название:
2HOH + 2Na = 2NaOH + H2↑
2K + 2HOH = 2KOH + H2↑
Литий реагирует с водой довольно спокойно, натрий и калий самовоспламеняются в процессе реакции, а рубидий, цезий и франций реагируют с водой с мощным взрывом.
с галогенпроизводными углеводородов (реакция Вюрца):
со спиртами и фенолами
ЩМ реагируют со спиртами и фенолами, замещая водород в гидроксильной группе органического вещества:
Все металлы, в зависимости от их окислительно-восстановительной активности объединяют в ряд, который называется электрохимическим рядом напряжения металлов (так как металлы в нем расположены в порядке увеличения стандартных электрохимических потенциалов) или рядом активности металлов:
Li, K, Ва, Ca, Na, Mg, Al, Zn, Fe, Ni, Sn, Pb, H2, Cu, Hg, Ag, Рt, Au
Наиболее химически активные металлы стоят в ряду активности до водорода, причем, чем левее расположен металл, тем он активнее. Металлы, занимающие в ряду активности, место после водорода считаются неактивными.
Металлы способны реагировать с простыми веществами, такими как кислород (реакция горения), галогены, азот, сера, водород, фосфором и углеродом. В реакцию взаимодействия с кислородом вступают все металлы (исключение составляют Au, Pt), в результате чего возможно образование трех различных продуктов — пероксидов, оксидов и надпероксидов:
K + O2 = KO2 (надпероксид калия)
Металлы средней активности (начиная с Al) и неактивные металлы реагируют с кислородом только при нагревании:
В реакцию взаимодействия с азотом способны вступать только активные металлы, в результате чего образуются азиды, причем при н.у. с азотом реагирует только литий, остальные активные металлы – только при нагревании:
Только активные металлы способны взаимодействовать с углеродом и водородом, причем в случае реакции с водородом – это только щелочные и щелочноземельные металлы:
2Na + H2 = NaH (гидрид натрия)
С серой реагируют все металлы кроме Au и Pt:
2K +S = K2S (сульфид калия)
Также металлы способны взаимодействовать с галогенами и фосфором:
2Na + Cl2 = 2NaCl (хлорид натрия)
3Ca + 2P = Ca3P2 (фосфид кальция)
Все реакции взаимодействия с простыми веществами носят окислительно-восстановительный характер, металлы в них окисляются, проявляя свойства восстановителей, т.е. демонстрируют способность отдавать электроны:
Fe -2e = Fe 2+ процесс окисления, железо — восстановитель
S +2e = S 2- процесс восстановления, сера – окислитель
Взаимодействие металлов друг с другом
Металлы взаимодействуют друг с другом, образуя интерметаллические соединения:
Взаимодействие металлов с водой
Активные металлы (щелочные и некоторые щелочноземельные металлы — Ca, Sr, Ba) способны взаимодействовать с водой с образованием гидроксидов:
Металлы, характеризующиеся средней активностью (начиная с Al) вступают в реакцию с водой в более жестких условиях (наличие щелочной или кислотной среды и др. условия); при этом образуется соответствующий оксид и выделяется водород:
Неактивные металлы с водой не реагируют.
Реакции взаимодействия металлов с водой также относятся к ОВР и металлы в них являются восстановителями.
Взаимодействие металлов с кислотами
Металлы, стоящие в ряду активности до водорода способны реагировать с кислотами:
Неактивные металлы взаимодействуют с кислотами при особых условиях. Так, концентрированная серная кислота способна растворять медь (1), а при взаимодействии меди с концентрированной азотной кислотой в зависимости от её концентрации (60% или 30%) образуются различные продукты реакции (2, 3):
Взаимодействие металлов с солями
Более активные металлы способны взаимодействовать с солями, образованными менее активными металлами, и вытеснять их (металлы) из солей:
Читайте также: